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Abstract 
 
Advances in single molecule sequencing technology have enabled the investigation of 
the full catalogue of covalent DNA modifications. We present an assay, Modified DNA 
sequencing (MoD-seq), that leverages raw nanopore data processing, visualization and 
statistical testing to directly survey DNA modifications without the need for a large prior 
training dataset. We present case studies applying MoD-seq to identify three distinct 
marks, 4mC, 5mC, and 6mA, and demonstrate quantitative reproducibility across 
biological replicates processed in different labs. In a ground-truth dataset created via in 
vitro treatment of synthetic DNA with selected methylases, we show that modifications 
can be detected in a variety of distinct sequence contexts. We recapitulated known 
methylation patterns and frequencies in E. coli, and propose a pipeline for the 
comprehensive discovery of DNA modifications in a genome without a priori knowledge 
of their chemical identities.  
 
 
Introduction 
 
DNA modifications are essential across the three kingdoms of life1, and are used by cells 
for defense, gene regulation, cell differentiation, and the transmission of regulatory 
programs across generations. A host of assays have been developed to detect specific 
modified nucleotides, including and especially 5mC and 6mA, which are widely deployed 
by prokaryotes and eukaryotes2-4. Techniques exist to detect a diverse group of 
epigenetic modifications through the observation of DNA Pol II kinetics leveraging Single 
Molecule Real-Time sequencing (SMRT-seq) platform5, 6. In particular, the pioneering 
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work of Clark et al.7 demonstrated the capacity to identify DNA methylation marks via the 
comparison of native versus amplified DNA through supervised machine learning. The 
SMRT-seq platform, provides observations of DNA modifications through analysis of 
polymerase dynamics, which leads to the current requirement of deep read coverage in 
order to identify particular DNA modifications5, 7. 
 
Nanopore sequencing technology confers the opportunity to identify modified 
nucleotides through direct observations of single-molecules through monitoring electric 
current. Several pilot studies have demonstrated the feasibility of using nanopore-
derived information to identify methylation marks in native DNA8-10. To date, such studies 
have used a highly processed form of the data generated by the nanopore platform. 
Further, no software packages have been developed to interrogate and visualize the raw 
data in a human-interpretable fashion. Here, we present software that implements 
visualization to enable direct exploration, and automated statistical procedures to 
discover DNA modifications of, in principle, any form, even when the chemical identity of 
the modification is not known a priori. That is, we utilize unsupervised, rather than 
supervised statistical learning. We demonstrate the efficacy of our approach for three 
known marks, 4mC, 5mC and 6mA, in an artificial “ground truth” setting, and also in a 
well-studied laboratory strain of E. coli. 
 
Modified DNA sequencing (MoD-seq; Figure 1) requires the (nanopore) sequencing of a 
native and matched amplified DNA sample (where amplification is employed to produce 
unmodified DNA). These data are processed with the nanoraw software package 
(pypi.python.org/pypi/nanoraw; code repository https://github.com/marcus1487/nanoraw) 
and the re-processed raw signal is compared genome-wide leading to the identification 
of consistently modified bases, with discriminative power to accurately detect known 
marks in E. coli, and also the potential identification of new signals of unknown origin. 
Several similar approaches have been previously described6, 8-11, but require large prior 
training datasets, and have not yet been conceptually packaged as an assay for the 
genome-wide discovery of DNA modifications. In our view, such technology may soon 
enable the description of the entire collection of modified nucleotides in a genome. 

 
We anticipate that this approach, 
enabled by the software we 
present, will play an important role 
in microbial, plant, and metazoan 
genomics, particularly and initially 
for non-model organisms. Many 
software packages exist12, 13 to 
assemble complete genomes from 
nanopore data, and hence 
genome sequence and epigenetic 
modifications can be 
simultaneously obtained in a single 

Figure 1. Modified DNA sequencing (MoD-seq) 
pipeline. Native and whole genome amplified 
(WGA) biological samples are processed using 
nanopore sequencing, raw signal is analyzed 
with nanoraw and statistical tests are performed 
to identify regions with modified bases. 
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assay without prior knowledge of the collection of extant epigenetic marks in an 
organism. Further, we point to future work, where coupling to mass spectrometry and 
NMR may provide a complete parts list of endogenous DNA modifications in any system. 
The implications of this technology are clear and wide reaching for cancer genomics, 
population genetics, studies of epigenetic heritability, and the environmental 
biosciences. 
 
 
Results 
 
Visualization of the raw output of nanopore sequencing  
 
Base-calling in nanopore sequencing currently relies on treating signal as a locally 
stationary process, first involving segmentation into stationary regimes (“events”), and 
then kmer-calling within segments to assign putative kmers14-16. Initial assignments are 
then resolved to individual nucleotide calls by joint analysis of consecutive segments. 
Precision for the initial k-mer calls is relatively poor, and is improved upon reconciliation 
of neighboring regions. Individual “1D” nucleotide calls are now more than 90% accurate 
for single molecule reads17, facilitating both de novo genome assembly13, 18, 19 as well as 
the processing presented here. 
 
We developed the nanoraw software package to resolve raw nanopore signal with 
genomic positions (Methods; implemented in the genome_resquiggle subcommand) and 
thus allow genome-browser style visualization. The alignment of raw signal to underlying 
genomic sequences constitutes a robust procedure applicable to current and 
foreseeable subsequent generations of the technology with little to no tuning of 
parameters. The nanoraw software allows the selection of genomic locations via a 
multitude of criterion enabling the visual identification of regions of consistent or 
inconsistent raw signal (Figure 2A, B), and, as a result gain insight and intuition into the 
process of nucleotide assignments. 

Figure 2. Selected regions of raw nanopore signal visualized with nanoraw to show 
good and poor raw signal consistency. 
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Identification of chemically modified nucleotides 
 
We leverage the previously established8, 10, 11 strategy comparing native to amplified 
DNA in the context of genome-guided analysis to discover modified nucleotides without 
a priori knowledge of their chemical composition or effect on the nanopore signal. 
 
To demonstrate the feasibility of this approach for three major classes of DNA 
modifications, we constructed a ground truth dataset using seven purified methylases to 
introduce methylation to whole genome amplified E. coli DNA at known target sites 
(Table 1). These methylases catalyze the addition of a methyl group to the DNA to 
produce three distinct methylated bases: 4 methyl-cytosine (4mC; M.BamHI), 5 methyl-
cytosine (5mC; M.HhaI, M.MpeI and M.SssI) and 6 methyl-adenine (6mA; M.TaqI, 
M.EcoRI and M.dam). Each of these samples and two control samples were processed 
by nanopore sequencing (Methods). 
 

Methylase Known 
Recognition Site 

Average 
Depth 

Methylase 
Class 

Sites in E. coli  
Genome 

TaqI TCGA 22 6mA 30914 

BamHI GGATCC 36 4mC 988 

EcoRI GAATTC 27 6mA 1290 

HhaI GCGC 50 5mC 65566 

MpeI CG 39 5mC 693340 

SssI CG 19 5mC 693340 

dam GATC 33 6mA 38240 

Table 1. Tested methylases with known recognition site (methylated base underlined), 
depth of sequencing, methylation class, and number of sites within the E. coli genome. 
 
We align individual reads, corresponding to single molecules, to a reference genome 
(Methods). We note that the nanoraw pipeline can easily be applied to a genome derived 
directly from the same nanopore data using established pipelines12 when analyzing 
organisms without a reference genome. Nanopore assemblies of E. coli have yielded 
accurate single-contig genomes (99.5% nucleotide identity,20-22). After alignment, raw 
signal was re-segmented using nanoraw to map raw signal events onto the genome. 
Given two collections of corrected events, one corresponding to native DNA and another 
to amplified, the identification of DNA modifications is reduced to a statistical testing 
problem. This approach contrasts with previous DNA modification identification 
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algorithms which model signal shifts and require new training datasets for each 
modification and genomic sequence context8, 11. To identify genomic positions with 
shifted electric current, as compared to an amplified sample, the nanoraw pipeline 
employs the Mann-Whitney U-test23. As modified bases consistently shift the electric 
current at several bases surrounding the modified base (Supp. Figure 1), Fisher’s 
method24 was applied across a moving window to produce final significance tests 
(Methods). Bases admitting statistically significant tests indicated regions with modified 
nucleotide(s). 
 
For each chemical modification (4mC, 5mC and 6mA) nanoraw discovered the known 
sequence specificity of each enzyme based solely on shifted signal levels (Figure 3A, 
Supp. Figure 2; the signal and p-value distribution figures are immediately produced by 
the nanoraw software). Dam methylase shows expected motif degeneracy5, 25 and 
comparatively weak specificity. Fisher’s method p-value distributions for the top 1,000 
most significant regions containing the known motif (Figure 3A, Supp. Figure 2, lower 
panel) indicate that globally the highest significance values centered on or immediately 
before the known modified base. Genome-wide, each methylase shows strong 
preference for the known sequence motif with variable levels of accuracy (Figure 3B; 
area under the curve (AUC) from 0.59 to 0.86). For M.BamHI the AUC can be improved 
from 0.66 to 0.75 by including the discovered degeneracy at the fourth position of the 
motif (Figure 3A) indicating a lack of precision in the known motif. Statistical power for 
the detection of modified bases also scales as expected with sequencing depth (Supp. 
Figure 3). 
 
Endogenous modifications in laboratory strain of E. coli 
 
To simultaneously assess our capacity to identify endogenous modifications along with 
the biological and technical reproducibility of our approach, we applied the MoD-seq 
pipeline to E. coli (strain K-12 MG1655), one of the best-studied genetic model 
organisms, independently in two laboratories (Experiment A: Pennacchio Lab, LBNL, 
USA, and Experiment B: Loman Lab, Univ. Birmingham, UK). Due to inclusion of two 
additional bacterial samples the coverage of the E. coli genome from experiment B 
samples was substantially lower (8X native and 11X amplified  average strand-specific 
coverage) than the experiment B samples (21X native and 156X amplified  average 
coverage). In both experiments the expected26, 27 modifications catalyzed by M.dam 
(6mA) and M.dcm (5mC) were identified as the top hits (Figure 4A and Supp. Figure 4) 
and ubiquitously throughout the genome with similar specificity to in vitro methylation 
(Figure 4B). 
 
Reproducibility of the top sites identified within both experiments was strong (Supp. 
Figure 5) with over 18% of modified bases shared in the top 1% of identified sites in both 
experiments.  To assess this correspondence we created pseudo-experiments by 
downsampling reads from the experiment B samples to achieve 10X average strand-
specific coverage (approximately equal to read depth in experiment B). The 
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correspondence between these pseudo-experiments show ~20% overlap between the 
top 1% of calls from the full experiment B indicating that the replicability between the two 
experiments on different continents presented here is comparable to technical replicates 
(Supp. Figure 6). We observe that reproducibility is strongly affected by the depth of 
coverage over a site. When only sites with strand-specific coverage greater than 12X 
across the four samples were considered (two experiments with native and amplified 
sequencing samples) we observed a marked increase in overlap at the top of the rank 
lists (32% overlap between top 1% of sites from the two experiments; Supp. Figure 7 
and 8). An extended discussion of factors affecting reproducibility of identification of 
DNA modifications can be found in the supplemental text. 
 
Motif analysis reveals that 96% and 68% of modifications we detect in experiments A 
and B respectively are attributable to known methylase based on sequence context. 
Downsampling indicates that the lower percentage from experiment A is due to 
increased statistical power provided by deeper sequencing (Supp. Figure 9). 
Additionally, downsampling analysis suggests that greater than 10X strand-specific 
coverage is needed to achieve optimal consistency of identified sites, with some 
additional power achieved out to 15X coverage (Supp. Figure 9; “Fraction of Top 2k 
Sites Containing Motif” panel). 
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Figure 3. Identification of known 
modifications. A. Detection of three 
distinct chemical DNA modifications (4mC, 
5mC and 6mA). Each panel contains the 
known methylase recognition sequence, 
the discovered sequence motif, the raw 
genome-anchored nanopore signal at the 
top two identified regions (red - 
methylated, black - amplified DNA) and 
distributions of Fisher’s method p-values at 
each base over the top 1000 most 
significant locations containing the motif.  
 Additional tested methylases are shown in Supp. Figure 2 B. A range of capacity across 

seven methylases to discriminate regions with the known motif (y-axis) from regions without 
the known motif (x-axis). 
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To discover novel modifications, we employed an unsupervised dimension reduction 
approach. We associate each modification with a 5-vector where values are the 
statistically normalized deviations in signal intensity between the native and amplified 
libraries (Methods). We then projected these vectors into a 2-dimensional plane using 
Multidimensional Scaling (MDS) for visualization and clustering (Figure 4C). The 
dominant clusters correspond to the positional offsets (centered on U-test p-values; 
Supp. Figure 1) from the known 4mC and the 5mC methylases (DCM and DAM 
methylase respectively). Other sites contain the potential for modifications of unknown 
origin -- however these are clearly rare. Hence, unsurprisingly, the vast majority of 
epigenetic modifications in E. coli are of known origin, and our pipeline detects them and 
provides a clustering that contains information about the underlying modification. This 

Figure 4. Identification of DNA Modifications using MoD-seq A. Examples for the two 
major classes of modifications found in native E. coli (dcm and dam methylase). Panels are 
as in Figure 3A (red - native, black - amplified DNA). B. Capacity to discriminate known 
native modified base motifs using MoD-seq as in Figure 3B. C. Clustering of individual 
modified locations based solely on raw genome-anchored signal. Coloring indicates which 
motif the region matches (PosN indicates matching to one of the several modified positions 
within the motif). 
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analysis demonstrates that the raw signal can be used to visualize, cluster, and detect 
distinct DNA modifications genome-wide. 
 
A note on signal normalization 
 
In addition to resolving raw signal with a genomic alignment and appropriate statistical 
testing, raw signal normalization is key to the accurate identification of modified bases. 
Many current nanopore signal processing applications14-16 utilize picoamp estimations 
provided by Oxford Nanopore Technologies. However, this strategy leaves considerable 
and systematic variation in the signal. Extant pipelines rely on picoamp levels and model 
specific parameters to discover epigenetic modifications14-16. To discover modification 
directly from raw signal, we apply a median normalization strategy (Methods) based 
solely on the raw signal (without use of segmentation, called bases or picoamp 
normalization parameters) to greatly reduce this variation. We view a large fraction of the 
variance in picoamp measurements as bias, likely due to pore-specific and time-specific 
fluctuations in current level. Median normalization increases the percent of variance 
explained by 4-mer sequence context from 68.9% (using picoamp measurements) to 
96.7%, and reveals remarkable reproducibility in the raw signal (Figure 5). K-mers with 
high residual variance after this normalization remain an intriguing furrow for future 
studies. We propose that median signal normalization constitutes a useful default for raw 
signal processing, and that k-mer centric conditional variance be adopted as the metric 
for the assessment of future signal normalization procedures, provided that the 
normalization procedure does not take called sequence context into account. 
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Figure 5. Oxford Nanopore Technologies picoamp normalization (left) versus median 
normalization (right). Left to right are 4-mers (from bottom to top position: one base already 
passed through the pore, the base at the center of the pore and two bases that have not yet 
passed though) ordered by mean signal across all reads. Each line represents the mean 
signal of one read across all 4-mers. 
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Discussion 
 
The MoD-seq assay identifies DNA modifications using raw nanopore data and 
statistical analysis. At present, we require repeated observations of modifications for 
detection, meaning that individual modified nucleotides need to be consistently present 
in multiple copies of the genome, e.g. in multiple cells or plasmids in the sample. Once 
identified, modeling of the consistent signal shifts could conceivably generate phased, 
single-stranded modification sites in individual, single-molecule reads. As nanopore 
median and maximum read lengths continue to increase, these calls could be used to 
phase an epigenome with single-strand resolution. In diploid organisms, such as human, 
this would be a considerable advance over bisulfite sequencing and antibody-based 
approaches, and will enable the study of “population epigenetics”. 
 
Iterating the base-calling procedure to explicitly take into account modifications during 
sequencing, progressively enlarging the chemical vocabulary of the base caller, will, at 
least in part, ameliorate the combinatorial complexity associated with this task. Indeed, 
one of the most obvious applications of nanoraw is the generation of training sets for 
base-calling algorithms that seek to improve the state of the art in this sequencing 
platform. Iteratively refined base-calls may improve resolution and power for the 
detection of modifications. Importantly, nanoraw does not require de novo knowledge of 
modification identity or sequence specificity. Thus training data sets can be produced 
wherein modified and unmodified bases exist within very short distances. As most 
current base calling methods “remember” a local state, such a training set will likely 
prove useful to increase the accuracy of nanopore data. 
  
In organisms and systems with more diverse DNA modifications, or less sequence 
specificity at modified residues, our clustering approach provides an avenue for the 
systematic discovery of any modified nucleotides, even when we do not know the 
identity of the modifications a priori. For instance, one could couple MoD-seq to mass 
spectrometry (MS) or nuclear magnetic resonance (NMR) to discern specific moieties. 
One approach would be to fragment native DNA and use biotinylated oligonucleotide 
probes to pull down suspect regions of native DNA identified by nanoraw e.g. via 
sonication or the use of restriction enzymes, and then subject the precipitate to tandem 
mass spectrometry – a procedure we call MoD-MS/MS. In this way, a complete survey 
of DNA modifications could be derived de novo without the need for antibodies to 
specific moieties or enzymes. Given recent descriptions of the likely importance of 6mA 
modifications in metazoans, and the opportunistic (antibody enabled) nature of such 
discovers to date, it seems unlikely that a complete vocabulary of endogenous DNA 
modifications exists for complex organisms. 
 
As the consistency of raw nanopore signal improves, it may become possible to identify 
modified bases from individual molecules without the need for repeated observations. 
This would open new furrows in exposure biology, where adducts are distributed 
stochastically in the genome due to non-endogenous chemical activities. More than 200 
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different types of DNA adduct resulting from exposure to exogenous and endogenous 
DNA binding compounds have been described28. These observations could be 
correlated with patterns of mutation in tumors and cell lineages within tumors to study 
the mechanisms of DNA repair underlying individual and environmentally-induced 
cancer susceptibility. Ultimately, such technologies may enable new diagnostic and 
therapeutic strategies in precision medicine. 
 
Additionally, we acknowledge the enormous power of the human end-user for the 
detection of interesting patterns in complex data. The effective visualization of raw 
nanopore signal in genomic contexts may yield unexpected dividends as biologists 
browse signal-level information in regions containing genes or genomic elements of 
interest. For instance, we anticipate the generation of “ChIP-nano” assays to discover 
patterns of epigenetic marks associated with transcription factor binding sites. Such 
correspondences seem likely given a recent report that at least 70% of transcription 
factors in Arabidopsis thaliana have differential binding affinities at 5mC sites29.  
 
Lastly, direct RNA sequencing will likely soon be possible on the Oxford Nanopore 
platform, and the approaches we present here may be useful for the study of RNA 
modifications. Combining MoD-seq with a variety of pull-down assays for DNA and RNA 
has the potential to transform our understanding of the molecular codes of life.  
 
 
Methods 
 
DNA Sample Preparation and Nanopore Sequencing  
 
Standard sample preparation including DNA extraction, whole genome amplification and 
nanopore library preparation (all samples presented here are “2D” reads) are described 
in detail in the supplementary methods. In vitro DNA methylation procedures are 
described in full in the supplemental methods. 
 
Resolve Indels Using Raw Nanopore Observations 
 
Raw nanopore signal is processed first by segmentation into “events”, followed by 
assigning bases to those segments and joining of selected neighboring segments. This 
produces estimated base calls that contain errors. We then align individual reads to a 
reference genome (based on the sample) or a de novo assembled genome. We then 
resolve differences between the reads and the underlying genome sequence by first re-
segmenting the raw nanopore signal at genomic insertions and deletions, and then 
correcting for miscalled bases. Resolving the segmentation of the raw signal to match 
the known bases constitutes the base algorithm used for all analyses presented in this 
manuscript. The full algorithm description can be found in supplemental methods and is 
implemented and publicly available in the open source python package nanoraw via the 
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genome_resquiggle subcommand (pypi.python.org/pypi/nanoraw; code repository 
https://github.com/marcus1487/nanoraw). 
 
Statistical Testing for the Identification of Modified Nucleotides 
 
With raw nanopore signal assigned to each genomic base, comparison of raw signal 
levels between two samples is reduced to a testing problem. In order to test the 
difference between two samples the mean signal for each read at a genomic base are 
computed. We propose the Mann-Whitney U-test23 to test for differences in median 
signal intensity between two samples of interest. A robust order statistic-based approach 
is chosen as signal shifts near modified bases appear consistent, but not necessarily 
large in scale which other tests (e.g. t-test) have increased power to detect. The U-test is 
applied at every position across the genome with sufficient coverage (at least 5 reads in 
both samples). Since signal is affected at several bases surrounding a modified base, 
Fisher’s method24 for combining p-values is computed on a moving window (of 5 bases 
for all tests in this paper) to produce final p-values. 
 
Signal Level Normalization 
 
Nanopore sequencing is originally recorded as raw signal intensity values as a digital 
integer measuring the electric current across the nanopore. When the raw nanopore 
signal is converted to events (estimated base locations) Oxford Nanopore Technologies 
converts this integer signal value to an estimated picoamp (pA) level. Thus far, these 
measurements have been the gold standard for downstream analysis of nanopore signal 
levels. 
 
To investigate and compare alternative normalization methods the following metric is 
proposed: fraction of variance unexplained by k-mer (here we use 4-mer). We use a 
median normalization procedure as the default for downstream signal processing. For a 
read with 𝑁  raw signal observations (where 𝑅!  is the raw signal level at the 𝑖!! 
observation) we define the median normalized signal ( 𝑀! ) as 
𝑀! = (𝑅! −𝑚𝑒𝑑𝑖𝑎𝑛!∈[!,!](𝑅!))/𝑀𝐴𝐷  where 𝑀𝐴𝐷 = !

!!! 𝑅! −𝑚𝑒𝑑𝑖𝑎𝑛!∈[!,!](𝑅!) . All 
signal measurements presented in this manuscript have been median normalized (with 
the one exception for the comparison to pA normalization). In addition we winsorize the 
signal to clip aberrant spikes at plus and minus five MAD. 
 
Modification Based Sequence Motifs 
 
To identify the sequence preference for the sites identified from a given MoD-seq 
experiment we first identify the top 1,000 unique genomic locations based on computed 
Fisher’s method p-values. Fifteen bases of context are included up and downstream 
around each identified location. The meme algorithm30 is then applied to these 
sequences in the ZOOPS model. The top hit based on value is reported. 
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Clustering 
 
Each region centered on a base with significantly deviated current (based on U-test p-
value) is identified. All pairwise Euclidian distances between identified regions are 
computed based on a 5-vector of differences between native and amplified signal levels. 
The dimension reduction algorithm MDS is applied in order to visualize clustering of the 
data. 
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De novo Identification of DNA Modifications Enabled by 
Genome-Guided Nanopore Signal Processing 

 

Supplemental Material 
 
 
Supplemental Text 
 
Overlap and reproducibility of identified modifications between replicates 
 
Measuring and quantifying reproducibility of assays which identify modified nucleotides 
is inherently challenging. Unlike many biological assays where the top hits consistently 
show effect sizes much larger than the majority of other sites (such as ChIP-seq), all 
modified sites throughout the genome are essentially equally statistically powered 
(modulo a few factors). This means that if for example 50,000 sites within the E. coli 
genome are truly modified in 100% of tested DNA fragments then these 50,000 will be 
randomly re-ordered in terms of any statistical test from one replicate to the next. 
Additionally, the null distribution contains all other sites in the genome. For the relatively 
small E. coli genome this elicits ~8.5M strand specific tested sites. Under the null 
distribution p-values will randomly distribute even between 0 and 1. Thus by random 
chance, we would expect to see within the E. coli genome at least one non-modified 
base with a p-value as low as 10e-7. As the statistical test for the identification of truly 
modified sites is likely not powered to to this level, the 50,000 truly modified sites will be 
mixed within these randomly identified sites from the null distribution. As shown in the 
main text and Supp. Figures 7 and 8 strand-specific coverage has a strong effect on the 
reproducibility as increased coverage increases the statistical power. 
 
In addition to these factors, methylation is well documented to change with cell growth 
phase31. Given that no attempt was made to synchronize the growth phase in either lab, 
this and other biological effects may contribute to the discovery of modified sites unique 
to one of the two experiments. Using a mixture model approach (Methods) to account for 
differential coverage, we estimate that genome-wide 67% of dam and dcm recognition 
sites are methylated within the Pennacchio lab data while only 41% of such sites are 
methylated within the Loman lab data (Supp. Figure 10). Globally we estimate 30% of 
sites within the Pennacchio lab sample show a shift in signal (indicating that they are in 
close proximity to a modified nucleotide) as compared to 6% of sites from the Loman lab 
(Supp. Figure 10). 
 
Finally, given that the nanoraw MoD-seq pipeline does not have single base precision in 
the current implementation, sites within several bases of a modified base may all obtain 
significant p-values. These sites contribute additionally to a lack of overlapping 
significant sites between two replicates. 
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Supplemental Methods 
 
Experiment Library Preparation (LBNL) 
 
Total genomic DNA from E. coli str. K-12 substr. MG1655 was extracted using 
previously described methods32. In brief, DNA was extracted from approximately 4 x 109 
log-phase cells using the QIAGEN Genomic-tip 20/G according to the manufacturer’s 
instructions (Qiagen, Valencia, California). Whole genome amplification of E. coli total 
genomic DNA was performed using the QIAGEN REPLI-g Single Cell Kit according to 
the manufacturer’s instructions (Qiagen). DNA was quantified using Qubit dsDNA BR 
assay (Life Technologies, Grand Island, New York). 
 
2D sequencing libraries were prepared from native and amplified E. coli DNA according 
to the ONT recommended protocol (SQK-NSK007). In summary, DNA was fragmented 
using a Covaris g-TUBE (Covaris, Ltd., Brighton, United Kingdom). The fragmented DNA 
then underwent DNA damage repair using the FFPE DNA Damage Repair Kit (NEB, 
Ipswich, Massachusetts) and AMPure XP bead clean-up (Beckman Coulter, Brea, 
California). The DNA was end-repaired and A-tailed using the NEBNext Ultra II End Prep 
Kit (NEB). Following AMPure XP bead clean-up, adapters were ligated onto the DNA 
using Blunt/TA Ligase Master Mix (NEB). Libraries underwent a clean-up step using 
MyOne C1 Streptavidin beads (Life Technologies) and were quantified using Qubit 
dsDNA HS assay (Life Technologies). All sequencing runs were performed using R9 
flow cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN105 250bps workflow. 
 
Experiment Library Preparation (University of Birmingham) 
 
Total genomic DNA was isolated from three bacterial cell pellets (S. aureus, M. 
smegmatis and E. coli K-12) using the genomic buffer set and 500/G genomic tips 
(Qiagen) following the manufacturer's instructions and mixed in equal amounts. DNA 
was fragmented using a Covaris g-TUBE in a centrifuge at 5000 rpm. Part of the 
material was end-repaired and A-tailed using the NEBNext Ultra II End Prep Kit. 
Following AMPure XP bead clean-up, PCR adapters provided in the SQK-NSK007 kit 
(ONT) were ligated onto the fragments using Blunt/TA Ligase Master Mix (NEB). 10 ng 
of the cleaned-up, adapted fragments were PCR amplified using LongAmp Taq 2x 
Master Mix (NEB) and the primers provided in the SQK-NSK007 kit. Following 18 cycles 
of PCR fragments were cleaned-up and sequencing libraries were prepared for both 
PCR amplified and the native DNA set aside earlier according to the ONT recommended 
protocol (SQK-NSK007) described above. Sequencing runs were performed using R9 
flow cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN105 250bps workflow. 
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PCR amplified DNA that underwent methylase treatment were barcoded using the native 
barcoding kit (EXP-NBD002) so multiple treatments could be multiplexed on one 
flowcell. Approximately 200 ng input DNA for each treatment was barcoded and pooled 
according to the 2D Native barcoding genomic DNA protocol. A library was prepared 
from the pooled, barcoded fragments using the SQK-LSK208 kit according according to 
the ONT recommended protocol. Two sequencing runs were performed using R9.4 flow 
cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN106 250bps workflow. 
 
Synthetic DNA Modification 
 
DNA methyltransferases were purchased from New England Biolabs and used 
according to the manufacturer's instructions. The exceptions are the M.MpeI (Chrometra, 
Belgium) and M.TaqI, which was expressed and purified by the Protein Expression 
Facility, Birmingham. DNA methylation was performed in vitro by incubating DNA (60 
ng/uL) with 1 uL of methyltransferase and 80uM S-adenosyl-L-methionine in 50 uL of 
aqueous solution containing the appropriate methyltransferase buffer (NEB Cutsmart 
Buffer was used for both the M.MpeI and M.TaqI). Reactions were incubated at 37C for 
1h (60C for 1h for M.TaqI) and then purified directly for sequencing using SPRI magnetic 
beads. 
 
Resolve Indels Using Raw Nanopore Observations 
 
Raw nanopore data produced by the Oxford Nanopore Technologies MinoION device is 
stored as a digital integer value that represent a measure of electric current as DNA 
passed through a nanopore (at a current rate of 4000 observations per second). As DNA 
passes through a nanopore this signal changes as some function of the local base pair 
composition of that DNA molecule. For DNA this function has been resolved with 
considerable accuracy by Oxford Nanopore technologies, but significant errors remain in 
the data (between 70%-90% accuracy reported though this depends strongly on the 
version of pore used19, 33, 34). These errors can make it difficult to process or interpret the 
signal associated with a particular position of interest on the genome as is common 
practice in genomic sciences. Thus a key step to more exact and confident interpretation 
is to resolve base calls made from this raw nanopore signal with a known or discovered 
consensus genome. 
 
In order to address this problem the following algorithm is proposed and implemented in 
the nanoraw software package to assign contiguous segments of raw nanopore signal 
with genomic positions. Starting from the Oxford Nanopore Technologies base calls the 
first step is to align base calls to a provided genome (this genome could even have been 
discovered and assembled de novo from the same run12, 13, 18). Currently, nanoraw uses 
the graphmap algorithm34, but any long read aligner could be used. Then stretches of 
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correctly mapped regions (including matching and mismatched base pairs) are used to 
anchor the called nanopore segments to genomic bases. Then insertion and deletions 
(indels) from the genome to the base calls must be resolved to assign raw nanopore 
signal to the assigned genomic bases from the read alignment.  
 
For insertions into the genome, there are segments of the raw nanopore signal that are 
assigned to base(s) that do not exist in the genome. When such a region is encountered 
the region is extended out to the neighboring segments and one new segment is 
determined from the raw signal (using the process described below). Conversely for 
deletions there are genomic bases that have no assigned signal. The region defined by 
events surrounding these deleted base calls are selected and the number of deleted 
base pairs plus one (for the two correctly aligned neighboring bases) segments are then 
identified from the raw signal in this region. 
 
For both insertions and deletions the final stage is to identify a specified number of new 
segments within a stretch of raw signal. In order to accomplish this the running 
difference between the mean signal of neighboring regions (currently using 4 
observation windows) are computed. The site with the largest difference in signal level is 
called as the first segment. Then the next highest site is chosen unless it is within 4 
observations of a previously added segmentation site and this process is repeated until 
the requested number of segments are identified. It is possible that the requested 
number of segments cannot be identified, and in this case the neighboring correctly 
called segments are included into the region. If extending this indel region intersects 
another indel these entire regions are merged and re-segmented together. 
 
This algorithm is currently implemented in the genome_resquiggle sub-command of the 
nanoraw software package. 
 
Identify Regions of Interest 
 
In addition to the Mann-Whitney U-test, the t-test is a supported test in the nanoraw 
software for convenience though we found better identification of known methylated site 
with the robust Mann-Whitney U-test. Additional regions of interest that are query-able 
by the nanoraw software are regions of maximal coverage, regions centered on a k-mer 
of interest (e.g. homopolymers have proven to be difficult to process in nanopore data14, 

35), and regions with the largest raw difference in signal means between two groups of 
samples. These collection of region identification tools gives the nanopore investigator 
incredible power to interpret and further develop the potential for this technology. 
 
Filter to identify reads with most consistent and biologically relevant signal 
 
In order to remove reads that appear to be of low quality we have developed a filter 
based on the number of observations per base (event). Given the resolution of the raw 
signal to the genomic alignment, we have much more accurate picture of how many 
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observations are made per genomic base. Bases that contain many more observations 
indicate a “stuck” base. Sometimes this may be of biological interest, but signal level 
variance analysis indicate that the majority of reads with many “stuck” bases do not 
provide signal levels matching the trends for reads that pass through the pore at a 
consistently fast rate. We recommend a filter to remove any reads with greater than 
5,000 observations at a single base or greater than 200 observations in more than 1% of 
the bases within a read and this filter is applied to all analyses presented in this paper. 
 
Mixture Model Percent Modified Bases Estimation 
 
In order to estimate the fraction of positions with signal affected by a DNA modification 
we employ a mixture model implemented in the R package fdrtools36, 37. This model 
attempts model a distribution of p-values with a uniform component (which represents 
the false tests) and a monotonically increasing component (representing the true positive 
tests). Here we report one minus the estimated fraction composed within the null 
(uniform) component as the fraction of sites affected by modified bases. 
 
 
Supplemental Figures 
 
 

 
Supplemental Figure 1. U-test p-values for each known modification show significance 
at bases around the known modified base. Arrows indicate known methylation site. 
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Supplemental Figure 2. Additional known methylase signal plots (as in Figure 3). 
Arrows indicate known methlyation site 
 
 

 
Supplemental Figure 3. Distribution of p-values at given thresholds of minimum 
(between native and amplified) coverage at a site. Pennacchio lab data used for this 
analysis. 
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Supplemental Figure 4. Examples for two major classes of modifications from lower 
coverage data from Loman lab as well as p-value distributions for 1,000 most significant 
sites within the known motif (as in Figure 4A). Arrows indicate known methylation site. 
 

 
Supplemental Figure 5: Density of sites showing correspondence between two labs 
across rank lists (by p-value) from Loman and Pennacchio labs. Right panel is zoomed 
in to the top 1% of both lists. 
 
 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094672doi: bioRxiv preprint 

https://doi.org/10.1101/094672
http://creativecommons.org/licenses/by-nd/4.0/


 
Supplemental Figure 6: Density of sites showing correspondence (as in Supp. Figure 
5) between two random samples from the same experiment to achieve 10X strand-
specific coverage across rank lists (by p-value). Right panel is zoomed in to the top 1% 
of both lists. 
 
 
 

 
Supplemental Figure 7. Comparison of modified bases identified by entirely 
independent processing pipelines including labs, technicians and sources. The 
percentage of observations from the rank list produced from each lab (x axis) compared 
to the percentage of overlap between the two experiments (y axis). Different lines 
indicate the minimal coverage filter applied to test each base across all four sequencing 
experiments (native and amplified from both experiments). 
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Supplemental Figure 8. Comparison of modified bases identified (as in Supp. Figure 7) 
from two sub-samples from the same experiment to achieve ~10X strand-specific 
coverage. The percentage of observations from the rank list produced from each sub-
sample (x axis) compared to the percentage of overlap between the two sub-samples (y 
axis). Different lines indicate the minimal coverage filter applied to test each base across 
all four sequencing experiments at each tested site (native and amplified from both sub-
samples). 
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Supplemental Figure 9. Relationship between statistical power (depth of coverage) and 
fraction of identified sites with known motifs in native E. coli samples over range of 
down-sampling to achieve different levels of strand-specific coverage (x-axis). 
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Supplemental Figure 10. P-value distributions for Pennacchio (left) and Loman (right) 
labs across both regions that contain either dam or dcm motif and those regions that do 
not contain a motif. 
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