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The infinite sites assumption, which states that every genomic position mutates at most once
over the lifetime of a tumor, is central to current approaches for reconstructing mutation
histories of tumors, but has never been tested explicitly. We developed a rigorous statistical
framework to test the assumption with single-cell sequencing data. The framework accounts
for the high noise and contamination present in such data. We found strong evidence for
recurrent mutations at the same site in 8 out of 9 single-cell sequencing datasets from human
tumors. Six cases involved the loss of earlier mutations, five of which occurred at sites unaf-
fected by large scale genomic deletions. Two cases exhibited parallel mutation, including the
dataset with the strongest evidence of recurrence. Our results refute the general validity of
the infinite sites assumption and indicate that more complex models are needed to adequately
quantify intra-tumor heterogeneity.

The presence of mutational heterogeneity within tumors due to somatic cell evolution is
known to be a major cause of treatment failure 2. With the emergence of next-generation se-
quencing techniques it is possible to systematically analyze individual tumors at a genetic level
from admixed cell samples, and more recently from sequencing the DNA of individual tumor
cells »*. These technical advances, together with a prospect of high-precision cancer therapies,
have spurred the development of a variety of computational approaches to reconstruct not only the
clonal structure but also the entire mutation history of individual tumors >~'°. A common feature
of all these approaches is the use of the infinite sites assumption (ISA) 2° to exclude the possibility
of the same genomic site being affected by multiple mutations throughout the lifetime of a tumor.
However, the ISA has never been explicitly tested in the context of tumor evolution on sequencing
tumor data. Only in the context of copy number alterations it has been recently suggested to allow
multiple changes of the same site while still excluding recurrences of the same state 22,

The ISA is convenient to make, as it substantially restricts the search space of possible mu-
tation histories 2°, but its validity is unproven and hard to test, as many factors such as mutation
rate, cell division rate, copy number changes and the presence of mutational hotspots influence
the probability of multiple mutations hitting the same site. On larger scales, multiple mutations
have been observed to affect the same gene at different genomic sites in different spatial areas
and phylogenetic branches of tumors >*% indicating convergent evolution for these driver genes.
Structurally different copy number alterations have also been observed to affect the same genes
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in ovarian cancer ?2. This raises the specter of recurrence at the scale of individual bases and

violations of the ISA (Figure 1).

In fact, the idea that every genomic position mutates at most once over the life-time of a
tumor can be disproved by a generalization of the birthday problem (Online Methods). This is a
classic math puzzle that asks for the probability that two people in a group share the same birthday.
Perhaps surprisingly, this probability is already greater than % with only 23 people. Using the same
reasoning and estimates of the cumulative number of stem cell divisions 26 and mutation rates 27,
we found that the probability of violating the ISA in any tissue is almost 1 (Supplementary Note).

It is a different question, however, whether recurrent mutations are likely to be observed in
practice, as only a small fraction of the evolutionary history is reconstructable from the limited
number of tumor cells that are typically sequenced (Supplementary Figure 1). So although it is
almost certain that the ISA is violated within the tumor tissue, there may still be a low chance that
a violation occurs with a small set of mutations observed in a small sample of cells (Supplementary
Note).

Therefore we developed a statistical framework (Figure 2) based on real tumor data to test the
infinite sites model (ISM), M, that comprises all histories with a single event for every mutated
site, against a model My that allows multiple mutations at the same site, referred to as finite
sites model (FSM) (Online Methods). The test is defined as a model selection problem where we
compute the Bayes factor (BF) 2%2° of the two alternative models based on single-cell sequencing
data, D,

_ P(D|Mpy)
P(DIM;)
When the FSM fits the data better than the ISM, the BF is greater 1, and the larger the value, the
stronger is the evidence against the ISA. Neatly, the BF can be combined with estimates of the
prior odds of each model to provide the posterior odds:
P(Mg|D) P(Mpy)

N U= BFI—

P(M;|D) P(My)

BFI

The computation of the BF is based on our earlier work on reconstructing mutation histories
from mutation profiles of single cells '8, which we generalize here to allow a single recurrent
mutation (Online Methods). The recurrent mutation can be either a back mutation, if the second
event occurs in the same cell lineage, or a parallel mutation that occurs in a different lineage
(Figure 1). The reconstruction accounts for the noise in single-cell sequencing data, particularly
the high levels of allelic dropout.

Single-cell sequencing data can additionally be contaminated by doublets, the inadvertent
sequencing of more than one cell together, with some platforms having rates as high as 40% 3°.
We observed that high doublet contamination rates affect the quality of the reconstructed mutation
histories and thereby can confound the model selection process. Therefore we extended both
models to account for doublets and to learn their incidence rates from the data (Online Methods).
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Results

Evaluation of our framework on simulated data sets with realistic noise levels and contamination
with doublets revealed that our test has a high specificity of 95% using a BF cutoff of 1 (Supple-
mentary Note). The sensitivity increases with the number of sequenced cells. With 2-3 cells per
mutation, we find a moderate sensitivity of 50-60% with the same BF cutoff. While this means
that some recurrent mutations will be overlooked, any signaling of violations of the infinite sites
assumption in real data can be trusted. We analyzed nine published single-cell tumor datasets,
three from whole-exome sequencing (Table 1) and six from targeted sequencing (Table 2). The de-
tails of the inferred parameters and trees are discussed in the Supplementary Note, with the results
presented here.

Evidence for recurrent mutations in single-cell exome sequencing data Looking at a
JAK2-negative myeloproliferative neoplasm (essential thrombocythemia) for which the exomes
of 58 tumor cells were sequenced, we focussed on the 18 mutations classified as cancer-related 3!
and find evidence for a recurrence of the same point mutation in the RETSAT gene (Supplemen-
tary Figure 11). Both mutations are late events that have happened at the end of two neighboring
branches. This recurrence is supported by a BF estimate of 30 constitutes strong evidence for a
violation of the ISA.

Next, we analyzed a clear cell renal cell carcinoma for which exome sequencing data of a
total of 17 tumor cells is available *2. Performing the model comparison based on the 35 sites in-
formative for mutation tree reconstruction, we obtain a BF below 1. There is therefore no evidence
for a violation of the ISA, although any such violation would be hard to detect with the low number
of sequenced cells.

In a dataset of 47 cells of an estrogen-receptor positive (ER™) breast cancer with 40 informa-
tive mutation sites **, we found that the tree topology under both models consists of a linear chain
of mutations on top of a rather branched structure further down. Under the FSM a back mutation
of the early PANK3 mutation, changes the upper tree structure substantially compared to the tree
under the infinite sites model where the mutation is forced into a side branch (Supplementary Fig-
ure 13). Computing the BF, we find a value of 2000 providing very strong evidence that the model
with the back mutation fits the data much better than the infinite sites model.

For the small number of cells sequenced, and assuming a uniform distribution of mutations
with no selection and that all mutations are observed, we obtain the conservative estimate of the
probability of the same site among 40 changing twice via point mutations to be rather small at
2.5 x 1075 (Supplementary Table 5). We therefore tested loss of heterozygosity (LOH) as an
alternative explanation for the back mutation: If the only allele carrying the mutation is lost at
some point in the tree, sequencing descendant cells will only yield reads from the normal allele
thereby mimicking a back mutation (Figure 1). Based on copy number data from breast cancer
samples from the TCGA Research Network (http://cancergenome.nih.gov/), LOH on the PANK3
gene occurred with a probability of approximately 2 x 10~2 and thereby much higher than for the
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uniform reversion of a point mutation among 40. Copy number estimates are also provided ** for
the sequenced cells, although it is difficult to determine whether LOH has occurred in the respective
region. The reason being that PANK3 is located on chromosome 5 which was amplified early in
the tumor evolution. Of the sequenced cells most of them seem to still exhibit an amplification
of chromosome 5, but this is less certain for all cells. Some cells may then have lost a copy later,
giving a possible explanation of our observation of the back-mutation.

Evidence for recurrent mutations in single-cell panel data We found the strongest evi-
dence against the ISA in single-cell sequencing data from the personalized panels of six childhood
acute lymphoblastic leukemia (ALL) patients **. Our test returns extremely high BFs in the range
of 10° to 10 (Table 2) for five of the cases, and a more modest but still highly significant BF es-
timate of 330 for one patient sample (patient 2). For all samples apart from patient 5, the recurrent
mutation is a back mutation. Looking at the trees (Supplementary Figures 14—-19) we notice that
for three patients the lost mutation is actually the first one that happened in their trees: They affect
the MAL2 gene in patient 1, RIMS2 in patient 2 and SUSD2 in patient 6. For patient 4, the lost
mutation was in /KBKB which was also acquired in the tree trunk, while the last case, patient 3,
lost a mutation in CUL3 that was acquired further down in a branch of the tree. Interestingly also
three out of the five back mutations occur on chromosome 8. The overrepresentation of reversions
of early clonal mutations could hint at changing selective pressure that renders an early trunk mu-
tation expendable or even hindering in later tumor stages. Signs of this biological possibility have
recently been observed for Barrett’s oesophagus °.

Since LOH events are the most likely causes of back mutations, we compared to the 16 LOH
events (>10kb) detected from the bulk data of the 6 leukemia patients **. However, the single-cell
data showed that the large majority (13 out of 16) appeared in all clones and were ancestral 3.
None of the five back mutations we identified appeared in any of the LOH regions of the respective
patient, emphasizing that they are unlikely to be the result of large scale deletions. smaller scale
deletions. The data then indicate either smaller scale deletions or genuine back mutations with a
reversion of the individual loci.

We further examined whether the LOH at the loci we identified are common in ALL. To
obtain such statistics, we performed a comparison with large scale (>5Mb) copy number deletions
found in a large study of 142 children and 123 adults with ALL *°. Patients 1 and 2 had back
mutations on the 8q chromosome, which were not observed in any of the study samples, except a
whole loss of chromosome 8 in one adult. Patient 3 had a back mutation at chromosome 2q, which
also was not observed in any of the study samples. The back mutations for patients 1-3 therefore
also do not seem to match common large-scale deletion events, but could be the result of smaller
losses. The 8q back-mutations of patient 1 and 2 are close to MYC which plays an important role
in ALL ¥7. Patient 4’s back mutation was at 8p which was lost in 4 children and 4 adults, while
patient 6’s back mutation was at 22q and chromosome 22 was subject to large-scale deletion for 4
children and one adult in the ALL sample *°. Their large BFs could be related to these relatively
common LOH events. Patient 6’s back mutation also happened to be near /GL which is rarely
translocated with MYC.
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For patient 5, we observed (Figure 3) a parallel mutation in ClorfI05 with a BF of 4.8 x 101°
so that allowing the mutation to occur twice explains the data much better than enforcing the ISA.
Since sequencing bias is an unlikely explanation for the extreme BF based on analyzing the read
counts in the cells (Supplementary Note), our conclusion is that we are observing here a real signal
of the same genomic position mutating twice in different subpopulations of a tumor.

Signs of secondary parallel mutations Since back mutations violate the ISA but may have
a simpler biological cause from LOH than the single genomic position reverting, we wished to
examine parallel mutations more closely because these act at the level of individual bases. In
particular, we restricted our search to consider only the highest scoring parallel mutation for each
dataset. This may reveal additional violations of the ISA.

For the exome data, the recurrent mutation uncovered from the myeloproliferative neoplasm
31 is already parallel and no other parallel mutation scored highly. No evidence for infinite sites
violations was discovered for the kidney cancer 2, and for the breast cancer samples ** no parallel
mutation scored highly. For the panel data ** on the other hand, we find parallel mutations for
patients 1-4 with BFs larger than 1 (Supplementary Table 3). Three of them have moderate BFs,
but for patient 3 we find a large BF of 2.4 x 10° which indicates multiple violations of the infinite
sites hypothesis.

For patient 5 we also found multiple parallel mutations. The top-scoring recurrence was
already a parallel mutation (Table 2), but the second highest scoring recurrence is also parallel
with a very large BF of 4.1 x 10'°. That mutation occurs on chromosome 9 at position 139923258
(hg19) which is at the ends of the ABCA2 and C90rf139 genes.

Discussion

We have developed a statistical framework to test the infinite sites assumption in single-cell se-
quencing data. Application of our framework to published patient data (one myeloproliferative
neoplasm *!, one renal cell carcinoma *2, one breast tumor **, and six leukemia patients **) suggests
that the assumption is frequently violated. We showed that these findings can not be explained by
the background mutation rate alone, as the prior probability of mutating the same base twice among
a selected set of bases is low if mutations are spread uniformly across the genome (Supplementary
Table 5).

Most of the observed violations of the infinite sites assumption present as back mutations,
typically as the loss of an early clonal mutation. This may be the result of random losses of
passenger mutations, but observing this pattern in many patient samples would also be compatible
with selection driven by the micro-environmental or the genetic context. For example early driver
mutations may become obsolete once the tumor is established, or may even hinder the tumor at
later stages so their loss becomes positively selected for. Hints of changing selective pressures
on particular aberrations have recently been observed for Barrett’s oesophagus *°. Loss of a copy
of the pl6-locus seemed to provide a fitness advantage for clones experiencing acid reflux but
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a disadvantage when the acid is suppressed under treatment. Clones that regain the pl6 copy
could then potentially experience positive selection. For half of the leukemia patients the back-
mutation occurs on chromosome 8 pointing to a particular role in the development of the disease. A
simpler explanation for back mutations is LOH, the loss of a chromosomal segment that comprises
a mutated site. In tumors rich in copy number alterations such an event would have a reasonably
high prior probability, as the same site is much easier hit by two or more such large-scale alterations
than by two point mutations. In the leukemia dataset **, the back mutations we identified did not
occur in genomic regions affected by large scale deletions. While our findings on the incidence of
back mutations are limited to the small number of patient samples available at this point, they may
be of importance in the context of treatment strategies that target early trunk mutations in cancer
therapy. Our method can be used to generate the trunk mutations more accurately, as evident
particularly for the breast cancer sample ** (Supplementary Figure 13).

We also found evidence for parallel mutations in two of the studied cases, patient 5 of the
leukemia dataset ** (Figure 3) and the JAK2-negative myeloproliferative neoplasm 3!. In both
cases, the two mutation copies appear at the end of different lineages, which could also point to
selective pressure from the tumor environment or the genetic context. Having corrected for the
possibility of doublet samples in our model, the event of a mutation hitting the same site twice
appears here to be the most plausible explanation. Conservative estimates of the prior odds of
recurrent mutations among a small set of mutations of interest were obtained by spreading muta-
tions uniformly across the genome and assuming that all mutations are observed (Supplementary
Table 5). With these low prior estimates, the posterior probability of the infinite site hypothesis is
still larger for the exome data of the myeloproliferative neoplasm *!. For patient 5 of the leukemia
panel data ** the BF is large enough that the posterior odds are certainly in favor of the infinite
sites hypothesis being violated. These data are then the ‘smoking gun’ showing that the possibility
of infinite sites violations needs to be seriously considered and treated for single-cell data. Again
larger sample sizes will be needed to better assess the practical implications of these findings but
modeling single cell data while allowing violations of the infinite sites hypothesis provides the
statistical framework for exactly that.

The possibility of violations of the infinite sites assumption necessitates substantial adap-
tations in present-day models for reconstructing mutation histories of tumors. For example, in
models designed for bulk sequencing data, a core assumption to deconvolve admixed mutation
profiles is that the cellular frequency of a point mutation distributes over a single clade in the tu-
mor phylogeny, a restriction that is contrary to the recurrence of a mutation in different parts of the
tree. When looking at models based on single-cell data such as SCITE '8, the changes necessary
to accommodate finite sites seem less profound, as indicated by the extension introduced in this
paper to allow a single recurrent mutation. We also employed this method to search for multiple
recurrences by restricting the recurrence to parallel mutations in data where higher scoring back
mutations had been observed. This uncovered evidence of multiple violations of the ISA, but a
strict statistical test would need to account for the higher scoring recurrences as well. However the
generalization towards the recurrence of an unknown number of mutations in unknown multiplici-
ties entails a vast extension of the underlying search space.
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For single-cell data, we additionally have the issue of high doublet rates which, as we have
seen, can severely affect reconstruction quality when not being explicitly modeled. While the acci-
dental sequencing of more than one cell could be relatively easily prevented by rigorously checking
samples prior to sequencing, it is likely to take some time before this issue is solved reasonably
well for all technology platforms including high-throughput assays. Meanwhile it is essential to
integrate doublets in models for reconstructing mutation histories from single-cell data. Especially
for testing the ISA, modeling doublets is necessary since even a small number of doublets can
interfere with the test. As we have shown in this work, modeling doublets is straightforward for a
mutation-centric approach like SCITE '®. For sample-centric approaches such as BitPhylogeny !¢
and OncoNEM 7, the integration of doublets may be a bit more involved, as the topology under-
lying the evolutionary history is no longer tree-like in the presence of admixed samples.

We focused in this work on testing the infinite sites assumption for point mutations in tu-
mor evolution. This extends more generally to any cell lineages and their phylogeny where we
know that violations become increasingly likely for larger sets of cells and mutations. Looking at
larger-scale lesions in cancer, such as copy number alterations, the importance of allowing recur-
rent mutations becomes even more pronounced. These alterations typically affect larger segments
which make it much more likely that the same site is affected multiple times. To model this type of
lesions either alone or together with SNVs to integrate LOH, dropping the infinite sites assumption
becomes even more crucial. Recent work using the less restrictive infinite alleles assumption 2!
or Dollo parsimony ?? are promising first steps, but additional work on accurate models of tumor
evolution and their inference from data is essential.
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Figure 1: Somatic mutations occurring during tumor evolution could violate the infinite sites as-
sumption. (a) The mutation indicated by the red diamond occurs in parallel in two different lin-
eages. (b) The mutation depicted by the orange circle is lost in the left branch due to a loss of
heterozygosity. The mutation drawn as a yellow triangle is lost in the right branch by reverting to
its original state, denoted a back mutation.
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Figure 2: Testing the infinite sites assumption starts from the single-cell mutation data. The data
is examined under both the infinite sites model of all trees with no recurrent mutations as well as
under the finite sites model of trees with one recurrence. The two competing models of tumour
evolution are compared on how well they explain the single-cell data, with one model selected via
the Bayes factor.
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Figure 3: (a) The data matrix of the 105 mutations detected in the 96 single cells of patient 5 of
the leukemia dataset **. Unmutated positions are left white, mutations are colored blue and the
recurrent mutation in Clorf105 colored red. (b) The inferred mutational history under the finite
sites model when allowing a recurrence of the point mutation in C/orfI05. The two occurrences
appear at the ends of different lineages in the tree, separated in the two branches by 35 and 18 other
mutations. The very large Bayes factor of 4.8 x 10'® shows that allowing the parallel mutation fits
the data much better than enforcing the infinite sites assumption.
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Dataset Hou et al (2012) 3! Xu et al (2012) 3> Wang et al (2014) 33
cancer type myeloproliferative neoplasm  renal cell carcinoma ER™ breast cancer
no. of mutations 18 35 40
no. of cells 58 17 47
Recurrent mutation

type parallel - back
gene RETSAT - PANK3
Bayes factor 30 0.27 2000

Table 1: Characteristics of the three exome sequencing datasets 3=

rent mutations and Bayes factors.

along with the inferred recur-

Patient 1 2 3 4 5 6
panel size 98 82 196 155 248 85
no. of mutations 20 16 49 78 105 10
no. of cells 111 115 150 143 96 146
Recurrent mutation

type back back back back parallel back
gene MAL2 RIMS?2 CUL3 IKBKB Clorfl05 SUSD?2
chromosome chr8 chr8 chr2 chr8 chrl chr22
genomic position 120255800 105025789 225335303 42162708 172434428 24582021
substitution C—G TG G—C C—-G C— A C—>T
Bayes factor 8.6 x 10° 330 4.1x10"° 1.8x107 4.8 x10"® 9.7 x 1053

Table 2: Characteristics of the panel sequencing datasets of six leukemia patient samples ** along
with their inferred recurrent mutations and Bayes factors. The genomic positions are according to
the hg19 assembly.
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Methods

Tree models The genealogy of somatic cells can be represented as a cell lineage tree, a rooted
labeled binary tree, where the leaves represent the cells and the tree structure reflects the cell
division history. Tree edges are labelled with mutation events and all cells below a mutation can
be expected to exhibit this mutation. (See the left-most tree in Figure M1(a) for an example).

Models for somatic cell evolution typically make the infinite sites assumption which restricts
any genomic site to host no more than one mutation event. Dropping this assumption means
allowing not just one but multiple occurrences of the mutations in a cell lineage tree. For simplicity
we allow here just a single mutation to occur twice. If the two copies of the same mutation happen
in different branches, we refer to them as parallel mutations. A mutation that occurs twice in the
same lineage represents a back mutation. We interpret this as the second mutation undoing the first
mutation such that samples which have two copies of a mutation in their history would not exhibit
the mutation. See Figure M1(a) for an illustration.

In SCITE '8 we utilized mutation trees as an alternative representation of mutation histories.
The mutations form the tree nodes which are connected based on their partial temporal order
(Figure M1(b)). A root is added to define the direction of the tree. Cell samples may attach
to any of the nodes, and we expect them to contain all mutations on the path from the root to
their attachment point. As with cell lineage trees, we can have parallel and back-mutations. The
complete mutation history is defined by a pair (7', o) where 71" is the mutation tree and o is the
attachment array in which entry j encodes the node at which sample cell s; attaches to the mutation
tree. For the trees in Figure M1 we have the attachment vectors

o = (R, Ms, M3, My, My, My, My).

o = (R, M3, M3, My, My, M}, M)).

o = (R, Ms, M3, My, My, M7, M7). (D
The mutation states of the cell samples can also be represented as a mutation matrix E. Here,
entry (4, j) encodes the presence of a mutation M; in a cell s; with a 1 and its absence with a 0
(Figure M1(c)). In practice it is not necessary to construct the complete mutation matrix, as its

entries can be obtained from 7" and o j, the j-th entry of the attachment vector. Let ancy (o ;) be
the set of mutations that are ancestors of o; in 7" including o itself, then we have

1 if M; € ancyp(o;)

E;; = )
0 otherwise

2)

if M; is a unique mutation. For M, and M/ being the two incidences of a recurrent mutation, we
have

1 if M; € ancy(o;) and M ¢ ancr(o;)
Eiyj =41 if M; ¢ ancy(o;) and M/ € ancy (o) 3)
0 otherwise

to encode the state after the mutation loss as a 0 in the mutation matrix.
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Parallel mutation

Back mutation
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(c)
§1 82 83 S4 S5 S¢ ST 81 82 S3 S4 S5 S6 ST §1 82 83 S4 S5 S6 ST
My 01 1 1 1 1 1 My o1 1 1 1 1 1 My 01 1 1 1 0 O
Mo 0001 1 11 Mo 00 0 1 1 1 1 Mo 00 0 1 1 1 1
Ms 01 1 0 0 0 O M3 01 1 0 0 1 1 Ms 01 1 0 0 0 O
My 0 00 0O 1 0O My 00 001 0O My 000 0 1 0 O

Figure M1: (a) Cell lineage trees of seven cells. Left: no recurrent mutations; middle: parallel
mutation, a mutation occurs twice in separate lineages, denoted as M3 and M3, cells below both
occurrences exhibit this mutation; right: back mutation, a second occurrence of a mutation in the
same lineage brings the genomic site back to the original state, i.e. cells located below M| do not
exhibit this mutation; (b) Mutation trees with attached cell samples. Each tree corresponds to the
cell lineage tree in the same column; (¢) Mutation matrices with binary states, each corresponds
to the mutation tree in the same column; entry (i, j) contains the expected state of mutation M;
in cell s;, 0 for absence and 1 for presence in the cell. The highlighted zeros in the matrix on the
right are due to the placement of cells sg and s; below M7, the second occurrence of mutation M7,
which brings the genomic site back to the original state.
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Figure M2: Tree reconstruction in the presence of doublet samples: (a) cell lineage tree with
doublets (grey boxes). (b) Mutation tree with true sample attachment. Doublet samples (s3, s5)
and (s4, s ) each attach to two different nodes. (c) mutation matrix with combined mutation states
for the doublet samples. Mutation counted as present in a doublet sample, if present in at least
one of the cells. (d) A tree with a recurrence of mutation M5 and no doublets is an alternative
explanation for the mutation matrix in (c).

Error model In practice we observe a noisy version D of the expected mutation matrix £. If
the true mutation value is 0, we may observe a 1 with a probability of « (false positive) and if the
true value is 1 we may observe a 0 with probability /5 (false negative):

0)
1)

=
U
)
=)
o
||

(I—-a), P(Dy; =1]E; =0) =«
B, P(Dy; =1]E; =1)=(1-p)

=
B
)
=
IS
||
I

“4)

Assuming the observational errors are independent of each other, the likelihood of the data
given a mutation tree 7" and knowledge of the attachment of the samples o is

P(DIT, o) = | 11 P(Dis1E:) (5)
i=1 j=1

where F is the expected mutation matrix for 7" and o. To obtain the marginal tree likelihood
independent of attachments, we sum over all attachment vectors o

P(D|T) = ZP D|T,o)P(c|T) (6)
With m cells and n» mutations, this can be computed efficiently in time O(mn) '8, Using a uniform

prior for the sample attachment, P(o|T") becomes just a normalization constant that can be taken
out of the sum. In the following we refer to the unnormalized marginal likelihood as the tree score

- Y P(DIT,0) @)
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Modeling doublets In single-cell sequencing it can happen that accidentally two (or more)
cells are processed together which generates an admixed mutation profile of these cells (Fig-
ure M2). For our binary mutation states we assume that a mutation is called whenever it is present
in at least one of the cells.

The two cells of a doublet sample s; can attach to different nodes of the mutation tree. Hence
we change the attachment vector such that each entry j consists of a pair (o, o’}) to indicate the
two attachment points. The expected mutation vector is then defined as
(1 if M, € ancr(o ;) and M/ ¢ ancr (o)

1 if M; ¢ ancy(o;) and M) € ancy(o;)
E;j =41 if M; € ancr(o) and M] ¢ ancr(o)
1 if M; ¢ ancy (o) and M; € ancy (o)

\ 0 otherwise

®)

To accommodate for doublets in our model, we allow each sample to be a doublet with probability
d and a single cell with probability (1—4). To obtain the tree likelihoods P’(D|T") under this model,
we first consider each sample separately. Let D; be the observed mutation profile of sample s,

then we denote as
n'4+1 n

\(D,|T) = Y [ P(DyIT, 05) P(a;|T) )
o;=11i=1
the likelihood of the tree for sample s; under the assumption that the sample is a single cell. The
use of n’ 4 1 instead of n + 1 in the sum, accounts for the changing tree size when recurrences are
allowed. For n mutations with a single recurrence, we have n’ = n + 1 tree nodes apart from the
root, while n” = n in case of n unique mutations. Similarly we obtain
n'+1 n'+1 n

2(D;IT) = > Y [[P(D4IT, 05,0 P(ey|T)P(a|T) (10)

oj=lo’=1i=1

for the case that s; consists of two cells. To combine the two likelihoods we weight them by the
respective single-cell and doublet probability.

P'(D;|T) = (1 = 8)Pi(D;|T) + 6 Po(Dy|T) (11)

Then assuming that the sample attachments are independent of each other, the complete likelihood
is the product over all samples:

P'(D|T) = H §)Py(D,|T) + 6 Py(D;|T))] (12)
=1
Since we have to account for all pairings of cells, the time complexity of calculating the likelihood
is O(m?n). To obtain a tree score analogous to Equation (7), which is more useful for combi-
natorial considerations later, we divide the tree likelihood by the prior probability for a single
attachment, a factor shared by all terms of the sum

s(T) = P'(D|T)(n + 1)™ (13)
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Model selection To test the infinite sites hypothesis, we compare the evidence our observed
data D provides in favor of model M consisting of trees with unique mutations and a model which
allows for recurrent mutations. For simplicity we focus here on the model My with exactly one
repeated mutation. Finding strong evidence to favor My over M| would be sufficient to reject the
infinite sites hypothesis. We use Bayes factors for the model selection:

(14)

A value of Br; > 1 means that the data is better explained by the finite sites model than by the
infinite sites model. The larger the number the stronger the evidence. To obtain the likelihood of
M, we sum over all mutation trees with a single node for each mutated site observed in D which
gives us
P(D|My) = Y P(D,T|M)
TeM;
= Y P(D|T, My)P(T| M) (15)
TeM;
= Y P(DIT)P(T|My).
TeM;
The dependency on M in P(D|T) can be dropped, as the data is no longer influenced by the
model once the tree is fixed. To obtain the likelihood of a tree, we sum over all attachment vectors,
such that
P(DIMy) = Y Y P(D|T,o) P(a|T)P(T| M)
TeM; o (16)
—_——
s(T)
The unnormalized marginal tree likelihood is the tree score s(7") as defined in Equation (7). Lastly

using a uniform distribution for the prior on trees and sample attachments under a given model, we
obtain

P(D|My) = Ki > s(T) (17)

I TeM;

where K7 is the number of pairs (7, o) belonging to M,

KI — (’I’L + 1)n+m—1 (18)

The finite sites model is the union of models Mg, ..., M,, where each M, comprises all
trees where only mutation ¢ has a second occurrence. We then have

PDIM) = = 37 s(T) (19)

" Tem;

where K; is the number of pairs (7, o) belonging to M.
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However for the model comparison, we are only interested in trees that do not just recreate
trees from the infinite sites model in the sense that the recurrent mutation does not give rise to
any additional mutation profiles compared to a tree without the recurrence. For example if the
recurrent mutation is the direct child or parent of the original copy, or if it shares a parent, then the
recurrence can be removed. Excluding such trees from consideration and our model space leads to

K; = %(n —1)(n+2)" 1™ (20)

as derived in the Supplementary Material.

Another simple example is the case where the recurrent mutation has no descendant muta-
tions and no samples attached to it. Then we recover a tree with no recurrent mutation and we
should also exclude such cases. This possibility however depends on where the samples attach,
rather than just on the tree so it cannot be excluded from the model space without interfering with
the marginalization over o. Instead we include this possibility in our model class, along with fur-
ther cases discussed in the Supplementary Material, but correct for their effect by deriving a lower
bound for the number of trees and attachment pairs in My that truly make use of the recurrent
mutation and employ

Likewise we obtain lower bounds for the model likelihood and the Bayes factor

PDIMe) > = 37| 3 o) —ne 3 5(7) 22)

F oy lrem; TeM;

and

By > f(_ : —ne (23)

The derivation of the bounds is detailed in the Supplementary Material.

When calculating the tree scores, we take fixed values for the error rates, either those pro-
vided with the data or learnt under the infinite sites model. For the double rate ¢, for each tree
we find the value which maximize the score with numerical optimization equivalent to the EM
algorithm. We also calculate as § the fraction of samples which are doublets involving mutations
from two lineages, since those doublets from a single lineage could be modeled as singlets instead.

Approximation Typically there will be one recurrent mutation that increases the likelihood
of the finite sites model much more strongly than the others

i* = arg max Z s(T) (24)
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so that in the sum over ¢ in Equation (23) the terms for the other M, can essentially each be
replaced by the sum over the copies of trees inside Mj and

K L s(T

By > =+ Lrem. ST (25)
KF ZTGMI S(T>

Estimation via MCMC In general the sum over all tree scores can not be computed for

the two models as both comprise a vast number of trees which grows super-exponentially in the
number of mutations. Instead we estimate this value for each model using the MCMC scheme
developed in SCITE '8 to search the space of rooted mutation trees.

Given the current tree 7" we propose a tree 7" from the same model according to one of the
three move types with some proposal probability ¢(7”|T") and accept the move with probability

(0 6

p:mi“{l’m

so that we obtain (after some burn in time) a sampler that provides trees proportionally to s(7).
Running the sampler for enough steps we will not only find a tree with the best score in a model
M,

T = arg max s(T), 27

but also the total number of trees with the optimal score,
o(T*) = #{T € M|s(T) = s(T")}. (28)

In general the optimal tree will be unique because of the marginalization over the attachment of
samples (or we have two equivalent copies with labels swapped in M). If two or more mutations
appear in exactly the same set of sampled cells (up to missing data) then the number of trees will
grow, but equally for both model classes so the factors of ¢ will anyway cancel. For completeness
though we treat the arbitrary case here.

For our estimation of the sum score we now make use of the fact that in a sequence of trees
sampled after burn-in, the fraction of optimal trees approximates the ratio between the sum score
of all optimal trees and the sum score over the whole tree space:

# opt. trees sampled _ ¢(T™)s(T™)
# trees sampled Y orem (1)

(29)

For this approximation to work, we need to know how long the MCMC needs to run until it has
certainly converged. Then the chain of each run is equally likely to discover each of the maximally
scoring trees. With the number of currently discovered maximal trees and the probability of dis-
covering each of them in a run (or per state in the chain and the correlation between states) we can
estimate and bound the probability that we are still missing any maximally scoring trees (or even
better scoring ones). We can then simply run enough chains to reduce this to very low values.
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For the left part of Equation (29) we simply need to know how often we hit a maximal tree
in a typical chain. For this we run the chain several times and record, after a burn in period, the
time the chain spends at the maximal score.

Simply running this procedure once for M = M; and once for M = M. then allows us
to find an approximation for the ratio in Equation (25). Running many chains gives confidence
intervals on the ratios and hence on the final BFs.

Approximation via s(7") For some data the posterior may be very flat which prohibits sam-
pling of the set of maximum scoring trees in reasonable time. For such cases, we make the approx-
imation that the ratio of sampling the optimal trees in each model class is the same for both model

classes so that
s(T%) o< Y s(T) (30)
TeM

with the same proportionality constant for both model classes. Then we can effectively replace the
sum over all trees in the BFs by s(7™), the score of a single maximum scoring tree.

€1V

N Ky [s(T* € M;+)
>0 (s = v )
P2 % L(T*eMI) "}

Finding the maximal score can also be made more efficient by monotonically changing the
score landscape (for example raising the score to some power ~y) which can be adapted to speed up
the MCMC search.
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