
Accuracy in wrist-worn, sensor-based 
measurements of heart rate and energy 
expenditure in a diverse cohort

Anna Shcherbina*, M.Enge, C. Mikael Mattsson*, PhDa,b, Daryl Waggott*, MSca,c, Heidi 
Salisbury, RN, MSN c Jeffrey W. Christle, PhDa, Trevor Hastie, PhD d,e, Matthew T. Wheeler, 
MD, PhD a,c, Euan A. Ashley, FRCP, DPhil  a,c,e

Brief title: Accuracy of wrist worn devices

Affiliations: 

a Division of Cardiovascular Medicine, Department of Medicine, Stanford University, 
Stanford, CA USA

b Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health 
Sciences, Stockholm, Sweden

c Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, 
Stanford University, Stanford, CA, USA

d Department of Statistics, Stanford University, Stanford, CA USA

e Department of Biomedical Data Science, Stanford University, Stanford, CA USA

*these authors contributed equally

Correspondence to:

Euan A. Ashley

Falk Cardiovascular Research Building

Stanford University

870 Quarry Road,

Stanford,

California

94305

Tel: (650)736-7878

Fax: (650)498-7452

euan@stanford.edu

The authors have no competing interests to declare. The authors have no 

industry relationships to declare. 

Word count: 2230

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

mailto:euan@stanford.edu
https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


Abstract

Background: The ability to measure activity and physiology through wrist-worn devices 

provides an opportunity for cardiovascular medicine. However, the accuracy of 

commercial devices is largely unknown.

Objective: To assess the accuracy of seven commercially available wrist-worn devices in 

estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor

evaluation framework. 

Methods: We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio 

Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being 

simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, 

walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) 

of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and 

EE was computed for each subject/device/activity combination.

Results: Devices reported the lowest error for cycling and the highest for walking. Device

error was higher for males, greater body mass index, darker skin tone, and walking. Six of

the devices achieved a median error for HR below 5% during cycling. No device achieved 

an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in 

both HR and EE, while the Samsung Gear S2 reported the highest.

Conclusions: Most wrist-worn devices adequately measure HR in laboratory-based 

activities, but poorly estimate EE, suggesting caution in the use of EE measurements as 

part of health improvement programs. We propose reference standards for the validation 

of consumer health devices (http://precision.stanford.edu/). 

Key words:mobile health, heart rate, energy expenditure, validation, fitness trackers, 

activity monitors

Abbreviations:
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General estimating equation (GEE)
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Introduction

Coronary heart disease is responsible for one in every four deaths in the United States. 

Few interventions are as effective as physical activity in reducing the risk of death yet, we

have met limited success in programs designed to help individuals exercise more. In 

weight loss studies, clear benefit derives from simple documentation of caloric intake,1 

but data are less clear on the benefit of documenting exercise time and calorie 

expenditure. 

Microelectromechanical systems such as accelerometers and Light Emitting Diode (LED)-

based physiological monitoring have been available for decades.2–7 More recent 

improvements in battery longevity and miniaturization of the processing hardware to turn

raw signals in real time into interpretable data led to the commercial development of 

wrist worn devices for physiological monitoring. Such devices can provide data directly 

back to the owner and place estimates of heart rate (HR) and energy expenditure (EE) 

within a consumer model of health and fitness. Unlike clinically approved devices, 

however, validation studies are not available to practitioners whose patients commonly 

present acquired data in the hope that it may enhance their clinical care. Indeed, certain 

health care systems have developed processes to bring such data directly into the 

medical record.8–10 Thus, validation data on new devices and a forum for the ready 

dissemination of such data are urgent requirements.

Prior studies of wrist worn devices have focused on earlier stage devices, or have focused

exclusively on HR or exclusively on estimation of energy expenditure. Some made 

comparisons among devices without reference to an FDA-approved gold standard. None 

proposed an error model or framework for device validation. In response to this need, we 

formulated an approach to the public dissemination of validation data for consumer 

devices (http://precision.stanford.edu/). The website is one answer to the challenge of 

rapid technological advance and algorithm/product cycle upgrades. We present here the 

first data from this study, derived from laboratory testing of consumer wrist worn devices 

from the most commercially successful manufacturers. We test devices in diverse 
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conditions on diverse individuals, and present the data and our recommendations for 

error modeling.

Methods

Patient Involvement

Patients, service users, carers, and lay people were not involved in the design or 

execution of the study. Study participants were recruited from the general population via 

word-of-mouth and e-mail notifications. 

Devices

Following a comprehensive literature and online search, 45 manufacturers of wrist worn 

devices were identified. Criteria for inclusion included: wrist worn watch or band; 

continuous measurement of HR, stated battery life >24 hours, commercially available 

direct to consumer at the time of the study, one device per manufacturer. Eight devices 

met the criteria; Apple Watch, Basis Peak, ePulse2, Fitbit Surge, Microsoft Band, MIO Alpha

2, PulseOn, and Samsung Gear S2. Multiple ePulse2 devices had technical problems 

during pre-testing and were therefore excluded. All devices were bought commercially 

and handled according to the manufacturer’s instructions. Data were extracted according 

to standard procedures described in the Supplementary Materials.

Participants were tested in two phases. The first group included the Apple Watch, Basis 

Peak, Fitbit Surge and Microsoft Band. The second group included the MIO Alpha 2, 

PulseOn and Samsung Gear S2. 

Healthy adult volunteers (age ≥18) were recruited for the study through advertisements 

within Stanford University and local amateur sports clubs. From these interested 

volunteers, study participants were selected to maximize demographic diversity as 

measured by age, height, weight, BMI, wrist circumference, and fitness level. In total, 60 

participants (29 men and 31 women) performed 80 tests (40 with each batch of devices, 

20 men and 20 women). Participant characteristics are presented in Table 1.

Skin tone at the wrist was rated independently by two of the investigators using the Von 

Luschan Chromatic scale (1-36), and the average rating was then transformed to the 
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Fitzpatrick skin tone scale (1-6).11 Maximal oxygen uptake (VO2max) was measured by 

incremental tests in running (n = 32) or cycling (n = 6) to volitional exhaustion, or 

estimated from the submaximal cycling stages (n = 22) using the Åstrand nomogram 

(Åstrand 1960).

The study was conducted in accordance with the principles outlined in the Declaration of 

Helsinki and approved by the Institutional Review Board of Stanford University. All 

participants provided informed consent prior to the initiation of the study.

Protocol

Participants performed the standardized exercise protocol shown in Figure 1 in a 

controlled laboratory setting. Participants were wearing up to four devices simultaneously

and underwent continuous 12-lead ECG monitoring and continuous clinical grade indirect 

calorimetry (expired gas analysis) using FDA approved equipment (Quark CPET, COSMED,

Rome, Italy). After being fitted with all equipment the protocol started with the participant

seated for 5 min. This led to a transition to a treadmill and walking (3.0 mph at 0.5 % 

incline) for 10:00 min followed by faster walking (4.0 mph at 0.5 % incline) until 15:00 

min, slow running (average speed 5.7 mph at 0.5 % incline, range 4.5-6.5 mph) until 

20:00 min, and faster running (average speed 6.9 mph at 0.5 % incline, range 4.8-9.0 

mph) until 25:00. Thereafter there was 1 min of sitting recovery, and 2 min of rest and 

transition to a cycle ergometer where 5 min of low intensity cycling (average work rate 88

w, range 50-100 w) until 33:00 min was followed by more intense cycling (average work 

rate 160 w, range 80-225 w) until 38:00 min, and 1 min of sitting recovery concluded the 

protocol. Both the running and cycling stages were individualized to the participants’ 

individual fitness levels in order to maximize range of HR and EE. The last min of each 

stage was used for the analysis.

Statistical analysis

Statistical analysis is described in detail in the Supplementary materials. Statistical 

analysis was performed separately for HR and EE. The gas analysis data from the indirect 

calorimetry (VO2 and VCO2) served as the gold standard measurement for calculations of 
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EE (in kcal/min). ECG data was used as the gold standard for HR (bpm). The percent error 

relative to the gold standard was calculated for HR and EE using the following formula:

Error = (device measurement – gold standard) / gold standard

Principal component analysis, Bland-Altman analysis and various regression analyses 

were performed as described in the Supplementary Materials.

Error

We determined an error rate of 5% at a p-value of 0.05 to be within acceptable limits 

since this approximates a widely accepted standard for statistical significance, and there 

is precedent within health sciences research for this level of accuracy in pedometer step 

counting.12 To gain a sense of the overall performance of each device for each parameter,

a mixed effects linear regression model was utilized, allowing for repeated measurements

on subjects. This was estimated using the general estimating equation (GEE) approach.  

First, the device type, activity type, activity intensity, and metadata confounding factors 

were used as inputs to a general estimating equation, with the magnitude of the error as 

the output variable. Second, a singular value decomposition of the dataset was 

performed, treating activity type/intensity as the features. Input variables were not 

centered, so as to find components of deviation about zero. The contribution of each 

feature to the first four principal components was computed to determine the degree to 

which it explained the variation in device measurements. 

Results

Heart Rate (HR)

The lowest error in measuring HR was observed for the cycle ergometer task , 1.8 [0.9-

2.7] % (all results presented as median and 95 % CI; Figure 2A), while the highest error 

was observed for the walking task, 5.5 [3.9-7.1] %. Six of the devices achieved a median 

error below 5 % for HR on the cycle ergometer task; the Samsung Gear S2 achieved a 

median error rate of 5.1 [2.3-7.9] %. For the walking task, three of the devices achieved a

median error rate below 5 %: the Apple Watch, 2.5 [1.1-3.9] %, the PulseOn, 4.9 [1.4-8.6] 

%, and the Microsoft Band, 5.6 [4.9-6.3] %. The remaining four devices had median error 
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between 6.5 and 8.8 %. Across devices and modes of activities,  the Apple Watch 

achieved the lowest error in HR, 2.0 [1.2-2.8] %, while the Samsung Gear S2 had the 

highest HR error, 6.8 [4.6-9.0] % (Figure 3A and 4A). 

Energy Expenditure (EE)

Error in estimation of EE was considerably higher than for HR for all devices (Figure 2B 

and 3B). Median error rates across tasks varied from 27.4 [24.0-30.8] % for the Fitbit 

Surge to 92.6 [87.5-97.7] % for the PulseOn. For EE, the lowest relative error rates across 

devices were achieved for the walking (31.8 [28.6-35.0] %), and running (31.0 [28.0-34.0]

%) tasks, and the highest on the sitting tasks (52.4 [48.9-57.0] %).

Error 

No evidence was found for a systematic effect of increased error for individuals across 

tasks or devices. Both principal component analysis and regression via the general 

estimating equation revealed that activity intensity and sex were significant predictors of 

error in the measurement of HR.. The error rate for males was significantly higher than 

that for females (p-value =4.56e-5 , effect size = 0.044, Z=3.505) across all devices. 

Supplementary Figure 1 indicates that males had on average a 4 % higher error in HR 

across devices and tasks. Higher VO2max was significantly associated with HR error on 

the walking task for the Microsoft Band (t=2.25) and the Basis (t=2.34). Weight, BMI, and 

wrist size were all negatively associated with HR error in the walking task for the Apple 

Watch (t=-2.53, -2.78, -2.71).

Discussion

There are three principal findings from the current study. In a diverse  group of 

individuals: 1) most wrist worn monitoring devices report HR with acceptable error under 

controlled laboratory conditions of walking, running and cycling; 2) no wrist worn 

monitoring devices report EE within an acceptable error range under these conditions; 3) 

of the devices tested, the Apple watch had the most favorable error profile while the 

Samsung Gear S2 had the least favorable error profile (Supplementary Figure 3). This 

study adds to the literature on wearables by including a sample of highly diverse  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


participants, including skin tone, using FDA approved devices as a gold standard, by 

developing error models and by proposing a standard for clinically acceptable error.

Our finding that , HR measurements are within an acceptable error range across a range 

of individuals and activities is important for the consumer health environment and 

practitioners who might be interested to use such data in a clinical setting.

These findings are in agreement with prior work looking at fewer devices in a smaller 

number of less diverse individuals.13 In that study, HR error was within 1-9% of reference 

standards. In our study, six of the seven devices evaluated had a median HR error for the 

most stable activity, cycling, of below 5%. Covariates such as darker skin tone, larger 

wrist circumference, and higher BMI were found to correlate positively with increased HR 

error rates across multiple devices. Device error was lower for running vs walking but 

higher at higher levels of intensity within each modality. 

In contrast with low reported error for HR measurement, no device met our prespecified 

error criterion for energy expenditure. This finding is also in agreement with a previous 

smaller study 13 where EE estimates were up to 43% different from the reference 

standard. It is not immediately clear why EE estimations perform so poorly. While 

calculations are proprietary, traditional equations to estimate EE incorporate height, 

weight, and exercise modality. It is likely that some algorithms now include HR. Since 

height and weight are relatively fixed and HR is now accurately estimated, variability 

likely derives either from not incorporating heart rate in the predictive equation or from 

inter-individual variability in activity specific EE. There is evidence for this - for example, 

10,000 steps has been observed to represent  between 400 and 800 kilocalories  

depending on a person’s height and weight.14

Since devices are continually being upgraded and algorithms tuned, we created a website

for sharing validation data for the community and to provide a forum for users to interact 

with the most up to date performance evaluations from this ongoing study 

(http://precision.stanford.edu/).13,15–18 While the FDA currently considers consumer 

wearable sensors such as wrist worn devices as low risk (Class 1) and therefore not 
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subject to active regulation,19 they are however expected to increasingly inform clinical 

decision making. This makes transparency regarding benefits and limitations of 

paramount importance.

Limitations

Our study has limitations. We only tested devices and algorithms that were available at 

the time of our study. Laboratory validation of wearable devices is a logical first step 

toward determining whether commercial wearables have potential use for medical 

applications. However the true potential of such wearables lies in their ability to provide 

continuous real-time monitoring outside of the clinic. This will be the focus of future 

research. 

Conclusions

We assessed in a controlled laboratory setting the reliability of seven wrist worn devices 

in a diverse group of individuals performing walking, running and cycling at low and high 

intensity. We found that in most settings, heart rate measurements were within 

acceptable error range (5%). In contrast, none of the devices provided estimates of 

energy expenditure that were within an acceptable range in any setting. Individuals and 

practitioners should be aware of the strengths and limitations of consumer devices that 

measure heart rate and estimate energy expenditure. We encourage transparency from 

device companies and consistent release of validation data to facilitate the integration of 

such data into clinical care. We provide a forum for the community to share such data 

freely to help achieve this end.
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Figures 

Figure 1: Study protocol. A) Schematic view of the protocol. Participants transition 

through two intensities of three modalities of exercise as shown. Walking is on a treadmill.

Cycling is on a stationary bike. Activities are interspersed with brief (1 min) periods of rest

“R”, and transitions between activities are indicated by “T”.  B) Data from one participant 

wearing four devices. Data for the error analysis is derived from the last minute of each 

stage. Overall, error is within an acceptable range with the exception of the walking 

phase for one device (green line). 
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Figure 2. Aggregate relative error in heart rate and energy expenditure for the cycling 

and walking tasks -- the two tasks in the protocol with overall lowest and highest median 

device error, respectively. Error is calculated as abs(Gold Standard - Device) / (Gold 

Standard). The lower boundary of the boxplots indicates the 25 % quantile of data, the 

middle notch indicates the median data value, and the upper boundary indicates the 75 

% quantile. Whiskers include all data points that fall within 1.5 IQR of the 25% and 75 % 

quantile values. Data points that lie further than 1.5 IQR from the upper and lower hinge 

values are treated as outliers, indicated by black circles. Vertical dashed green lines 

indicate the 5 % error threshold, while the vertical dashed yellow lines indicate the 10 % 

error threshold. Median heart rate error is below the 5% threshold for all but 1 devices for 

the cycling task, and below the 10% threshold for all devices on the walking task. Energy 

expenditure error rates significantly exceed the 10% threshold for all devices on both the 

cycling and walking tasks. 
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Figure 3. Median device error across activities. We defined an acceptable error range as 

<5% (dark blue). Light blue, white and yellow shading indicates error outside of this 

range. A) Median heart rate beats-per-minute error as a percent of the gold standard 

measurement. B) Median energy expenditure (kcal) error as a percent of the gold 

standard measurement. Note the scaling of the legend color is identical in both panels. 

Overall, heart rate error was within the acceptable error range for the majority of 

task/device combinations, but energy expenditure error exceeded the allowed threshold 

for all tasks and devices. 
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 Figure 4: Principal component analysis of device error in (A) heart rate and (B) energy 

expenditure. Device errors across all activities (sitting, walking, running, cycling) were 

aggregated across subjects, excluding any subjects with missing data. The projection of 

the scaled error values on principal components 1 and 2 (PC2, PC2) are illustrated in the 
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scatter plot, color-coded by device. Ellipses indicate the extent of the first and second 

principal components that encompass 95 percent of the subject error values for each 

device. Smaller ellipse area indicates lower variance among device error values, and data

points near 0 along the PC1 and PC2 axes indicate low error. The Apple Watch had the 

most favorable overall error profile while the PulseOn had the least favorable.

Tables

 Table 1: Participant characteristics

Values are means (min - max). Skin tone rating by Fitzpatrick scale. VO2max (maximal 

oxygen uptake) was either measured at incremental test to exhaustion or estimated from 

submaximal cycling using the Åstrand nomogram.

Men (n=29) Women (n=31)

Age (years) 40 (21 - 64) 37 (23 - 57)

Body mass (kg) 80.1 (53.9 - 130.6) 61.7 (47.8 – 89.2)

Height (cm) 179.0 (159 – 190.0) 165.9 (154.4 – 184.2)

Body mass index (kg/m^2) 24.9 (20.7 – 39.3) 22.4 (17.2 – 28.8)

Skin tone (scale 1 – 6) 3.7 (1 – 5) 3.7 (1 - 6)

Wrist circumference (cm) 17.3 (16.0 – 21.0) 15.4 (13.5 – 17.5)

VO2max (ml/kg/min) 52.8 (38.2 – 66.6) 45.3 (31.7 – 56.5)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2016. ; https://doi.org/10.1101/094862doi: bioRxiv preprint 

https://doi.org/10.1101/094862
http://creativecommons.org/licenses/by-nd/4.0/

