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Abstract	
	
It	is	estimated	that	over	1.5	million	lung	nodules	are	detected	annually	in	the	United	States.	Most	of	

these	are	benign	but	frequently	undergo	invasive	and	costly	procedures	to	rule	out	malignancy.	A	

risk	predictor	that	can	accurately	differentiate	benign	and	malignant	lung	nodules	could	be	used	to	

more	efficiently	route	benign	lung	nodules	to	non-invasive	observation	by	CT	surveillance	and	

route	malignant	lung	nodules	to	invasive	procedures.	The	majority	of	risk	predictors	developed	to	

date	are	based	exclusively	on	clinical	risk	factors,	imaging	technology	or	molecular	markers.		

Assessed	here	are	the	relative	performances	of	previously	reported	clinical	risk	factors	and	

proteomic	molecular	markers	for	assessing	cancer	risk	in	lung	nodules.	From	this	analysis	an	

integrated	model	incorporating	clinical	risk	factors	and	proteomic	molecular	markers	is	developed	

and	its	performance	assessed	on	a	previously	reported	prospective	collection	of	lung	nodules	that	

enrolled	475	patients	from	12	sites	with	lung	nodules	between	8	and	30mm	in	diameter.	In	this	

analysis	it	is	found	that	the	molecular	marker	is	most	predictive.	However,	the	integration	of	clinical	

and	molecular	markers	is	superior	to	both	clinical	and	molecular	markers	separately.	

	
Clinical	Trial	Registration:	Registered	at	ClinicalTrials.gov	(NCT01752101).	
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INTRODUCTION	

Over	1.5	million	lung	nodules	are	identified	annually	in	the	U.S.	presenting	a	difficult	clinical	

challenge	as	the	majority	ultimately	prove	to	be	of	benign	origin	(1,	2).	The	diagnostic	dilemma	

faced	by	physicians	is	to	identify	nodules	that	are	malignant	and	yet	minimize	the	risks	of	invasive	

procedures	on	benign	nodules.		Evidence	suggests	that	the	currently	available	tools	such	as	clinical	

risk	predictors	(3-5)	and	imaging	have	limitations	in	clinical	practice	(6,	7).	This	has	resulted	in	a	

growing	interest	in	utilizing	molecular	tests	as	diagnostic	adjuncts	(8,	9).	Perhaps	of	even	greater	

interest	is	the	utility	of	integrated	risk	predictors	that	incorporate	both	clinical	risk	factors	and	

molecular	markers.	

We	have	previously	validated	a	blood-based	risk	predictor	that	used	11	molecular	factors	

(10,	11)	and	established	its	potential	clinical	utility	on	a	prospectively	collected	biobank	(12).		

Separately,	several	risk	predictors	composed	purely	of	clinical	risk	factors	have	been	validated	(3-

5).	Here	we	explore	two	hypotheses:	

• First,	molecular	markers	are	comparable	in	performance	to	clinical	factors	for	risk	

prediction,	and	

• Second,	the	integration	of	molecular	and	clinical	risk	factors	results	in	a	better	risk	

prediction.	

The	most	reliable	clinical	tools	are	those	that	undergo	multiple	validations	of	performance	on	

independent	sample	sets	(13).	Consequently,	the	focus	of	this	analysis	is	not	the	discovery	of	new	

molecular	or	clinical	risk	factors,	but	the	evaluation	of	previously	validated	markers	and	factors,	

both	individually	and	integrated,	on	a	prospectively	collected	sample	set.	The	molecular	markers	

evaluated	are	those	previously	discovered	and	validated	as	being	predictive	for	cancer	risk	in	lung	

nodules	(8,	11).	The	clinical	risk	factors,	also	previously	validated	as	being	predictive	for	cancer	risk	

in	lung	nodules,	include	age,	nodule	size,	smoking	history,	nodule	location	and	nodule	spiculation	

(5).	Finally,	the	hypotheses	are	explored	using	samples	acquired	from	a	prospective	trial	
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(NCT01752101)	of	lung	nodule	management	previously	reported	(12).	All	subjects	in	this	trial	

underwent	an	invasive	procedure	(biopsy	and/or	surgery).	We	chose	to	focus	on	these	subjects	as	it	

allows	for	the	assessment	of	how	accurately	risk	prediction	tools	could	identify	benign	lung	nodules	

that	undergo	unnecessary	invasive	procedures.		

	

METHODS	

Study	Design	

Trial	NCT01752101	was	a	prospective,	multicenter,	observational	trial	with	retrospective	

evaluation	of	the	performance	of	molecular	and	clinical	markers.		Patient	care	was	not	directed	or	

influenced	by	the	protocol.		A	blinding	protocol	was	strictly	followed.		All	sites	had	local	or	central	

Institutional	Review	Board	approval.	

	

Patient	Selection		

Patients	with	an	indeterminate	pulmonary	nodule	were	enrolled	at	12	geographically	diverse	sites	

in	the	U.S.		Eligible	patients	were	those	with	a	lung	nodule	between	8-30mm	in	diameter,	minimum	

40	years	of	age,	and	had	recently	completed	a	CT	guided	needle	aspiration	(TTNA)	or	

bronchoscopic	biopsy	with	an	established	diagnosis	or	scheduled	for	a	surgical	lung	biopsy.			

Exclusion	criteria	included	a	prior	malignancy	within	5	years	of	lung	nodule	identification	or	a	

clinical	tumor	stage	>	or	=	T2,	nodal	stage	>	or	=	N2,	or	evidence	of	metastatic	disease.		

All	TTNA	and	bronchoscopy	procedures	were	categorized	as	either	diagnostic	(provided	a	specific	

malignant	or	benign	pathological	diagnosis),	or	non-diagnostic	(the	specific	etiology	of	the	lung	

nodule	remained	unknown).		All	surgical	procedures	were	categorized	into	either	diagnostic	(i.e.	no	

specific	prior	diagnosis)	or	therapeutic	(i.e.	surgery	preceded	by	a	TTNA	or	bronchoscopy	that	

yielded	a	malignant	diagnosis).	
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Finally,	the	analysis	here	focused	on	those	subjects	with	lung	nodules	between	8	and	20mm	in	

diameter.	These	were	of	particular	interest	as	lung	nodules	below	20mm	are	more	challenging	to	

classify	as	malignant	or	benign	

	

Data	Collection	

Blood	samples	were	obtained	and	processed	for	proper	storage	and	shipment	per	protocol	(12).		

Data	on	procedures	including	bronchoscopy,	transthoracic	needle	biopsy,	and	surgery	were	

recorded.	

	

Molecular	and	Clinical	Markers	

The	assay	(Xpresys	Lungä,	Integrated	Diagnostics,	Seattle,	WA)	is	based	on	mass	spectroscopy	

MRM-MS	as	previously	described	(8,	11,	12,	14).	It	was	developed	following	National	Academy	of	

Medicine	guidelines	(13)	and	monitors	11	proteins.	Clinical	factors	collected	included	age,	smoking	

status,	nodule	diameter,	nodule	spiculation	and	nodule	location.		

	

Data	Analysis	

All	statistical	analyses	were	performed	using	Matlab	(Mathworks	inc.,	version	8.3.0.532)	and	

MedCalc,	version	16.4	(MedCalc	Software	bvba).		Chi-squared	analysis	of	variance	testing	was	used	

to	compare	groups,	and	a	p-value	of	≤	0.05	is	considered	significant.		The	McMenar	test	was	used	to	

compare	performance	of	different	predictors	on	the	same	sample	set	(15).	Physicians,	patients,	

along	with	laboratory	and	statistical	personnel	were	blinded	to	the	results	of	the	protein	classifier	

and	clinical	information.	Continuous	and	categorical	variables	were	assessed	using	Mann–Whitney	

and	Fisher’s	exact	tests,	respectively.	All	confidence	intervals	are	reported	as	two-sided	binomial	

95%	confidence	intervals	(CIs).		
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RESULTS	

A	total	of	475	subjects	were	enrolled	prospectively	from	April	2012	to	December	2014	in	the	

registered	study,	NCT01752101.		Of	these,	50	subjects	violated	the	inclusion/exclusion	criteria;	43	

additional	subjects	had	a	lung	cancer	other	than	NSCLC;	26	additional	subjects	had	missing	data;	

and	3	additional	subjects	violated	the	blood	sample	collection	protocol.	This	left	353	patients	

eligible	for	analysis	(see	(12)	for	more	details).	Of	the	353	eligible	subjects,	222	had	nodule	size	8-

20mm.	Baseline	demographics	are	shown	in	Table	1.	In	this	population	of	subjects,	the	cancer	

prevalence	was	81%	(180	out	of	222	subjects).	The	average	age	of	subjects	with	a	malignant	nodule	

(67.1	years)	was	not	significantly	different	from	subjects	with	a	benign	nodule	(64.8	years).	

Smoking	history	binned	into	the	categories	of	‘never’,	‘former’	and	‘current’	were	similar	for	

subjects	with	malignant	and	benign	nodules.	Nodule	size	was	not	significantly	different	between	

subjects	with	a	malignant	nodule	(14.7mm)	and	subjects	with	a	benign	nodule	(14.1mm).	

	

Of	the	11	proteomic	markers	evaluated	five	were	previously	reported	as	being	diagnostic	(ALDOA,	

COIA1,	TSP1,	FRIL	and	LG3BP)	and	6	reported	as	being	endogenous	normalizers	(C163A,	PEDF,	

LUM,	GELS,	MASP	and	PTPRJ)	(11,	14).	In	this	analysis,	we	focus	on	ratio	pairs	P1/P2	were	P1	is	a	

diagnostic	protein	and	P2	is	a	normalizer.	Among	all	such	protein	ratio	pairs,	LG3BP/C163A	had	the	

maximal	AUC	of	60%	for	classifying	the	222	subjects	as	being	malignant	or	benign.	This	is	

significantly	better	than	random	by	the	Mann-Whitney	test	(p-value	0.025).	The	ratio	of	these	two	

proteins,	LG3BP/C163A,	will	be	used	to	assess	the	stated	study	hypotheses.	Table	2	presents	the	

AUC	performance	of	all	ratio	pairs.		

Study	Hypothesis	#1	

We	assess	the	individual	performance	of	five	clinical	risk	factors	(nodule	size,	subject	age,	subject	

smoking	history,	nodule	location	and	nodule	spiculation)	and	the	proteomic	ratio	LG3BP/C163A.	
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Figure	1	presents	the	performance	of	the	five	clinical	risk	factors	and	the	molecular	marker	

LG3BP/C163A	using	a	ROC	plot.	In	comparing	these	six	factors,	the	proteomic	ratio	has	the	highest	

AUC	(60%)	and	is	significantly	better	than	random	(pvalue	=	0.025).	In	contrast,	none	of	the	clinical	

risk	factors	alone	have	an	AUC	significantly	better	than	random	(AUC	appears	in	parentheses):	

nodule	size	(55%),	age	(57%),	smoking	history	(55%),	nodule	location	(48%)	and	nodule	

spiculation	(55%).	

Study	Hypothesis	#2	

To	address	the	second	study	hypothesis,	we	need	to	integrate	the	five	clinical	risk	factors	with	the	

proteomic	ratio.	This	integration	was	conducted	using	a	decision	tree	approach	(16).	The	proteomic	

ratio	LG3BP/C163A	is	used	first	to	classify	a	lung	nodule	as	lower	or	higher	risk	based	on	a	decision	

threshold	“t”	(see	formula	below	where	“k”	denotes	a	lung	nodule	under	evaluation).	Secondly,	a	

cancer	risk	score,	“ClinFact”,	is	calculated	over	the	five	clinical	risk	factors.	Note	that	the	ClinFact	

risk	algorithm	is	a	simplification	of	the	‘Mayo’	algorithm	(5)	with	the	cancer	history	factor	omitted	

as	insufficient	information	was	collected	in	the	study	for	this	clinical	factor	to	be	reliably	included.	If	

the	lung	nodule	is	lower	risk,	as	determined	by	the	proteomic	ratio	LG3BP/C163A,	then	the	Mayo	

risk	prediction	is	reduced	by	a	fixed	amount	“T”,	otherwise,	it	is	left	unchanged.	We	call	this	

integrated	model	“IntMod”.	Effectively,	the	proteomic	ratio	LG3BP/C163A	is	used	to	identify	lower	

risk	lung	nodules	in	order	to	rule	out	lung	cancer.	

	

IntMod k =
max	(0, ClinFact k − T), log9(

LG3BP
C163A) ≤ 	t

ClinFact(k), log9(
LG3BP
C163A) > 	t

	

ClinFact k =
eE

1 + eE	
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X = −6.8272 + 0.0391 ∗ Age + 0.7917 ∗ Smoker + 0.1274 ∗ Diameter + 1.0407 ∗ Spiculation

+ 0.7838 ∗ Location	

We	note	that	this	integrated	model	has	two	parameters,	namely,	“t”	and	“T”	which	need	to	be	

learned.		

Optimal	Values	of	Parameters	t	and	T	
	
In	this	analysis	we	learn	the	optimal	values	for	the	integrating	parameters	t	and	T.	All	possible	pairs	

of	values	for	t	(-1.1	to	3.3	in	increments	of	0.1)	and	for	T	(0	to	1	in	increments	of	.1)	are	assessed	

and	the	AUC	of	the	resulting	IntMod	predictor	calculated.	We	make	the	following	observations:	

1. The	longest	continuous	stretch	of	values	for	t	where	the	highest	AUC	values	occur	is	from	t	=	

0.14	to	0.39,	regardless	of	the	value	of	parameter	T.	In	this	range	the	AUC	values	are	all	at	least	

62%.	That	is,	this	is	the	range	of	values	for	parameter	t	with	both	high	and	stable	performance	

for	IntMod.	

2. Within	the	range	t	=	0.14	to	0.39,	the	vast	majority	of	t	values	(23	out	of	29)	achieve	maximal	

AUC	when	T	=	0.5.	In	particular,	the	maximum	AUC	achieved	is	63.1%	for	t	=	0.29	and	T	=	0.5.			

3. Within	the	entire	range	t	=	0.14	to	0.39,	the	AUC	achieved	is	significantly	different	from	0.5	with	

p-values	all	less	than	0.008	(Mann-Whitney	test)	when	T	=	0.5.		

For	further	discussion,	we	select	t	=	0.29	and	T=	0.5	as	this	is	within	the	longest	continuous	range	of	

values	with	strong	performance.	However,	it	is	important	to	point	out	that	the	performance	of	the	

integrated	model	is	essentially	the	same	for	any	value	of	t	in	this	range	(0.14	to	0.39).	Figure	2	

presents	the	AUC	performance	of	IntMod	for	all	values	of	the	parameter	t	and	for	T	=	0.5.		

	
Comparative	Performance	of	the	Proteomic	Ratio,	Mayo	and	the	Integrated	Model	
	
On	these	subjects	the	AUC	performance	of	the	proteomic	ratio,	the	simplified	Mayo	algorithm	and	

the	integrated	model	IntMod	are,	respectively,	60%,	58%	and	63%.	These	are	illustrated	in	Figure	
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3.	Although	these	AUC	values	demonstrate	an	improved	performance	for	the	integrated	model	over	

the	proteomic	ratio	and	Mayo	alone,	we	focus	on	the	clinically	relevant	point	on	the	IntMod	ROC	

curve	(sensitivity	=	90%,	specificity	=	33%)	to	statistically	compare	performance	at	the	same	

sensitivity	or	the	same	specificity.	High	sensitivity	is	typically	required	to	rule	out	lung	cancer	

confidently.	

Using	the	McNemar	test,	the	integrated	model	has	significantly	better	specificity	(when	sensitivity	

is	fixed	at	90%)	to	both	the	proteomic	ratio	(p-value	0.031)	and	the	Mayo	model	(p-value	0.008).	

Similarly,	using	the	McNemar	test,	the	integrated	model	has	significantly	better	sensitivity	(when	

specificity	is	fixed	at	33%)	to	both	the	proteomic	ratio	(p-value	<	0.001)	and	the	Mayo	model	(p-

value	<	0.001).		

Discussion	

The	two	hypotheses	tested	in	this	study	were	confirmed.	First,	the	proteomic	marker	LG3BP/C163A	

was	more	accurate	than	five	commonly	used	clinical	risk	factors,	alone	or	in	combination,	in	the	

high	prevalence	population	studied.	Second,	the	integration	of	this	proteomic	marker	with	the	five	

clinical	risk	factors	resulted	in	a	risk	predictor	statistically	superior	to	both	the	proteomic	marker	

and	to	the	clinical	risk	factors	separately.	This	result	affirms	that	integrated	risk	predictors	can	

enable	better	risk	prediction	for	lung	nodule	management.		

	

This	analysis	assessed	five	previously	reported	clinical	risk	factors	and	11	proteomic	markers	on	a	

new	set	of	prospectively	collected	samples	from	12	sites.	The	evaluation	of	risk	markers	on	multiple	

sample	sets	helps	to	establish	their	performance	and	appropriate	use	in	clinical	use.	In	this	study,	

we	focused	on	the	subpopulation	of	lung	nodules	between	8	and	20mm	in	diameter	and	having	

undergone	an	invasive	procedure.	This	subpopulation	is	important	as	it	contains	benign	lung	
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nodules	that	are	over-treated,	and	so,	enables	the	evaluation	of	clinical	risk	factors	and	proteomic	

markers	for	the	purpose	of	identifying	those	benign	lung	nodules	that	can	avoid	unnecessary	

invasive	procedures.		

	

The	design	of	the	integrated	model	warrants	a	few	comments.	First,	proteomic	ratios	were	assessed	

instead	of	individual	protein	markers.	The	reason	for	this	is	that	ratios	are	particular	useful	as	they	

normalize	for	pre-analytical	and	analytical	variation	(14).	Furthermore,	to	reduce	the	possibility	of	

overfitting	we	avoided	utilizing	more	than	two	proteomic	markers.	Second,	there	are	many	other	

valid	methodologies	to	integrate	the	clinical	and	proteomic	risk	factors	including	logistic	regression	

(17),	support	vector	machines	(18)	and	random	forests	(19),	among	others,	in	addition	to	the	

decision	tree	approach	used	here.	

	

To	be	clear,	this	is	a	discovery	level	study,	using	previously	validated	predictors	to	assess	the	above	

hypotheses.	The	integrated	model	developed	needs	to	be	validated	in	the	intended	use	population,	

then	assessed	for	clinical	utility,	prior	to	considering	the	clinical	application	of	this	biomarker.	It	is	

important	to	verify	that	tests	shown	to	be	accurate	during	clinical	validation	influence	clinical	

decisions	to	the	benefit	of	the	patient.	The	biomarker	reported	here	was	designed	as	a	rule	out	test	

(high	sensitivity).	The	consequences	of	a	true	negative	test	in	the	population	studied	could	be	the	

avoidance	of	invasive	testing	in	patients	with	benign	nodules,	while	the	consequences	of	a	false	

negative	test	may	be	a	delay	in	treatment	of	a	malignant	nodule.	The	proper	clinical	balance	of	these	

potential	results	is	not	clear,	being	influenced	by	available	testing,	patient	characteristics	and	

values.	The	actual	clinical	decisions	that	follow	the	test	result	will	also	be	influenced	by	physician	

confidence	in	the	result	and	understanding	of	its’	clinical	application.	As	designed,	a	positive	test	

result	would	not	influence	the	result	of	the	clinical	risk	prediction	model	used.	The	relatively	low	

specificity	of	the	test,	due	to	the	goal	of	ruling	out	malignancy,	mandated	this	approach.	
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The	integrated	model	was	developed	on	a	population	of	patients	with	lung	nodules	with	a	very	high	

prevalence	of	lung	cancer	(>80%).	This	is	in	contrast	to	the	average	prevalence	of	lung	cancer	in	

nodules	8-20	mm	in	diameter	(20-25%).	The	high	prevalence	suggests	that	physician	judgement	

about	proceeding	with	invasive	testing	in	our	cohort	was	quite	good.	We	felt	that	it	was	important	

to	develop	this	marker	in	a	population	where	the	etiology	of	the	nodules	was	well	established,	

leading	to	the	choice	of	including	only	nodules	that	were	biopsy	confirmed.	Ultimately,	a	rule	out	

biomarker	is	likely	to	have	greatest	clinical	utility	in	a	population	with	a	lower	prevalence	of	lung	

cancer,	perhaps	in	the	10-60%	range.	This	intended	use	population	will	need	to	be	targeted	during	

clinical	validation.	

	

The	clinical	risk	predictors,	alone	and	in	combination,	did	not	perform	as	well	as	previously	

reported.	This	is	related	to	the	population	studied.	All	patients	had	an	invasive	procedure	

performed.	The	clinical	decision	to	perform	a	procedure	reflects	the	physician’s	judgement	about	

the	probability	of	malignancy	in	the	nodule.	As	described	in	the	results,	there	were	no	differences	in	

the	clinical	and	imaging	variables	included	in	the	model	between	the	lung	cancer	and	benign	nodule	

groups.	Thus,	the	accuracy	of	the	clinical	risk	models	in	the	high	prevalence	population	studied	was	

poor.	It	will	be	important	to	confirm	the	hypotheses	during	clinical	validation	in	the	intended	use	

population.	Similarly,	it	will	be	important	that	any	difference	in	accuracy	leads	to	a	clinically	

significant	improvement	in	decisions	and	patient	outcomes.	
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Ethical	approval	and	Consent:	All	procedures	performed	in	studies	involving	human	participants	

were	in	accordance	with	the	ethical	standards	of	the	institutional	and/or	national	research	

committee	and	with	the	1964	Helsinki	declaration	and	its	later	amendments	or	comparable	ethical	

standards.		Informed	consent	was	obtained	from	all	individual	participants	included	in	the	study.	
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TABLE	1.	
Patient	demographics	and	lung	nodule	characteristics	for	all	222	subjects.	
	

Characteristics	 		 		
All	

Patients	 		 Cancer	 		 Benign	 		 p-value	
Patients	 		 		 		 222	 		 180	 		 42	 		 		

Age	(years)	[mean	(range)]	 		 66.69	
(44.68-
95.46)	 67.12	

(45.31-
95.46)	 64.82	

(44.68-
87.47)	 0.177	

Gender	(n,%)	 		 		 		 		 		 		 		 		 0.071	
		 Male	 		 		 89	 40%	 67	 37%	 22	 52%	 		
		 Female	 		 		 133	 60%	 113	 63%	 20	 48%	 		

Smoking	History	 		 		 		 		 		 		 		 		 		
		 Status	(n,%)	 		 		 		 		 		 		 		 0.392	
		 Never	 	 		 33	 15%	 25	 14%	 8	 19%	 		
		 Former	 	 		 135	 61%	 110	 61%	 25	 60%	 		
		 Current	 	 		 48	 22%	 42	 23%	 6	 14%	 		
		 Passive	Exposure		 	 6	 3%	 3	 2%	 3	 7%	 		
Lung	Nodules	 		 		 		 		 		 		 		 		 		
Size	(mm)	[mean	(range)]	 		 14.59	 (8-20)	 14.72	 (8-20)	 14.07	 (8-20)	 0.289	

	

	
TABLE	2.	
AUC	performance	of	all	proteomic	ratio	pairs	P1/P2	where	P1	is	one	of	the	five	diagnostic	proteins	

(ALDOA,	COIA1,	TSP1,	FRIL	and	LG3BP)	and	P2	is	one	of	the	six	normalization	proteins	(C163A,	
PEDF,	LUM,	GELS,	MASP	and	PTPRJ).	

	

P1	 P2	 AUC	
LG3BP	 C163A	 0.60	
LG3BP	 GELS	 0.60	
COIA1	 GELS	 0.59	
COIA1	 LUM	 0.56	
COIA1	 PEDF	 0.56	
ALDOA	 C163A	 0.56	
FRIL	 LUM	 0.56	
FRIL	 PEDF	 0.55	
LG3BP	 MASP1	 0.55	
LG3BP	 PTPRJ	 0.55	
ALDOA	 GELS	 0.54	
FRIL	 MASP1	 0.54	
TSP1	 C163A	 0.54	
TSP1	 GELS	 0.53	
COIA1	 C163A	 0.53	
ALDOA	 PTPRJ	 0.53	
ALDOA	 PEDF	 0.53	
FRIL	 PTPRJ	 0.52	
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COIA1	 MASP1	 0.52	
TSP1	 LUM	 0.52	
TSP1	 PTPRJ	 0.52	
TSP1	 PEDF	 0.51	
FRIL	 GELS	 0.51	
LG3BP	 PEDF	 0.51	
ALDOA	 LUM	 0.51	
FRIL	 C163A	 0.51	
COIA1	 PTPRJ	 0.51	
TSP1	 MASP1	 0.50	
LG3BP	 LUM	 0.50	
ALDOA	 MASP1	 0.50	

	

	

	

	 	

Figure	1.	Comparison	of	five	clinical	risk	factors	and	the	proteomic	ratio	LG3BP/C163A.	
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Figure	2:	Performance	of	the	Integrated	Model	(IntMod)	for	different	values	of	parameter	t	and	

T=	0.5.	Optimal	sustained	performance	occurs	for	values	of	t	between	.14	and	.39	where	AUC	

values	are	all	at	least	62%	and	with	p-values	all	below	0.008	(Mann-Whitney).	
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Figure	3:	Comparison	of	proteomic	ratio,	the	simplified	Mayo	algorithm	and	the	Integrated	

Model	(Ratio	+	Mayo.	At	sensitivity	90%	and	specificity	33%	the	integrated	model	has	

statistically	significant	better	performance	than	both	the	simplified	Mayo	model	and	the	

proteomic	ratio	(see	text	for	details).	
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