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Abstract 

A growing concern that overshadows the increased life expectancy developed 

countries have been witnessing during the last decades is an accompanying bone loss, 

which often manifests as osteoporosis. Despite ongoing efforts in utilizing genomic 

data to fully map the genes responsible for bone remodeling, a detailed picture 

remains to be desired. Here we took advantage of the phenotypic and genetic diversity 

innate in Collaborative Cross (CC) mice to identify genetic variants associated with 

microstructural bone characteristics. 
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 We gauged several key femoral microarchitecture features of the femoral 

bone: bone volume fraction (BV/TV), number (Tb.N), thickness (Tb.Th), structural 

morphometric index (SMI) and spacing (Tb.Sp) of the trabecula, and thickness 

(Ct.Th) and volumetric bone mineral density (vBMD) of the cortex, to uncover 

possible genes by which these might be affected. 

 We found 5 loci associated with 6 of the traits – BV/TV, Tb.N (one mutual 

locus), Tb.Th, Tb.Sp, vBMD, and Ct.Th (one locus per trait). The broad-sense 

heritability of these traits ranged between 50 to 60%. The cortical traits were 

especially sensitive to confounders, such as batch, month and season. We refined each 

locus by combining information mined from existing databases with that obtained 

from the known ancestry of the mice, to shortlist potential candidate genes.  

We found strong evidence for new candidate genes, in particular, Rhbdf2. 

Using Rhbdf2 knockout mice, we confirmed its strong influence on bone 

microarchitecture; Rhbdf2-/- mice exhibited strikingly heightened BV/TV and Tb.N, 

heightened SMI and Ct.Th, lowered Conn.D and Tb.Sp, and unaffected Tb.Th and 

vBMD, compared with wild type mice. High-resolution bone microarchitecture 

imaging of the CC population enabled us to further dissect the genetic makeup of 

bone morphology, and demonstrate conclusively that Rhbdf2 reduces the number and 

volume of the femoral trabecula.  

Introduction 

Osteoporosis is the most common bone disease in humans, affecting nearly half the 

US and European population over the age of 50 years. With the globally increasing 

life expectancy, osteoporosis and related bone fractures are becoming a pandemic 
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health and economic concern. By 2050, the world-wide incidence of hip fractures is 

expected to increase by 2.5 to 6 fold (Burge et al. 2007; Dhanwal et al. 2011). 

Importantly, the mortality rate in the 12 months following bone fracture is as high as 

20% (Center et al. 1999). Risk of fracture is determined largely by bone density and 

quality/strength, which are the end result of peak values achieved at skeletal maturity 

and subsequent age and menopause-related bone loss. Genetic factors have a major 

role in determining the wide range in the so-called "normal" peak bone mass.  

Measures of bone status are inherently complex traits, as opposed to Mendelian traits; 

i.e. they are controlled by the cumulative effect and interactions of numerous genetic 

loci and environmental factors.  

Genome-wide association studies (GWAS), including a large meta-analysis, 

have identified more than 50 loci associated with bone mineral density (BMD) 

(Mizuguchi et al. 2004; Richards et al. 2008; Styrkarsdottir et al. 2008; Trikalinos et 

al. 2008; Estrada et al. 2012; Paternoster et al. 2010, 2013).  However, many other 

genes that were experimentally associated with bone mass were not confirmed by 

GWAS in human cohorts (Jovanovich et al. 2013; Hsu and Kiel 2012; Styrkarsdottir 

et al. 2013). This suggests that the BMD phenotype does not capture the structural 

complexity of the bone; there may be other relevant bone phenotypes not yet studied 

in human GWAS (Hsu and Kiel 2012), which hitherto have generally relied on areal 

bone mineral density (aBMD) as the sole bone feature. aBMD measured by dual 

energy x-ray absorptiometry (DXA) is a two dimensional projection that cannot 

measure bone size, individual bone compartments' shape (whether trabecular or 

cortical) or underlying microstructure, and thus likely conceals important features 

which are assumed to be controlled by unique genetic determinants. Indeed, there is a 

growing body of evidence that argues for distinct genetic influences of  the cortical 
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and trabecular bone and thus they should be accordingly distinguished. (Paternoster et 

al. 2010; Estrada et al. 2012). A recent GWAS in the Collaborative Cross (CC) mice 

based on DXA failed to find any heritability of BMD (Iraqi et al. 2014), whereas 

another report based on the same mouse panel showed highly significant heritability 

levels in most of the cortical and trabecular microstructural parameters measured by 

micro-computed tomography (µCT)(Levy et al. 2015a). 

Traditional peripheral quantitative CT (pQCT) has the capacity to distinguish 

between the cortical and trabecular bone compartments, but it lacks the required 

resolution to detect microstructural differences. A recent report based on high 

resolution pQCT (HR-pQCT) data in humans, identified two novel bone-related loci, 

thus far undetected by DXA and pQCT-based GWAS (Paternoster et al. 2010). 

Another (Karasik et al. 2016), found strong genetic correlations  between 1047 adult 

participants of the Framingham heart study, therefore indicating that the heritability of 

bone microstructure constitutes a phenotypic layer which is at least partially 

independent of DXA-derived BMD. Like HR-pQCT studies in humans, 

understanding the genetic regulation of bone microstructural parameters using µCT in 

small animals is likely to identify genetic factors distinct from those previously 

identified for DXA-derived traits.  

The CC mouse panel is designed to provide high resolution analysis of 

complex traits, with particular emphasis on traits relevant to human health (Threadgill 

et al. 2002; Churchill et al. 2004). This unique resource currently consists of a 

growing number of recombinant inbred lines (RIL) generated from full reciprocal 

breeding of eight divergent strains of mice (Collaborative Cross Consortium 2012). In 

contrast to commonly used laboratory mouse strains, the ancestry of the CC lines 
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includes wild-derived inbred strains that encompass genetic variations accumulated 

over ~1 million years (Keane et al. 2011); more than 50 million single nucleotide 

polymorphisms segregate in founders of the CC. The high genetic diversity means 

that QTLs can be mapped using this panel that would have been invisible in a 

population that involved only classical strains (Roberts et al. 2007; Durrant et al. 

2011b).  

This claim is substantiated in a recent study that identified a genome-wide 

significant association between Oxt (oxytocin) and Avp (vasopressin) and skeletal 

microarchitecture in CC mice. Here, we identified a novel gene, Rhbdf2, associated 

with cortical and trabecular bone structure and validated its regulatory role in a 

specific knockout model. This exemplifies the effectiveness and relative ease by 

which a GWAS with a small CC population can associate a bone-related function to 

novel genes, and to reveal overlooked key players in the development of bone 

pathologies. 

Results 

CC lines widely differ in bone microarchitecture traits  

We examined the variation in femoral cortical and trabecular microstructure between 

34 unique CC lines totaling in 174 mice (71 females and 103 males, with an average 

of 4.25 mice per line). In the trabecular bone compartment we measured bone volume 

fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th), connectivity 

(Conn.D), and spacing (or separation; Tb.Sp), as well as structural morphometric 

index (SMI) of the trabecular framework. In the mid-diaphyseal cortex, we recorded 

cortical thickness (Ct.Th) and volumetric bone mineral density (vBMD). (see 
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(Bouxsein et al. 2010) for µCT nomenclature.) These traits were approximately 

normally distributed; BV/TV ranged from 0.017 to 0.26 (i.e. 1.7% to 26%; mean = 

10.2%); Tb.N from 0.52 to 6.11 mm-1 (mean = 2.7 mm-1); Tb.Th from 31 to 69 µm 

(mean = 47 µm); Conn.D from 10.9 to 268.3 mm-3 (mean = 104.2 mm-3); SMI from 

0.6 to 3.3 (mean = 2.3); Tb.Sp from 0.16 to 0.7 mm (mean = 0.33 mm); Ct.Th from 

0.14 to 0.29 mm (mean = 0.2 mm); and vBMD from 402.5 to 809.2 mgHA/cm3 (mean 

= 581.1 mgHA/cm3). Fig. 1 shows representative cortical (IL-785 vs IL-2689) and 

trabecular (IL-2452 and IL-1513) µCT images taken from two mice with distinct 

cortical (Fig. 1A) and trabecular (Fig. 1B) characteristics. Color-codes on the graphs 

in Fig. 2 indicate Duncan's least significance range (LSR), which dictates whether the 

mean value of a line, or a group of lines, for a given trait differs to a degree of at least 

P-value < 0.001 from any other group. LSR allows for a visual representation of the 

heterogeneity amongst the lines. 

  

A 

0.5 mm 
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With 11 distinct groups, vBMD (Fig. 2B) is the most heterogeneous trait, 

while SMI and Conn.D are the least, with only 3 significantly distinct groups (Fig. 

2A). Notably, the heterogeneity of females is greater than that of males for cortical 

traits but milder for trabecular traits. (Figs. S1A1, 2 for males and S1B1, 2 for 

females).  

 

 

B 

Figure 1. µCT images of trabecular and cortical bone of the femora of representative CC  mice. (A) Trabecular 

bone. Left: IL-2452, Right: IL-1513. (B) Cortical bone. Left: IL-785, Right: IL-2689. 

A 

0.5 mm 
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To examine the inter-dependency between the traits, we assessed the 

correlation between all the measured parameters, in a pairwise fashion using 

Pearson’s correlation test. The strongest correlation was between BV/TV and Tb.N 

(Pearson's r = 0.94), in line with our previous findings (Levy et al. 2015b), while the 

weakest was between Tb.N and vBMD (r < 0.01). There was also a moderately high 

correlation between Ct.Th and Tb.Th (r = 0.61; and see Table S1). The correlation 

between sexes for each trait (Table 1) ranged from r = 0.75 (Tb.Sp) to r = 0.20 

(Ct.Th). Body weight (range = 17.4 - 35.0 gr) did not significantly correlate with any 

of the traits (r = 0.01 for Conn.D to r = 0.19 for Ct.Th; data not shown). After 

separating males from females the correlation slightly increased, yet remained low. 

Weak correlation was found between weight and Tb.N, SMI, and Ct.Th for females 

Figure 2 Trabecular and cortical traits distributions across the CC lines. X-axis is the lines, y-axis is the trait 

means A. From top left, counter-clockwise: BV/TV (%), Tb.N (mm-1), Tb.Th (um), Conn.D (mm-3), SMI, and 

Tb.Sp (mm). B. Left, vBMD (mgHA/cm3), right, Ct.Th (mm). Color codes group line(s) which significantly 

differ from other groups. Lines are ordered inconsistently among the traits, according to trait-specific 

descending order. Refer to Table S3 for more details.  

 

B 
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(Pearson's r = -0.20, 0.23, and 0.25 respectively), and between weight and Tb.Th and 

Tb.Sp (Pearson's r = 0.25 and -0.25) for males.  

While in most lines the traits’ correlations were predictive of a given line’s 

rank, in others a less expected pattern was observed; e.g., IL-1513 displayed 

unusually extreme phenotypes for all trabecular traits and was at the higher end for 

BV/TV, Tb.N, Tb.Th, and Conn.D and at the lower end for SMI and Tb.Sp, but IL-

188 was more discordant between these same traits (Fig. 2 and Table S3), illustrating 

unexpected co-variation of the traits in the CC.  

Heritability and confounder-control 

We quantitated the effects of the covariates sex, age, batch, month, season, year, and 

experimenter on each trait. Age ranged from 9 (n=6) to 13 (n=9) weeks and the mice 

were dissected in 20 batches over a three-year course across 8 months during winter, 

spring and summer, by two experimenters. Whereas age alone had no effect on any 

trait, sex affected only Ct.Th; batch affected Tb.Th, vBMD, and Ct.Th; month 

affected Tb.Sp, vBMD, and Ct.Th; season and year affected vBMD and Ct.Th; and 

Tb.Th and Ct.Th were affected by experimenter. The cumulative effect of the 

covariates' pairwise interactions was noted for Tb.Th, SMI, vBMD, and Ct.Th. (Table 

S2). 

We then estimated the broad-sense heritability (H2) of each trait among the CC 

lines, which includes additive and non-additive epistatic effects and gene-environment 

interactions. The greatest H2 is seen for Tb.N (0.63, logP = 13.76; where logP stands 

for the negative 10-base logarithm of the P value and tests the null hypothesis that the 

heritability is zero), and the smallest for Ct.Th (0.51, logP = 7.63).  
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We calculated the heritability for the mean values in each line to get a better 

representation of the percentage of genetic contribution to the phenotypic 

heterogeneity by incorporating H2 and the average number of lines (Atamni et al. 

2016). This defines H2n, which is directly proportional to H2 (Methods; Table 1) and 

ranges between 82 (Ct.Th) and 88% (Tb.N and Tb.Sp).  

Table 1 Heritability, sex correlations, and covariate interactions for 
trabecular and cortical traits 

Trait H2 logP H2n Sex Cor. 
Interactions 
% 

BV/TV 0.61 12.43 0.87 0.6695754 - 

Tb.N 0.63 13.76 0.88 0.7628464 - 

Tb.Th 0.54 9.08 0.83 0.7039887 34.70 

Conn.D 0.56 9.90 0.84 0.5188039 - 

SMI 0.55 9.43 0.84 0.2984166 26.02 

Tb.Sp 0.63 13.45 0.88 0.754563 - 

vBMD 0.62 12.15 0.87 0.6268818 53.92 

Ct.Th 0.51 7.63 0.82 0.2055684 41.07 
H2 is the broad-sense heritability (which includes epistatic and environmental 
influences); logP is the negative 10-base logarithm of the P-value; H2n is the line-
mean heritability; Sex Cor. Is the sex correlation of each trait; and interactions % 
refers to the relative contribution of the cumulative covariate-interactions, which 
include sex, age, batch, month, season, year, and experimenter (see table S2) . 

  Overall the cortical traits seemed more prone to covariate variation; 

they were particularly sensitive to sex, batch, and season. This stands in contrast to 

our previous results (Levy et al. 2015b) where BV/TV, Tb.N, and Conn.D displayed a 

profound sex effect, although there cortical traits were not measured. This means 

there is a deeper, complex layer of sex effect dependent upon cooperative 

environmental and genetical factors which requires further work to fully comprehend. 

Association analysis for microarchitectural traits highlights 5 QTLs 
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We first measured statistical association between each trait and the founder haplotype 

at each locus in the genome. Association analyses of the cortical and trabecular traits 

to the haplotypes segregating in the CC (as defined by the ~70 K MegaMuga SNPs) 

yielded 5 distinct QTLs. For BV/TV and Tb.N we recognized a marked peak at a 

locus of length ~0.45 Mb between 116.5 and 116.9 Mb on chromosome 11, with peak 

logP values of 7.6 and 6.8, which extended above the 99th percentile permutation-

threshold by 2.7 and 1.94 logP units, respectively. In Tb.Th, Tb.Sp, Ct.Th, and vBMD 

we identified different QTLs on chromosomes 4, 5, 4 and 3, with logPs of 8.0, 9.4, 

8.2, and 9.8, respectively, above threshold (Fig. 3 and Table 2). To account for false 

positive results we kept the false discovery rate (FDR) at 1% for each scan, by 

employing the Benjamini–Hochberg multiple testing procedure on the logPs of the 

haplotype associations to the traits. Conn.D and SMI lacked significant peaks above 

the stringent permutated threshold and thus were not further analyzed (Fig. 3), but 

Conn.D displayed a borderline peak in a region that matches the peak identified for 

BV/TV and Tb.N. The 5 QTLs we describe are hereafter referred to as Trl (trabecular 

related locus) 7-9, and Crl (cortical related locus) 1-2 (respectively for BV/TV and 

Tb.N, Tb.Th, Tb.Sp, Ct.Th, and vBMD, and in keeping with our previous report 

(Levy et al. 2015a) that introduced Trl 1-6). The 95% widths of the confidence 

intervals ranged from 6.4 to 15.6 Mb for the Trls, and were between 8.5-10.8 Mb for 

the Crls (Table 2 and Fig. S2). 

We measured the contribution of each CC founder to the QTLs, relative to the 

wild-derived strain WSB/EiJ (Fig. 4). Trl7 is mostly affected by the classic laboratory 

strains 129S1/SvImJ, NOD/LtJ, and NZO/HiLtJ; notably, the other traits were more 

strongly driven by the following wild strains: Trl8 and Crl2 by PWK/PhJ; Trl9 by 

WSB/EiJ; and Crl1 by CAST/Ei. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2016. ; https://doi.org/10.1101/094698doi: bioRxiv preprint 

https://doi.org/10.1101/094698
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2016. ; https://doi.org/10.1101/094698doi: bioRxiv preprint 

https://doi.org/10.1101/094698
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

 

 

For Trl7 we found that the majority of lines with a TT allelic variant (at the 

SNP most adjacent to the QTL peak; UNC20471277; where T refers to the nucleic 

acid Thymine) mostly congregate at the higher end of the BV/TV and Tb.N values 

(Mean BV/TV = 17%); lines with a CC variant  (where C refers to the nucleic acid 

Cytosine) are at the lower end (mean BV/TV = 10%); and those with a CT variant are 

at the intermediate range (Fig. 5). Largely, the more the trait examined is distantly 

correlated with BV/TV, the less differentiated the CC and TT variants are, at the SNP 

Figure 3 Haplotype association maps for the trabecular and cortical traits. X-axis is the position on the 

chromosome, y-axis is the –logP value of the association. Lower threshold represents the 95th percentile of 

200 simulations, and top represents the 99th percentile. Loci above the 99% cut-off were further investigated. 

From top to bottom: BV/TV, Tb.N, Tb.Th, Conn.D, SMI, Tb.Sp, vBMD, and Ct.Th 
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UNC20471277. This is accentuated in vBMD where there is a weak correlation with 

BV/TV (Table S1) and leveled CC and TT groups (P value = 0.8 Welch’s two sample 

t-test).  

 

 

 

 

 

 

 

 

 

Table 2 Positions of QTLs associated with trabecular and cortical traits 
  

  

      Simulation   

QTL Trait Chr logP 
99th 

% 
thresh. 

H2r 

50% CI (Mb) 90% CI (Mb) 95% CI (Mb)   

Position  Width Position Width  Position Width    

  

Trl7 BV/TV 11 7.60 4.90 0.69 116.6-116.7 0.12 113.6-118.1 4.50 112.1-118.3 6.40   

Trl7 Tb.N 11 6.80 4.84 0.71 116.6-116.87 0.29 114.2-118.35 4.15 112.41-118.68 6.27   

Trl8 Tb.Th 4 8.00 4.50 0.61 117.2-117.58. 0.32 113.05-125.54 12.49 110.87-126.52 15.65   

Trl9 Tb.Sp 5 9.40 6.01 0.78 105.78-106.14 0.35 101.6-109.11 7.54 99.8-110.39 10.62   

Crl1 Ct.Th 4 8.20 4.80 0.80 9.29-9.72 0.43 4.0-11.7 7.70 3.4-11.8 8.49   

Crl2 vBMD 3 9.80 4.93 0.86 97.2-97.4 0.20 94.4-103.1 8.50 93.22-104.3 10.80   

Chr = chromosome; logP = negative 10-base logarithm of P value; Sig = genome-wide significance level; 99th % threshold logP = threshold used to 
define cut-off for QTL peaks (Fig. 4); Hr2  = regional heritability (the proprtion to which the locus explains the phenotypic variability). Positions and 
widths of the simulation-based 50, 90, and 95% CIs are given. 

  

  

  

              

Figure 4 Ancestral effects relative to 

WSB. Y axis is the strain deviation 

relative to WSB, x axis is the different 

strains of the eight CC founders. (A) 

to (F): Trl7 to Trl9, Crl1, and Crl2, 

respectively.   
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Candidate genes identified by merge analysis and publicly available data 

We proceeded to refine the haplotype association analysis by merge analysis. This 

technique uses the catalogue of variants segregating in the eight CC founders in order 

to impute the genotype dosage of each SNP in each CC line, based on the haplotype 

reconstruction used for haplotype association. Candidate causal variants, if they exist, 

would be expected to be more significant (have higher logP values) than the 

haplotype-based test in the flanking region. We found that Trl7 had the highest 

density of polymorphisms (grey and crimson dots) with merge-logP values above the 

haplotype logPs (continuous black line), while Trl8 and Crl2 had very few. The two 

latter loci congregated more upstream, in accordance with the left-skewness of their 

respective CI simulations (Fig. S2).  

 To strengthen the criteria that classifies potential putative candidate gene as 

true positives, we analyzed RNA-seq datasets of osteoclasts (Fig. S3) and osteocytes 

(Fig. S4) made publicly available by  Kim et al (Kim et al. 2016) (Gene Expression 

Omnibus accession number GSE72846). and St John et al (St. John et al. 2014) (Gene 

Expression Omnibus accession number GSE54784). We focused on local maximas 

that span ~0.5 Mb in and around the peaks suggested by the merge analysis, for each 

QTL. From the raw count reads we learnt that Trl7 had the strongest gene expression 

differential; e.g Mxra7 in the osteocyte was expressed to a negligible degree (Fig. 

S3A), it had a strong presence in osteocytes (Fig. S4A), whereas the genes of the 

other loci had much less prominent differences.  
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The next layer of information that helped to distill the putative candidate genes list 

extracted by surveying the literature for (i) genes validated experimentally as related 

to bone; (ii) genes validated experimentally as related to bone-related tissues (tendon, 

cartilage, blood, muscle, etc. in decreasing order of relatedness); (iii) genes validated 

experimentally related to first degree bone-related pathways; and (iv) genes (and/or 

their products) validated experimentally as related to bone-related genes (and/or their 

products).  

By calculating the relative density of merge logP values which are 

considerably higher than the haplotype merge logPs -and above the 99th percentile 

threshold for each scan - at intervals defined by each gene within the QTLs (in 

meaningful regions; usually between the 50th and 90th CI percentile) we devised a 

Figure 5 Traits distribution at the marker UNC20471277 across 

bearers of homozygous and heterozygous alleles, separated by 

sex. X-axis is the allelic variation at the marker, y-axis is the trait 

value.  
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gene ranking scale. This aided us in singling out putative candidate genes; Table S4 

contains an exhaustive list of all genes under our loci: bright blue, blue and bright red 

hues indicate 95, 90, and 50% CI, respectively. For example, while the proportion of 

merge analysis SNPs for BV/TV and Tb.N with logPs greater than that of the 

haplotype scan is 1.4% at the genome-wide scale (as well as at the region spanning 

the 95% CI, between ~112 – 118 Mb), it is 9.4% and ranked 5/36 (for BV/TV) or 

14.07% and ranked 3/36 (for Tb.N) at the region in which the gene Rhbdf2 is situated 

(~116.5 – 116.6 Mb) (See Table S4 and further discussion below); we thus searched 

existing reports for Rhbdf2 possible role in bone biology to evaluate its candidacy. 

To account for the data-mining (RNA-seq and literature survey) yield as well, 

we weighted these data on a comparable scale, and re-sorted the genes accordingly; 

for example, looking at the 3 genes with the highest merge analysis score in Trl7, 

Ube2o had an osteoclast RNA-seq score of SRNA-seq1 = .8 (SRNA-seq= 1 −
𝑟

𝑛
; where r is 

the local gene rank, n is the total number of genes at the locus where if n>10 then 

n=10),  osteocyte RNA-seq score of SRNA-seq2 = .8, and a literature score of l = 4 

where l  is an integer that reflects the number and relatedness of literature mentions, 

based on the abovementioned categorization: (i) (= 4) to (iv) (= 1), and thus a 

cumulative Msl (merge, sequencing, and literature) score of MslUbe2o = merge + SRNA-

seq1  + SRNA-seq2 + l =11.1 + .8 + .8 + 3 = 14.62; while Aanat scored CumAanat = 15.4 0 + 

0 + 0 = 15.4 and Rhdbf2 scored CumRhbdf2 = 14.07 + .9 +.7 +(2*2 + 3) = 22.67. 
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The information our analytical pipeline (the haplotype scans, permutation-

based thresholds, FDR, CI simulations, merge analyses, and gene ranking scales) 

disclosed, converged with that curated from public resources, enabled us to shortlist 

the genes most plausible to be causal at the QTLs. Because BV/TV is a predominant 

parameter in bone biology, we first focused on Trl7. Of note, Ube2o (which is 

situated at the 90% CI) had a high cummulative score (CumUbe2o  = 15.62) and its role 

in bone biology is inferred by its link to the SMAD-BMP pathways (Zhang et al. 

2013). In the 50th CI percentile, we could not find published reports linking any of the 

genes to bone microarchitecture. However, because Rhbdf2 had a merge strength of 

14% (the 3rd strongest at the QTL and 2nd at the 50% CI); a local maxima at the RNA-

seq of the osteoclasts; was located near the haplotype mapping peak; and is implicated 

in inflammatory pathways which are known to inter-relate (van der Kraan and 

Figure 6 Merge analysis. Readings 

below logP = 4 are elided for brevity. 

X axis is the position on the genome 

in Mb; y left axis is the logP score; y 

right axis is the recombination rate 

scale; colored bars are genes (note that 

only strong putative candidate genes 

are shown.); cyan line is the 

recombination rate; black continues 

line is the haplotype test's peak; 

dashed line is the 99% permutation 

threshold. (A) to (F): Trl7 of BV/TV, 

Trl7 of Tb.N, Trl8 of Tb.Th, Trl9 of 

Tb.Sp, Crl1 of Ct.Th, and Crl2 of 

vBMD, respectively. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2016. ; https://doi.org/10.1101/094698doi: bioRxiv preprint 

https://doi.org/10.1101/094698
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

Davidson 2015; Issuree et al. 2013), it was picked for validation. The comprehensive 

list of the genes under the 50, 90, and 95% CI of the QTL, is supplied in table S4. In 

particular, the genes under the QTLs most probable as putative functional candidates 

are Ube2o and Rhbdf2 for Trl7; Klf17 and Kdm4a for Trl8; Barhl2 and Zfp644 for 

Trl9; Asph and Gdf6 for Crl1; and Hfe2, Acp6, Bcl9, and Notch2 for Crl2.  

Bones of Rhbdf2 knock-out mice significantly differ from their wild-type 

counterparts 

Among the two genes likely to determine the association between the genomic region 

Trl7 and the trabecular trait, we phenotyped Rhbdf2 knockout (KO) animals, due to its 

high Msl score (see above) Femora of male mice (n=14) null at Rhbdf2 (on a B6 

background) were collected, on which we measured the same morphometric traits as 

above, including BV/TV, Tb.N, Tb.Th, SMI, Tb.SP, Ct.Th, and vBMD. These were 

compared to their wild-type (WT) counterparts (n=13), after adjusting for batch, age 

and weight.  

 

 

 

 

 

 

 

Figure 7 Rhbdf2 

knockout versus wildtype 

for each of the studied 

traits. Left is KO, right is 

WT. PV is the 

confounder-adjusted P 

value. The unadjusted P 

value is in brackets. PV = 

0 means PV < 0.001.    
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 Strikingly, we found that Rhbdf2-/- mice had a significant bone phenotype. In 

line with our GWAS data, Rhbdf2-/- mice displayed a highly significant increase in 

BV/TV and Tb.N (Fig. 7, 8). As expected, Rhbdf2 KO also affected other 

microstructural parameters, partly due to the high correlation between the trabecular 

traits. After adjusting for confounders, we observed a significant difference between 

KO and WT animals in Tb.Sp (P value < 0.001; uncorrected P value = 0.017), SMI (P 

value = 0.03; uncorrected P value = 0.156) and Conn.D (P value = 0.008; uncorrected 

P value = 0.046). Tb.Th and vBMD were not affected by the knockout.  The cortical 

compartment also did not display a haplotype peak at the vicinity of Trl7 in the CC 

animals. However, after adjusting for confounders, we observed a significant 

difference in Ct.Th between KO and WT bones (P value = 0. 01), suggesting that the 

role of Rhbdf2 is not limited to the trabecular compartment. 

 

 

 

 

 

 

A 
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Discussion 

Genetic reference population (GRP) are very efficient for the study of complex traits 

and biological systems, because (i) genotyping is only required once (“genotype once, 

phenotype many times”, see below), and (ii) replicate individuals with the same 

genotype can be generated at will allowing for optimal experimental designs (Broman 

2005).  

Here we characterize several key microstructural properties of the mouse 

femoral bone to assess the extent to which they are heritable; to what environmental 

perturbations they are prone; and to identify candidate genes by which they are 

controlled. By combining various statistical and high-throughput sequencing analyses 

together with literature data mining, we were able to shortlist putative candidate genes 

for 6 of the 8 examined phenotypes.  We confirm one candidate gene, Rhbdf2, using a 

knockout model. This article is the second to present the results of an ongoing quest to 

delineate the genetic determinants that govern microstructural bone traits.  

Figure 8 uCT images of three-dimensional representative cortical and trabecular bones reconstructions for 

Rhbdf2 knockout and wildtype. Left: KO, right: WT. (A) Trabecular bone. (B) Cortical bone 

 

B 
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Here we included two additional key trabecular (SMI and Tb.Sp) and cortical 

(vBMD and Tb.Th) traits. While the heritability rates assessed here - determined to be 

over 60% for all traits - confirmed our previous findings, the degree to which sex 

explains the phenotypic variation was very subtle, and appeared only for the cortical 

traits; this discrepancy may be due to the specific cohort composition used in this study 

(Table S3), which includes a sex bias due to smaller number of females than males. We 

found a total of five QTLs in six traits; BV/TV and Tb.N shared one QTL, and Tb.Th, 

Tb.Sp, vBMD, and Ct.Th yielded one each. Importantly, although bone 

microarchitecture factors are complex traits, our analyses highlighted no more than two 

loci for each trait; it is likely that analyzing a larger number of CC lines would result in 

the identification of further loci.   

Our analyses yielded three QTLs for the trabecular traits and 2 QTLs for the 

cortical traits. These are referred to as Trl7-9, and Crl1-2, respectively. Trl7 includes 

Ube2o (Ubiquitin Conjugating Enzyme E2 O), which encodes an enzyme that is an 

important interactant of SMAD6; Ube2o monoubiquitinates SMAD6, and thereby 

facilitates the latter to bind BMP 1 receptors (Zhang et al. 2013). The signal 

transduction of BMP 1 is in turn limited (Horiki et al. 2004; Estrada et al. 2011), and 

endochondral bone formation, instead of ossification, is favored. Importantly, 4 week-

old SMAD6-overexpressed mice have significantly lower humeral and vertebral 

BV/TV ratios than their controls (Horiki et al. 2004). In close proximity to this gene is 

Rhbdf2 (Rhomboid 5 Homolog 2; elaborated below) which is not yet supported by 

peer-reviewed reports as bearing a relation to bone, but its nearness to the peak of 

Trl7, density of associated merge-logPs relative to other Trl7 genes, local osteoclast 

RNA-seq peak, canonical role in secretion of TNFα (tumor necrosis factor a) and 

regulation of CSF1R (macrophage stimulating factor 1 receptor; macroohages being 
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the progenitors of osteocalsts (Udagawa et al. 1990)) ; (Siggs et al. 2012; Adrain et al. 

2012a; McIlwain et al. 2012) (and indeed involvement in inflammatory arthritis 

(Issuree et al. 2013))  made it a probable candidate gene to run validation assays on.  

At Trl8, Klf17, Kdm4a, and Dmap1 are likely putative candidate genes. Since 

Klf17 (Kruppel-Like Factor 17) is part of a network that includes BMPs (Kotkamp et 

al. 2014) it is more likely than a nearby gene, St3gal3 (ST3 Beta-Galactoside Alpha-

2,3-Sialyltransferase 3), to affect bone traits, although the latter has a greater merge 

strength. Kdm4a (Lysine Demethylase 4A) encodes a histone demethylase that 

promotes the differentiation of embryonal stem cells (ESCs) to an endothelial fate 

(Wu et al. 2015); endothelial cells are implied in regulation of bone formation (Collin-

Osdoby 1994). Dmap1 (DNA Methyltransferase 1 Associated Protein) which encodes 

a DNA-methyl transferase known to regulate obesity complications, and is 

differentially methylated in women with polycystic ovary syndrome (Kokosar et al. 

2016; Kamei et al. 2010) had the highest meaningful merge density, and it might 

epigenetically regulate bone formation as well.  Trl9 includes two genes of interest to 

bone biology: Barhl2 and Zfp644. By interacting with caspase3, which is essential for 

ossification (Miura et al. 2004), Barhl2 (BarH Like Homeobox 2) can inhibit b-

catenin activation (Juraver-Geslin et al. 2011), and regulate the expression of chordin, 

a BMP signaling-detrimental protein (Larraín et al. 2000). Zfp644 (Zinc Finger 

Protein 644), which encodes a transcription repressor zinc-finger protein, is 

upregulated in eight week-old ovariectomized mice following treatment with estradiol 

(Davis et al. 2008), a steroidal sex hormone associated with reduced bone loss 

(Kameda et al. 1997). To support the candidacy of Zfp644 a marked difference in 

Tb.Sp between the sexes is anticipated; as expressing more estrogen, females are 

expected to display denser trabecular network captured as lower Tb.Sp. Even if we 
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did not find a sex effect for any of the traits excluding Ct.Th, females had a slightly 

higher mean Tb.Sp, we cannot rule out the possibility that Trl9 reflects a differential 

estrogen effect in the sexes. Further support for the candidacy of Barhl2 and Zfp644 is 

given by the role of Barhl2 in the development of amacrine cells (Ding et al. 2009; 

Mo et al. 2004) and the association of Zfp644 with myopia (Shi et al. 2011), a 

condition speculated to propagate from amacrine cell signaling (Chen et al. 2006); 

interestingly myopia was linked to reduced postnatal bone mineral content in humans 

(Pohlandt 1994) and decreased expression of BMP 2 and 5 in guinea pigs (Wang et al. 

2015).   

The first of two cortical loci, Crl1 contains as likely candidates the genes Asph 

and Gdf6. Asph (Aspartate Beta-Hydroxylase) encodes a protein that has a role in 

regulating calcium homeostasis, which may affect bone metabolism (Pruitt et al. 

2014). Gdf6 (Growth Differentiation Factor 6) is bone morphogenetic protein 13: 

mice with mutated Gdf6 exhibit deformed bone formation in various skeletal sites; it 

is among the earliest known markers of limb joint formation (Chang et al. 1994), 

expressed in joints of ankle and knee. In Gdf6 homozygous mutant mice a fusion 

occurs at the joints between bones early at the segmentation stage (Settle et al. 2003). 

For Crl2 we found Hfe2, Bcl9, Notch2, and Prkab2 as potential candidate genes. Hfe2 

(Hemochromatosis Type 2 (Juvenile)) encodes the BMP co-receptor hemojuvelin 

which is expressed in skeletal muscles (Verga Falzacappa et al. 2008) and responsible 

for juvenile hemochromatosis that depletes sex hormones and leads to osteoporosis 

(Angelopoulos et al. 2006). Bcl9 (B-Cell CLL/Lymphoma 9), the mammalian 

ortholog of the gene Legless, encodes a protein essential to the Wnt/beta-catenin 

signaling which is important for bone metabolism (Baron and Kneissel 2013), without 

which the nuclear localization of beta-catenin and myocyte differentiation are 
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compromised (Brack et al. 2009). Of note, there are mutual effects between bone and 

muscle, and accumulating evidence suggest many genes show pleiotrpism with 

respect to muscle strength and bone parameters (Karasik and Kiel 2008). Notch2 

encodes a member of the notch protein family, which influence both osteoblasts and 

osteoclasts (Bai et al. 2008); specifically, Notch2 is associated with the rare Hajdu-

Cheney syndrome, that includes severe osteoporosis as one of its main symptoms 

(Regan and Long 2013; Canalis and Zanotti 2014). For this gene, we did not find any 

significant merge logPs included within its limits, but Sec22b, an adjacent gene, had 

the strongest merge logP marks in this locus but no documented link to bone biology. 

The third-strong gene in terms of merge values was Prkab2 (Protein Kinase AMP-

Activated Non-Catalytic Subunit Beta 2). It encodes an enzyme which is the 

regulatory subunit of mitogen-activated protein kinase (AMPK). AMPK widely 

affects bone metabolism [36].  

Based on its closeness to the Tlr7 peak (within the 50% CI), the existing 

literature and its merge strength, we identified Rhbdf2 as a likely causal gene 

associated with BV/TV and Tb.N. We therefore analyzed the bone phenotype of 

Rhbdf2-/- mice, to validate the role of this gene in the modeling of the femoral cortex 

and trabeculae. The KO affected all the trabecular traits examined with Ct.Th and 

especially prominent in BV/TV, Tb.N, and Tb.Sp. While the effects in BV/TV and 

Tb.N were in line with the haplotype mapping, the Rhbdf2 locus did not appear in any 

of the other traits. This however is expected, because the genetic architecture of the 

working cohort is such that the assumed contributing variant of Rhbdf2 is diluted and 

compensated, resulting in a QTL detected only for the most affected traits. 

Noticeably, Tb.Sp differed greatly between the Rhbdf2-/- and control mice but did not 

show up at the haplotype mapping; This might be due to (i) the great diversity of the 
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wild-type mice in Tb.Sp, and/or (ii) the need for complete knockout rather than a 

mere SNP to detect significant changes in Tb.Sp, and/or (iii) the SNPs giving rise to 

Trl7 are functioning variants, with differential behavior affecting only BV/TV and 

Tb.N. A similar interpretation may be attempted for the cortical phenotype of the 

Rhbdf2-/- mice. Importantly, the significant QTL peak we found in our GWAS for 

BV/TV and Tb.N revealed a gene that has an important skeletal function in both the 

trabecular and cortical bone compartments. . 

The Rhbdf2 gene encodes the iRhom2 protein, a polytopic membrane protein 

that is a catalytically inactive member of the superfamily related to rhomboid 

intramembrane serine proteases (Lemberg and Freeman 2007). iRhom2 is necessary 

in macrophages for the maturation and release of the inflammatory cytokine TNFa: it 

acts in the trafficking of TACE, the protease that releases active TNFa from its 

membrane tethered precursor (Adrain et al. 2012b; McIlwain et al. 2012). iRhom2 is 

also implicated in EGF-family growth factor signaling (Siggs et al. 2014; Hosur et al. 

2014; Li et al. 2015). With a recent report of its role in trafficking of another protein, 

STING, it appears that iRhom2 may have a wider role in regulating membrane 

trafficking (Luo et al. 2016).  

Further work will be needed to identify the mechanism by which iRhom2 

controls bone homeostasis; a possible direction could involve a positive feedback loop 

that leads to differentiation of macrophages to osteoclasts by iRhom2 that stimulates 

the secretion of TNF-a by macrophages (Kobayashi et al. 2000; Udagawa et al. 1990) 

; hyperactivates EGFR (Yi et al. 2008; Hosur et al. 2014); and regulates CSF1R 

(Hung et al. 2014; Qing et al. 2016).  
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In summary, our analyses disclose several putative genes, several of which are 

newly linked to a role in bone biology. A confirmation of one such gene, Rhbdf2, 

provides the first conclusive evidence for its effects on bone microstructure. This 

finding prompts future investigations looking into the mechanism of action of Rhbdf2 

and its contribution to osteoporosis in humans. 

Materials and Methods (also called Methods or Models) 

Mice 

Mice aged 10 to 13 weeks (male n = 103; female n = 71), from 34 different CC lines 

(average of 5 mice per line) were used in this study. The mice were at inbreeding 

generations of 11 to 37, which correspond to 80-99.9% genetic homozygosity, 

respectively. The mice were bred and maintained at the small animal facility of the 

Sackler Faculty of Medicine, Tel Aviv University (TAU), Israel. They were housed 

on hardwood chip bedding in open-top cages, with food and distilled water available 

ad libitum, in an identical controlled environment (temperature = 25 ± 2°C; 60% ≤ 

humidity ≤ 85%) and a 12 hour light/dark cycle. All experiments protocols were 

approved by the Institutional Animal Care and Use Committee (IACUC M-13-014) at 

TAU, which follows the NIH/USA animal care and use protocols. The Rhbdl2 knock 

out mice and their WT counterparts were bred and maintained at the University of 

Oxford as approved by licence PPL80/2584 of the UK Home Office. 

Specimen collection 

Mice were intraperitoneally euthanized with cervical dislocation performed 

approximately one minute after breathing stops owing to 5% Isoflurane inhalation. 

The Rhbdl2 knock out mice and their WT counterparts were euthanised by inhalation 
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of a rising concentration of carbon dioxide followed by dislocation of the neck. Left 

femora were harvested and fixed for 24 hours in 4% paraformaldehyde solution, and 

then stored in 70% ethanol.  

μCT evaluation 

Whole left femora from each mouse were examined as described previously (Hiram-

Bab et al. 2015)by a μCT system (μCT 50, Scanco Medical AG, Switzerland). 

Briefly, scans were performed at a 10-μm resolution in all three spatial dimensions. 

The mineralized tissues were differentially segmented by a global thresholding 

procedure (Rüegsegger et al. 1996). All morphometric parameters were determined by 

a direct 3D approach (Hildebrand et al. 1999). Parameters analyzed were determined 

in the metaphyseal trabecular bone, which included trabecular bone volume fraction 

(BV/TV; %), trabecular thickness (Tb.Th; µm), trabecular number (Tb.N; mm-1), 

trabecular connectivity density (Conn.D; mm-3), trabecular structure model index 

(SMI), and trabecular separation (Tb.Sp; mm). Two additional parameters are 

characteristics of the mid-shaft diaphysis section, and include volumetric bone 

mineral density (vBMD; mgHA/cm3 [mg Hydroxy-Apatite per cm3]) and cortical 

thickness (Ct.Th; mm). All parameters are generated according to the Guidelines for 

assessment of bone microstructure in rodents using micro–computed tomography 

(Bouxsein et al. 2010). 

Genotyping 

A representative male mouse from each line was initially genotyped with a high 

mouse diversity array (MDA), which consists of 620,000 SNPs (Durrant et al., 2011). 

After about two intervals of 4 generations of inbreeding, all the CC lines were 

regenotyped by mouse universal genotype array (MUGA, 7,500 markers) and finally 
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with the MegaMuga (77,800 markers) SNP array to confirm their genotype status 

(Collaborative Cross Consortium 2012). The founder-based mosaic of each CC line 

was reconstructed using a hidden Markov model (HMM) in which the hidden states 

are the founder haplotypes and the observed states are the CC lines, to produce a 

probability matrix of descent from each founder. This matrix was then pruned to 

about 11,000 SNPs by averaging across a window of 20 consecutive markers for 

faster analyses and reduction of genotyping errors (Hall et al. 2012).  

 

Statistical analyses and data aquisition 

All statistical analyses were performed with the statistical software R (R core 

development team 2009), including the package happy.hbrem (Mott et al. 2000). 

Heritability and covariate effects. Broad-sense heritability (H2) was obtained for each 

trait by fitting the trait (the independent variable) to the CC line label in a linear 

regression model that incorporates relevant covariates (sex, age, batch, month, season, 

year, and experimenter). ANOVA test was used to compare a null model (in which all 

dependent variables are set to 0) with linear models that fit the covariates and the CC 

line labels to the examined trait. Practically, the difference between the residual sum 

of squares (RSS; ∑ (𝜇𝑖 −  𝜇̂𝑖
𝑛
1 )2 ) of the covariates model and that of the CC-line 

labels can be seen as the net genetic contribution to the trait. Thus, this difference 

divided by that of the covariate model gives an estimation of the heritability. Each 

covariate was calculated separately, by dividing the RSS difference between the null 

and full model with that of the null model. Let 𝐹0 be the model that fits the trait to the 

covariates; 𝐹1 the model that fits the trait to the covariates and the CC line label; and 

𝐹00 the null model. Then, employing ANOVA, heritability is: 
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𝐻2 =  (𝑅𝑆𝑆(𝐹0) − 𝑅𝑆𝑆(𝐹1)) / 𝑅𝑆𝑆(𝐹00). 

Similarly, the effects for each covariate were computed separately, by fitting each in 

𝐹0. The covariate effect is thus: 

(𝑅𝑆𝑆(𝐹00) − 𝑅𝑆𝑆(𝐹1)) / 𝑅𝑆𝑆(𝐹00). 

H2n was derived from H2 according to Atamni et al (Atamni et al. 2016). 

 

Haplotype mapping. Each trait was fitted in a multiple linear regression model to the 

probability matrix of descent from each founder, including sex and age as covariates. 

The expected trait value from two ancestors, termed the genetic fit, is: 

𝜇𝑖 =  𝜇 + ∑ 𝐹𝐿𝑖

𝑠,𝑡

(𝑠, 𝑡)(𝛽𝑠 + 𝛽𝑡) =  𝜇 + ∑ ∑ 𝐹𝐿𝑖

𝑡

(𝑠, 𝑡)𝛽𝑠

𝑠

 

where 𝜇 is a normally distributed trait mean, with sex and age incorporated; 𝐹𝐿𝑖(𝑠, 𝑡) 

is the probability of descent from founders s and t; and 𝛽𝑠 + 𝛽𝑡 is the additive effect of 

founders s and t. Because ∑ ∑ 𝐹𝐿𝑖𝑡 (𝑠, 𝑡)𝑠 = 2 for a diploid organism, the maximum 

likelihood estimates 𝛽̂𝑠 are not independent. Thus, they are expressed here as 

differences from the WSB/EiJ founder effect, so that 𝛽̂𝑊𝑆𝐵 = 0. Number of members 

per line was weighted and integrated in the linear model. ANOVA was then used to 

compare this model with a null model where the founder effects are all set to 0; the 

resulting F-statistic yielded the significance of the genetic model vs. the null model 

and the negative 10-base logarithms of the P values (logP) were recorded. 
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Permutations of the CC lines between the phenotypes were used to set 

significance thresholds levels. Founder effects are the estimates derived from the 

multiple linear regression fit above.  

Regional heritability (Hr
2) was hereafter computed by ANOVA as in the 

broad-sense heritability computation, except that here null linear regression fit was 

compared with a genetic linear regression fit with the probability matrix of the 

founder descent at the peak QTL as the explanatory variable. 

False discovery rate (FDR) was calculated using the p.adjust function in R, 

with the method "BH" (Benjamini-Hochberg (Hochberg 2016)). 

Confidence intervals. Confidence intervals (CIs) were obtained both by simulations 

and by the quick method of Li, 2011 (Li 2011). In the simulations, we resampled the 

residuals of the original linear regression fit at the peak of each QTL and rescanned 

100 intervals within 7-10 Mb of the original loci to find the highest logP. 

Accordingly, following Durrant et al. (Durrant et al. 2011a), 1000 QTLs were 

simulated: if 𝑡̂𝑖 is a random permutation of the residuals of fitted genetic model at the 

QTL peak, and K is a marker interval in a neighborhood of 3.5 to 5 Mb of the QTL 

peak L, a set of values for each trait, 𝑍𝑖𝐾 is provided by: 

𝑍𝑖𝐾 =  𝑡̂𝑖exp (𝜇̂ +  ∑ 𝑋𝐾𝑖𝑠𝛽̂𝑠).

𝑠

  

Merge analysis 

In the merge analysis the eight founder strains are partitioned and merged according 

to the strain distribution pattern (SDP) of the alleles at the quantitative trait 

nucleotides (QTN) within a given QTL (formerly obtained by the initial mapping). If 
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we denote the polymorphism as p, then Xp = 1 if s has allele a at p, and Xp = 0 

otherwise (Yalcin et al. 2005). Then, at p, the probability of i to inherit alleles a and b 

from s and t, respectively, within L is  

 

𝐺𝑝𝑖(𝑎, 𝑏) =  ∑ 𝑋𝑝

𝑠,𝑡

(𝑎, 𝑠)𝑋𝑝(𝑏, 𝑡)𝐹𝐿𝑖(𝑠, 𝑡). 

  

This merges the founder strains by p. The expected trait value in the merged strains 

can now be inferred by 

∑ 𝐺𝑝𝑖

𝑎,𝑏

(𝑎, 𝑏)(𝛽𝑎 + 𝛽𝑏). 

Because this is a sub-model of the QTL model, it is expected to yield higher logP 

values due to a reduction in the degrees of freedom. Significance was obtained by 

comparing the merge model with the QTL model. Individual genes were extracted 

from the Sanger mouse SNP repository 

(http://www.sanger.ac.uk/sanger/Mouse_SnpViewer).  

Merge strength 

We ranked the list of genes under each QTL according to the density of merge logPs 

associated with them: only genes that had merge logPs above the haplotype mapping 

reading, and above the threshold, plus logP=1 were included. We then computed the 

relative density according to the density of a given gene's merge logPs versus the 

locus' merge logP density. Let g be the region encompassed by a gene; l the region 

encompassed by a QTL; and mp the merge logP values above the haplotype P values 
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plus 1. Then 𝑔𝑖(𝑚𝑝) = 1 if at SNP i there exists a mp and 0 otherwise. Similarly 

𝑙𝑖(𝑚𝑝) = 1 if at SNP j there exists a mp and 0 otherwise. The merge strength (MS) is 

therefore: 

𝑀𝑆 [%] = 100 ∗
∑ 𝑔𝑖(𝑚𝑝)𝑖

∑ 𝑙𝑗(𝑚𝑝)𝑗
%. 

 

RNA-seq data 

RNA-seq data from osteoclasts and osteocytes was obtained from gene expression 

omnibus (GEO) database (accession numbers GSE72846 and GSE54784) and 

mapped to the mus musculus assembly mm10 using tophat v. 2 (Trapnell et al. 2009). 

Read counts were then casted on the loci of interest using the R (R Core Team 2015) 

package GenomicAlignments and raw read counts were taken. For the osteocytes, the 

data of basal level day 3 was averaged. 
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