
Co-occurring eQTLs and mQTLs:  detecting shared causal variants and shared biological mechanisms 

 

 

Brandon L. Pierce
1,2,3

*,  Lin Tong
1
, Maria Argos

1
, Farzana Jasmine

1
, Muhammad Rakibuz-Zaman

4
, Golam 

Sarwar
4
, Md. Tariqul Islam

4
, Hasan Shahriar

4
, Tariqul Islam

4
, Mahfuzar Rahman

4,5
, Md. Yunus

6
, 

Muhammad G. Kibriya
1
, Lin S. Chen

1
, Habibul Ahsan

1,2,3,7
* 

 

 

Affiliations:  
1
Department of Public Health Sciences, 

2
Department of Human Genetics, and 

3
Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637; 

4
UChicago Research 

Bangladesh, Mohakhali, Dhaka, Bangladesh; 
5
Research and Evaluation Division, BRAC, Dhaka, 

Bangladesh; 
6
International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh;  

7
Department of Medicine, The University of Chicago, Chicago, IL 60637. 

 

*Corresponding Authors:   

 

Dr. Brandon Pierce  

The University of Chicago 

5841 South Maryland Avenue, W264, MC2000 

Chicago, IL 60637 

Phone / Fax: 773-702-1917 / 773-834-0139 

Email: brandonpierce@uchicago.edu 

 

Dr. Habibul Ahsan 

Center for Cancer Epidemiology and Prevention 

The University of Chicago 

5841 South Maryland Avenue, Suite N102, MC2000 

Chicago, IL 60637 

Phone / Fax: 773-834-9956 / 773-834-0139 

Email: habib@uchicago.edu 

 

Key Words:  expression quantitative trait loci (eQTL), methylation quantitative trait loci (mQTL), DNA 

methylation, co-localization, mediation, partial correlation,  

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094656doi: bioRxiv preprint 

https://doi.org/10.1101/094656
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 

Inherited genetic variation impacts local gene expression and DNA methylation in humans.  Expression 

and methylation quantitative trait loci (cis-eQTLs and cis-mQTLs) often occur at the same genomic 

location, suggesting a common causal variant and shared mechanism.  Using DNA and RNA from 

peripheral blood of Bangladeshi individuals, we use “co-localization” methods to identify 3,695 eQTL-

mQTL pairs that are likely to share a causal variant.  Using partial correlation analysis and mediation 

analysis, we identify >500 pairs with evidence of a causal relationships between expression and 

methylation (i.e., shared mechanism) with many additional pairs that we are underpowered to detect.   

These co-localized pairs are enriched for SNPs showing opposite effects on expression and methylation, 

although a many affect multiple CpGs in opposite directions.  Evidence of shared SNP-age interaction 

also supports shared mechanisms for two eQTL-mQTL pairs.  This work demonstrates the pervasiveness 

of co-regulated expression and methylation traits in the human genome.  This approach can be applied 

to other types of molecular QTLs to enhance our understanding of regulatory mechanisms. 
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Introduction 

Genetic variation has a substantial impact on mRNA abundance in humans 
1
.  Genome-wide 

scans to identify regions that harbor such variants, regions known as eQTLs (expression quantitative trait 

loci), have been conducted using RNA from a wide-array of human tissue types and cell types, and eQTLs 

have been identified for the vast majority of human genes.  

In addition to studies of transcript abundance, recent work has described the effects of genetic 

variation on other genomic and cellular phenotypes, such as DNA methylation 
2-5

, DNase hypersensitivity 

6
, histone modifications and nucleosome positioning 

7
, RNA splicing 

8,9
, translational efficiency/ribosome 

occupancy 
10,11

, and protein abundance 
12,13

.  Because many QTLs appear to influence multiple local 

molecular phenotypes, there is great interest in identifying variants that have coordinated effects on 

multiple phenotypes and understanding the mechanisms by which such variants act. 

Recently, several groups have identified SNPs associated with both expression of nearby genes 

and methylation of nearby CpG sites 
14-17

.  For these cis-eQTLs that also appear to be local methylation-

QTL (cis-mQTLs), it is possible that co-occurring eQTLs and mQTLs share a common causal variant, 

suggesting a shared biological mechanism by which the causal variant influences both expression and 

methylation.  Methylation could be reactive to expression (i.e., methylation responds to genetically-

determined variation in gene expression, perhaps due to a SNP’s effect on transcription factor binding), 

or methylation could mediate the effect of the SNP on expression (i.e., increased promoter methylation 

suppresses transcription factor binding).  For such co-occurring eQTLs and mQTLs, several groups have 

developed and applied approaches intended to determine if a causal relationship exists between the 

local DNA methylation and expression, including likelihood-based approaches 
17

, Bayesian network 

approaches 
16

, and partial correlation approaches 
18

.   

One limitation of the prior work on this topic is a lack of rigorous assessment of the hypothesis 

that co-occurring eQTLs and mQTLs share a common causal variant.  Recently developed tests for “co-
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localization” allow one to assess whether two association signals are consistent with a shared causal 

variant 
19

.  Using summary statistics for an eQTL and an mQTL, one can estimate the probability that the 

eQTL and mQTL share a common causal variant.  This information can be used to guide subsequent 

studies of co-occurring eQTL/mQTL pairs.   

In this work, we use genome-wide data on SNPs and array-based expression and DNA 

methylation from South Asian individuals to identify cis-eQTLs and cis-mQTLs.  We describe the extent 

to which the observed cis-eQTLs and cis-mQTLs share common causal variants using co-localization 

methods 
19

.  Using eQTL/mQTL pairs with a high probability of sharing a causal variant, we then assess 

the evidence that expression and methylation are causally related to one another  using  partial 

correlation analysis and mediation analysis.  In addition, we characterize these co-localized QTLs and 

search for SNP-age and SNP-sex interactions that are shared across co-localized QTLs.  

 

Results 

A simple overview of our workflow for identifying eQTLs and mQTLs that are likely to share a common 

causal variant (CCV) is shown in Figure 1.  A more detailed workflow is provided in Supplementary 

Figure 1.  
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Figure 1.  Summary of the workflow for cis-QTL, co-localiation, partial correlation, and mediation 

analyses 

 

 

Observed cis-eQTLS and cis-mQTLs 

We conducted genome-wide eQTL and mQTL analyses using data on 992 and 337 non-overlapping study

participants, respectively.  Patterns of peripheral blood cis-eQTLs and cis-mQTLs are reported in Table 1.

At an FDR of 0.01, we detected a cis-eQTL for 9,979 expression probes, corresponding to 8,115 genes 

(i.e.cis-eGenes), and 9,629 unique lead eSNPs.  At an FDR of 0.01, we detected evidence of an mQTL for 

125,162 CpG sites, corresponding to 102,836 unique lead mSNPs.   90,709 of these CpG sites were 

assigned to a total of 16,227 genes (based on Illumina’s annotation).  On average, lead mSNPs were 10 

kb closer to their target CpGs than lead eSNPs were to their target transcription start site (p=10
-19

, 

controlling for QTL P-value).   

  

5 
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Table 1.  Summary of cis-eQTL and cis-mQTL signals identified in genome-wide
1
 analyses using a false 

discovery rate (FDR
2
) of 0.01 

  
cis-eQTL analysis 

(n=992) 

cis-mQTL analysis 

(n=337) 

Genome-wide SNPs (n=8,639,940)   

Tests conducted 52,278,603 994,862,964 

Significant SNP-probe pairs
3
 2,003,048 15,872,677 

Significant eQTL/mQTL SNPs
3
 1,172,914 3,079,333 

Significant unique eQTL/mQTL SNPs 9,629 102,836 

Significant eQTL/mQTL probes
4
 9,979 125,162 

Significant eQTL/mQTL genes 8,115 16,227 
1
Analyses were conducted using 22,793 expression probes, 423,604 methylation probes, and 8,639,940 

genotyped and imputed SNPs.   SNP and probes separated by <500 kb were tested for association.   
2
A FDR of 0.01 corresponded to P-value thresholds of 3.8 x10

-4
 for the cis-eQTL analysis and 1.5x10

-4
 for 

cis-mQTL analysis. 
3 

Counts include SNPs in LD 
4
Among the 125,162 significant mQTL probes, 90,709 probes were assigned to a gene in Illumina’s 

annotation file.  

 

Co-localization of cis-eQTLs and cis-mQTLs 

7,454 of our 9,629 unique eSNPs were among the mSNPs identified at an FDR of 0.01, corresponding to 

7,638 unique SNP-eProbe-CpG combinations potentially representing a CCV.  Using these pairs of 

eProbes and CpGs associated with a common SNP, we conducted a Bayesian test of co-localization 
19

 for 

each of the 7,638 pairs (see methods) (Supplementary Table 1).  This method assesses whether two 

association s signals are consistent with a CCV.  A substantial number of these test (~20%) produced 

probabilities of CCV that were very close to zero, but probability of CCV was strongly related to the 

linkage disequilibrium (LD) between the lead eSNP and the lead mSNP, with low LD corresponding to 

low probability of CCV (Figure 2A).  Removing eProbe-CpG pairs whose lead eSNPs and mSNPs were in 

weak LD (r
2
<0.5) eliminated the majority of the eProbe-CpG pairs showing very weak evidence of co-

localization (Figure 2B).  These results reflect the existence to two major types of pairs:  those very likely 

to share a CCV and those that do not share a CCV.   
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Figure 2.  The distribution of the posterior probability (PP) of a common causal variant (CCV) for co-

occurring eQTL-mQTL pairs.  A: PP of a CCV at different values of LD (r
2
) between the lead eSNP and lead

mSNP for n=7,638 eQTL-mQTL pairs.  B: 5,286 eQTL-mQTL pairs with r
2
 >0.5 between lead eSNP and lead

mSNP.   C:  3,695 eQTL-mQTL pairs with a PP of a CCV >80% for p12=10
-5

.  The distribution of PP of CCV 

for these pairs is also shown at p12 values of 10
-6

 and 10
-7

.   

 

 

  

7 

d 
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Sensitivity of the probability of CCV to the choice of prior  

The Bayesian co-localization 
19

 requires specifying a prior probability for a SNP being associated with 

expression (p1), methylation (p2), and both traits (p12).  Following the approach used by the method 

developers 
19

, we used a prior of 10
-4

 for p1 and p2, and we varied the value of p12 (10
-5

, 10
-6

, and 10
-7

).  

Among all 7,638 pairs, we observed 3,695 pairs with a probability of CCV >80%, and we designated these 

as potentially “co-localized” eQTL-mQTL pairs (based on p12 = 10
-5

).  We selected these for further 

analysis (Supplementary Table 1).  The majority of co-localization tests were highly sensitive to p12 

(Figure 2C), and these priors are interpreted respectively as 1 in 10, 1 in 100, and 1 in 1000 probability 

that a SNP associated with expression is also associated with methylation (or vice versa) given value of 

10
-4

 for both p1 and p2 (see Methods).  Because decreasing p12 to 10
-7

 eliminates the vast majority of 

evidence for co-localization, we used the threshold of probability of a CCV >0.80 at p12 = 10
-5

 to define 

potentially co-localized pairs.  Six of our strongest co-localized signals (based on probability of a CCV) are 

shown in Figure 3.   
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Figure 3.  Examples of 6 co-localized eQTL-mQTL pairs.  A: ILMN_1658464 (GTF3A) and cg22138327.  B: 

ILMN_1694711 (MAD2L1BP) and cg14302083.  C: ILMN_1721978 (CARD11) and cg19214707.  D: 

ILMN_1737918 (C1QA) and cg10916651. E: ILMN_2193591 (UNC93B1) and cg20272935. F: 

ILMN_2282366 (IQSEC3)and cg25396728.  

 

Co-localization and LD  

The probability of a CCV showed a strong inverse association with the “LD score” of the lead SNP (Figure

4A and Supplementary Table 2) with LD score defined as the sum of the pairwise r
2
 values between the 

LD SNP and all SNPs within 500 kb 
20

.  This result demonstrates the increased uncertainty regarding 

sharing of a causal variant in regions containing many highly correlated variants.  Co-localized eQTL-

mQTL pairs with high LD scores for the lead SNPs also appear to have probabilities of CCV values that 

were more sensitive to the prior than pairs with low LD scores (Figure 4B and 4C), indicating that the 

test for co-localization is better able to detect evidence of a shared causal in regions of low LD.  The 

9 
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probability of CCV was also strongly associated with the strength of the eQTL and mQTL association 

signals (in terms of P-value) (Supplementary Table 2). 

 

Figure 4.  The posterior probability (PP) of sharing a common causal variant (CCV) depends on the 

extent of LD in the region.  A: Average PPs of CCV at different prior (p12) by lead SNP stratified by LD 

score for 3,695 SNPs.  B: PP of CCV at different prior (p12) for the lead SNPs with the lowest LD score (50 

SNPs).   C: PP of CCV at different prior (p12) for the 50 lead SNPs with the highest LD score (50 SNPs) 

Partial Correlation Analysis 

For the 3,695 potentially co-localized pairs, we restricted analyses to 316 genotyped individuals with 

both expression and methylation data and conducted partial mediation analysis to determine if there 

was residual correlation between the expression probe and the CpG probe after removing the effects of 

the lead eQTL SNP (i.e., regressing the probe on the SNP and taking the residual).  When a SNP has 

independent effects on expression and methylation, i.e., no causal correlation between expression and 

methylation, the residuals after removing lead SNP effects would be uncorrelated. As such, observing 

correlations in residuals provides support for a causal relationship between expression and methylation 

18
.  We observed 507 eProbe-CpG pairs for which the correlation between the two remained significant 

(P<0.05) after adjustment for the lead SNP.  Correlations tended to be weaker in magnitude after SNP-

adjustment, and significant correlations were more likely to be negative than positive (Figure 5A).   

0 
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Figure 5.  Partial correlation analysis and mediation analysis for 3,695 eQTL-mQTL pairs provides 

evidence for shared regulatory mechanisms.  A: Partial correlation analysis results.  B: Mediation 

analysis results for the SME and the SEM model.  C:  relationship P-value for mediation (Sobel P) and the 

post-adjustment correlation P-value from partial correlation analysis.  D: Venn diagram showing the 

concordance between mediation and partial correlation analysis.   All models includes adjustments for 

age, sex, and PCs from both the expression and methylation data (n=316).    

 

 

1 
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Mediation analysis 

We applied mediation analysis to our 3,695 co-localized pairs as previously described 
21

 in order to 

assess evidence that 1) local DNA methylation mediates the effect of the SNP on local gene expression 

(SNP -> Methylation -> Expression or “SME”) and 2) gene expression mediates the effect of the SNP on 

local DNA methylation (SNP -> Expression -> Methylation or “SEM”), a scenario in which DNA 

methylation is reactive to variation in gene expression activity.  We observe significant evidence of 

mediation (Sobel P<0.05 and % mediation >0 for SEM or SME) for 377 pairs (Figure 5B).  Evidence for 

mediation was often detected for specific gene-CpG pairs regardless of which mediation model was 

tested (SEM and SME, respectively) (Supplementary Figure 2A), demonstrating that mediation analysis 

is essentially a test for shared variance among the SNP, CpG, and expression trait and can be inadequate 

by itself for determining the direction of causality between two variables.  However, we demonstrate 

using simulated data that evidence for mediation should be stronger when the causal model is correctly 

specified (Supplementary Figure 3).  

 

Comparison of Partial Correlation and Mediation Results 

The mediation analysis results were highly consistent with the partial correlation analysis results, with 

nearly all of the 365 “mediated” pairs being among the 507 pairs with a significant partial correlation 

after SNP adjustment (Figure 5D).  The distribution of the Sobel P-value and the post-adjustment P-value 

were similar, in that pairs with small Sobel P values tended to have small P-value for correlation after 

SNP adjustment (Figures 5C).  Our ability to detect significant evidence of mediation and partial 

correlation was strongly related to the strength of the eQTL and mQTL being tested (Supplementary 

Table 3), indicating that we are likely underpowered to detect mediation and/or partial correlation for a 

substantial number to eQTL-mQTL pairs.  In addition to partial correlation and mediation analyses, we 
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also conducted Bayesian network analysis (BNA) as previously described 
16

 to determine if either the 

SME or SEM models were more strongly supported by the data than a model based on independent SNP 

effects on expression and methylation (see methods).  BNA identified SEM or SME to be the most likely 

model for 572 pairs with >200 of the pairs also identified by either partial correlation and/or mediation 

analysis (Supplementary Figure 2B and 2C).  For, the vast majority of these pairs (>500), SME was the 

most likely model, which was largely consistent with results from mediation analysis (Supplementary 

Figure 2B).  Some consistency is expected as both methods rely on conditional dependence.   

 

Co-localized eQTL/mQTL pairs tend to of have opposite effects 

Among our 3,695 co-localized eProbe-CpG pairs, the direction of the effect of the SNP on expression and 

methylation was more often in opposite directions (n=2,138; 57.8%) than in the same direction 

(n=1,557; 42.2%)  (Figure 6A), consistent with the hypothesis that reduced promoter methylation is 

indicative of a more open chromatin state and increased transcriptional activity.   When restricting to 

pairs that show evidence of a shared mechanism, according to either partial correlation or mediation (at 

either P<0.05 or P<0.001), a more striking difference is observed, with 70-80% of co-localized eQTL-

mQTL pairs showing opposite directions of association, depending on the P-value threshold used  

(Figure 6A).  Similarly, the expression and methylation traits for co-localized pairs were more often 

negatively correlated than positively correlated (57% negative).  This imbalance was much stronger after 

restricting to pairs showing evidence of a shared causal mechanism, according to either partial 

correlation or mediation analysis, with 70-80% of co-localized eQTL-mQTL pairs showing an inverse 

correlation (based on P<0.05 and P<0.0001) (Figure 6B).   
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Figure 6.  Proportion of potentially co-localized eQTL-mQTL pairs for which the SNP’s association with 

expression and methylation is in the same or different directions.  Overall results are shown, as well as 

those stratified by P-values from mediation analysis (Sobel P-value) and partial correlation analysis 

(post-adjustment P-value). 

 

 

4 
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eSNPs often co-localize with mSNPs associated with both increased and decreased methylation 

There were 1,557 co-localized eQTL-mQTLs pairs showing associations with expression and methylation 

in the same direction (i.e., an allele is associated with an increase in both expression and methylation).  

Among these mQTLs, we searched for additional nearby CpG sites that showed an association with the 

SNP that was in the opposite direction of the eQTL.  In 1,219 out of 1,557 cases, we identified at least 

one such a secondary CpG, and these CpGs were consistently inversely associated with the CpG 

originally selected.  In other words, many of our eSNPs/mSNPs were associated with methylation at 

multiple nearby CpGs, with the minor allele increasing methylation at one CpG while decreasing 

methylation at another.  The three examples with the strongest association between SNP and secondary 

CpG are shown in Figure 7, and all of these secondary mQTL signals also co-localize with the primary 

eQTL with probabilities of CCV > 90%.  
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Figure 7.  Examples of eQTLs which co-localize with an mQTL that has opposite effects on two nearby 

CpG sites.  Results for the mQTL (red) and eQTL (blue) selected for co-localization analysis are shown 

above (ascending).  For these scenarios, the expression-increasing allele is associated with increased 

methylation.  Results for a “secondary CpG” are shown below (descending) in green, for which the 

expression-increasing allele is associated with decreased methylation.  Panel A: eSNP: 10:91165833, 

expression probe: ILMN_1696654, 1
st
 CpG: cg27582166, 2

nd
 CpG: cg13172359. Panel B: eSNP: 

6:37669641, expression probe: ILMN_1720595, 1
st
 CpG: cg26720545, 2

nd
 CpG: cg26129310.  Panel C: 

eSNP: 3:45044878, expression probe: ILMN_2055477, 1
st
 CpG: cg25593573, 2

nd
 CpG: cg06117855.  

 

Evidence of Shared SNP-by-Sex interaction  

Because co-localized eQTL-mQTL pairs are likely to share a biological mechanism, they may also share 

interactions with factors that modify the effect of an SNP on gene regulation.  We tested SNP-by-sex and

SNP-by-age interaction for all 519 co-localized eQTLs showing evidence of mediation and/or partial 

correlation (P<0.05).  Only 4 and 2 eQTLs showed evidence of interaction with age and sex, respectively, 

after Bonferroni correction.  Among the four eQTLs showing interaction with age, one (chr18:47043463, 

P=9x10
-8

 for interaction with age) showed a significant SNP-by-age interaction with respect to the CpG 

6 
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influenced by the co-localized mQTL (P=0.03) (Figure 8).  The minor allele at this SNP (T) was associated 

decreased expression of RPL17-C18ORF32 (a read-through transcript) and increased methylation at 

cg02563971 (assigned to C18ORF32 by Illumina), and both effects were stronger among older 

participants.  Results were similar when analyzing transformed or non-transformed expression and 

methylation data (Supplementary Figure 4).  Among the 5 Bonferroni-significant SNP-age interactions 

for mQTLs, only one (11:118940479 and cg23878202, P=7x10
-7

 for interaction) showed significant SNP-

age interaction for the co-localized eQTL (VPS11).   

 

Figure 8.  A SNP showing interaction with age in relation to both local gene expression (left) and local 

DNA methylation (right).  Expression probe is ILMN3234831 (RPL17-C18ORF32).  The CpG (cg02563971) 

assigned by Illumina to C18orf32.  The P-values for interaction are 9x10
-8

 and 0.03 for the eQTL (n=992) 

and mQTL respectively (n=337).    

 

 

7 
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Discussion 

In this work, we have described the extent to which peripheral blood eQTLs and mQTLs share 

common causal variants using data from a Bangladeshi cohort.  We identified a set of 3,695 eQTL-mQTL 

pairs likely to share a CCV, and we used partial correlation analysis and mediation analysis to assess the 

evidence these pairs of expression and methylation traits are causally related to one another, sharing a 

common biological mechanism.  Among the 3,695 co-localized pairs, we found such evidence for 519 

pairs, with mediation and partial correlation analysis showing highly consistent results.  Our results 

demonstrate widespread co-localization of eQTLs and mQTLs in the human genome and shared 

biological mechanisms.  The approach taken here can be extended to other types of cellular/molecular 

QTLs (e.g., SNPs affecting chromatin features, protein abundance, etc.) in order to enhance our 

understanding of the cascade of regulatory mechanisms by which SNPs can affect gene expression and 

function, which is critical for understanding how SNPs affect human disease. 

The SNP underlying each co-localized eQTL-mQTL pair tended to have opposite effects on 

expression and methylation, consistent with the view that hypo-methylation near the promoter and the 

transcription start site reflects accessible chromatin and active transcription.  However, recent work 

suggests new scenarios in which DNA methylation can also create new binding sites for transcription 

factors, potentially leading to alternative binding sites in the presence of high levels of methylation 
22

.  

This is an interesting possibility, considering a subset of our co-localized eQTL-mQTL pairs appear to a) 

affect expression and methylation in the same direction and/or b) affect multiple CpG sites in opposite 

directions, suggesting a more nuanced relationship between DNA methylation and local gene 

expression. 

Several prior studies have attempted to assess causal relationships among expression and 

methylation features that are associated with a common SNP 
14-17

; however, this is the largest such 
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study to date and the first use of co-localization methods to identify relevant eQTL-mQTL pairs.  Co-

localization is critical for selecting eQTL-mQTL pairs for analyses focused on understanding causal 

relationships, as such analysis make the implicit assumption that eQTLs and mQTLs share common 

causal variant.  The LD between the lead SNPs for the two QTLs is predictive of the probability of a CCV, 

but co-localization analysis allows for quantification of the uncertainty regarding the probability that an 

eQTL and mQTL share a CCV.  For a specific mQTL, choosing a CpG remains a challenge, as an mQTL can 

be associated with increased methylation at one CpG and decreased expression at another, and both 

can co-localize with an eQTL. 

We focus on two approaches for examining evidence that co-localized eQTL-mQTL pairs 

represent causal SNPs that effect both expression and methylation along a common causal pathway.  

The first method, partial correlation analysis, detects correlation between expression and methylation 

that is independent of the regulatory SNP (i.e., residual correlation after adjusting both phenotypes for 

the SNP).  Lack of correlation after adjustment suggests there is not a causal relationship between 

methylation and expression, as correlation is purely driven by SNP effects 
18

.  The second method, 

mediation analysis, is a test for shared phenotypic variance amongst the SNP, transcript, and 

methylation.  Mediation analysis can also be conceived of as a test for attenuation of the SNP-

phenotype relationship after adjusting for a potential mediator.  Mediation can be viewed as a more 

stringent test than partial correlation, as the presence of mediation implies non-zero partial correlation.  

For both of these methods, we must keep in mind that there are limitations for all tests used to assess 

evidence of causality; and these tests cannot be used as definitive evidence of causality for any given 

eQTL-mQTL pair.  For example, for some pairs there could exist hidden confounders that are not well 

captured by the principal components variables we adjust for, and the presence of mediator-outcome 

confounding can introduce bias into mediation analyses 
23

.  In addition, while our Sobel P-values tend to 

favor the SME model over the SEM, we cannot determine the direction of causality for any given pair of 
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expression and methylation traits that appear to be causally related to one another.  In other words, for 

any given pair, it is possible that a) hyper-methylation near the transcription start site makes DNA less 

accessible for transcription factor binding or b) binding site polymorphisms affect transcription initiation 

which then in turn affects chromatin structure, including DNA methylation.   

Less than half of our eQTLs co-localize with an mQTLs, and several factors may contribute to this 

observation.  First, while co-localization analysis does not require the assumption that there is a single 

causal variant, it does require the assumption that all causal variants are shared.  Thus, it is possible that 

the presence of a non-shared causal variant near a shared causal variant may lead one to the incorrect 

conclusion regarding co-localization of the shared variant.  Second, we are likely underpowered to 

detect co-localization when the eQTL and/or eQTL associations are quite weak, as the probability of a 

CCV clearly depends on the strength of the association.  Third, the probability of CCV was systematically 

lower in high LD regions, making it less likely to detect true co-localization in such regions.  Fourth, the 

RNA and DNA samples used for expression and methylation measurements was not obtained from 

identical populations of white blood cells (mononuclear cells vs whole blood, respectively).  PBMCs 

(monocytes, T lymphocytes, B lymphocytes) account for ∼35% of peripheral white blood cells; thus, the 

remaining 65% of peripheral white blood cells (neutrophils, basophils and eosinophils) are represented 

in our DNA methylation data but not in our expression data.  Thus, for co-localized eQTL-mQTL pairs that 

are specific to PMBC subtypes, the mQTL signal may be weak in our data due to the presence of the 

many cell types in whole blood that are not PBMCs.  Lastly, it may be that only a subset eQTLs that 

impact DNA methylation.  In LCLs, for example, it has been reported that only 10-20% of eQTLs are also 

mQTLs 
3
.  eQTL mechanisms that would not necessarily involve local epigenetic alterations include 

effects on mRNA processing or mRNA stability 
18

.   

Among our 3,695 potentially co-localized pairs, <20% showed strong evidence of mediation 

and/or partial correlation, and this apparent discrepancy is likely due, at least in part, to several  factors 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094656doi: bioRxiv preprint 

https://doi.org/10.1101/094656
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

that reduce statistical power.  First, our mediation and partial correlation analyses are likely 

underpowered for many of these tests, which require participants with both expression and DNA 

methylation data.  We have only 316 such individuals.  In light of the strong association we observe 

between the strength of the eQTL and mQTL associations and the P-values for our tests of mediation 

and partial correlation, power is likely to be low for many tests.    Second, the cell type issue above will 

also reduce power to detect mediation and partial correlation, as we are analyzing a mixture of cell 

types in the presence of cell-type-specific QTLs.  The proportion of eQTLs that strongly co-vary with 

mQTLs in this dataset may be lower than would be observed in a study of similar size focused on a 

specific cell type, as our methylation measures capture variation in methylation attributable to many 

different cell types.  Third, considering all transcripts and CpGs are imperfect measures, and the CpG we 

select for analysis is a proxy for some underlying epigenetic state, our power is likely reduced by 

measurement error.  In fact, much of the mediation evidence we detect is “partial mediation” (i.e., 

mediation proportion <1), and we have shown that this is expected when full mediation is present, but 

the mediation measure is error-prone 
21

.   

Additional research is needed to characterize the extent to which co-localized QTLs share 

interactions with age, sex, or environmental factors (GxE).  Sharing GxE would often be expected when 

expression and methylation causally related, thus providing further evidence for a shared biological 

mechanism.  We provide evidence for one such interaction, and understanding such interactions across 

multiple molecular phenotypes can further elucidate mechanisms of gene regulation.  Future studies 

should also considering developing more detailed guidance on how to set priors for co-localization 

analysis, as results are clearly sensitive to choice of priors.  In this work we follow the developer’s 

guidance for setting reasonable priors.  Lastly, future studies should develop methods for combining 

data on multiple CpGs to characterize the effects of SNPs on local methylation and chromatin structure.  

This is important as most mQTLs are associated with multiple CpGs, sometimes in opposing directions.   
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Methods 

 

Study Population 

Subjects included in this work were participants in the Bangladesh Vitamin E and Selenium Trial (BEST) 

24
. BEST is a randomized chemoprevention trial evaluating the long-term effects of vitamin E and 

selenium supplementation on non-melanoma skin cancer risk among 7,000 individuals with arsenic-

related skin lesions living in seven sub-districts in Bangladesh.  Participants included in this work are a 

subset of BEST participants from Araihazar that have available data on genome-wide SNPs and array-

based expression and DNA methylation measures (described below). 

 

Genotyping, Imputation, and Quality Control 

DNA extraction for genotyping was carried out from the whole blood using the QIAamp 96 DNA Blood 

Kit (cat # 51161) from Qiagen, Valencia, USA. Concentration and quality of all extracted DNA were 

assessed using Nanodrop 1000. As starting material, 250 ng of DNA was used on the Illumina Infinium 

HD SNP array according to Illumina's protocol. Samples were processed on HumanCytoSNP-12 v2.1 chips 

with 299,140 markers and read on the BeadArray Reader. Image data was processed in BeadStudio 

software to generate genotype calls. 

Quality control was conducted as described previously for a larger sample of 5,499 individuals 

typed for 299,140 SNPs 
25,26

.   We removed DNA samples w samples with call rates <97% (n = 13), gender 

mismatches (n = 79), as well as technical duplicates (n=53).  We removed and SNPs that were poorly 

called (<90%) or monomorphic (n = 38,753), and then removed SNPs with call rates <95% (n = 1,045) or 

HWE p-values<10
−10

 (n = 1,045).  This QC resulted in 5,354 individuals with high-quality genotype data 

for 257,747 SNPs. The MaCH software 
27

 was used to conduct genotype imputation using 1,000 genomes 

reference haplotypes (including South Asian populations). Only high-quality imputed SNPs (imputation 
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r
2
>0.5) with SNPs with MAF>0.05 were included in this analysis. A subset 1,329 unrelated individuals 

with available data on array-based expression and DNA methylation measures was used for this project.  

Only autosomal SNPs were included in this analysis.  

 

DNA Methylation 

DNA was extracted from whole blood using DNeasy Blood kits (Qiagen, Valencia, CA, USA).  Bisulfite 

conversion was performed using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA). For each 

sample, 500 ng of bisulfite-converted DNA was applied to the Illumina HumanMethylation 450K 

BeadChip kit (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol, enabling 

interrogation of 482,421 CpG sites and 3,091 non-CpG sites per sample.  This array contains an average 

of 17 CpG sites per gene, distributed across the promoter, 5` UTR, first exon, gene body and 3’ UTR, 

covering 99% of RefSeq genes.    

Methylation status at each CpG is expressed as a β value that can range from 0 (unmethylated) 

to 1 (completely methylated).  Data were quantile normalized.  Among the 413 participants, we 

excluded 6 samples for which the reported sex of the participant did not correspond with predicted sex 

based on methylation patterns of the X and Y chromosomes, and 7 samples with > 5% of CpGs either 

containing missing values or having p for detection > 0.05. This resulted in 400 samples with quality 

methylation data.  We removed probes mapping to multiple locations (41,937) and probes with SNPs 

(20,869) according to Price et al.  Individual β values with a p for detection > 0.05 were set to missing, 

and we excluded probes if >10% of beta values were missing (1,636).  We also excluded probes on the X 

(11,232) and Y (416) chromosomes, probes with missing chromosome data (mostly control probes, 65), 

and probes with > 10% missing data across samples (1,932); this resulted in a total of 423,604 probes 

available for analysis.   β values were logit transformed and adjusted for batch variability using ComBat 

software 
28

. Based on 11 samples run in duplicate across two different plates in these experiments, the 
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average inter-assay Spearman correlation coefficient was 0.987 (range, 0.974–0.993).  There were six 

individuals excluded whose self-reported sex did not match their sex based on methylation data, 

resulting in 407 individuals with high quality methylation data.   

 

Gene Expression 

RNA was extracted from PBMCs, preserved in buffer RLT, and stored at −86°C using RNeasy Micro Kit 

(cat# 74004) from Qiagen, Valencia, USA. Concentration and quality of RNA samples were assessed on 

Nanodrop 1000. cRNA synthesis was done from 250 ng of RNA using Illumina TotalPrep 96 RNA 

Amplification kit. As recommended by Illumina we used 750 ng of cRNA on HumanHT-12-v4 for gene 

expression. Expression data were quantile normalized and log2 transformed. The chip contains a total of 

47,231 probes covering 31,335 genes. There were 1,825 unique individuals in both expression data and 

SNP data. For the vast majority of participants, between 30% and 47% of probes had detection P values 

<0.05. However, 26 individuals had>30% of probes with detection p-value <0.05, and these outlying 

individuals were excluded from the analysis, leaving an analysis sample size of 1,799. For this analysis, 

no probes were excluded based on detection P-values. 

 

Eligibility for analyses 

The participants and workflow are described in Figure 1 and Supplementary Figure 1.  Participants 

included in eQTL analyses included 992 participants with available SNP data and expression data who 

were unrelated to other participants based on an estimated coefficient of relationship <0.08.  

Participants included in mQTL analyses included 337 participants with available SNP data and DNA 

methylation data who were unrelated to other participants based on an estimated kinship coefficient of 

<0.08.  These samples used for eQTL and mQTL analyses were entirely independent (i.e., non-

overlapping participants), which is a requirement for using co-localization methods 
19

.  Among the 337 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094656doi: bioRxiv preprint 

https://doi.org/10.1101/094656
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

participants included in mQTL analyses, 316 of these participants also had expression data (which was 

not used for eQTL analyses), and these 316 participants were used for mediation analyses, Bayesian 

network analyses, and partial correlation analyses.   

 

eQTL and mQTL analyses 

Prior to analysis, expression values were log transformed and methylation beta values were logit-

transformed and adjusted for potential batch/chip effects.  Linear regression implemented in the 

matrix-eQTL software package 
29

 was used to conduct genome-wide cis-eQTL and and cis-mQTL 

analyses. Cis associations were tested for SNPs and probes <500 Mb apart. For both the cis-eQTL and 

mQTL analyses, we used an FDR of 0.01 to report significant associations (using the Benjamini and 

Hochberg method).  In addition to adjusting for age and sex, we included 80 expression PCs in our eQTL 

analyses and 10 methylation PCs in our mQTL analyses, and these were selected to maximize the 

number of cis signals detected 
21

.  Lead eSNPs and mSNPs for each eGene and mCpG, respectively, were 

defined as the SNP with the smallest P-value.   

 

Identification of eQTL-mQTL pairs that potentially share a common causal variant 

Our workflow for identifying co-localized eQTL/mQTL pairs (sharing a common causal variant) is shown 

in Supplementary Figure 1.  For our eQTL results, we first restricted to lead SNPs for each eProbe.  Using 

the mQTL results, we then identified CpGs that were also associated with a lead eSNP.  Because clusters 

of CpGs are often correlated and influenced by the same cis-variation 
30

, we pruned our list of CpG 

probes to reduce this redundancy.  We pruned by first identifying CpGs that were associated with the 

same SNP, and kept only the CpG whose lead mSNP had the highest LD with a lead eSNP.   We required 

each expression probe to be in a pair with only one CpG, the CpG whose lead mSNP was in the strongest 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094656doi: bioRxiv preprint 

https://doi.org/10.1101/094656
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

LD with the expression probe’s lead eSNP.  This workflow resulted in 7,656 eProbe-CpG pairs showing 

association with a common SNP and able to be tested for colocaliation.   

 

Co-localization analysis 

To assess the probability that cis-mQTLs and cis-eQTLs residing in the same genomic location were due 

to the same (single) causal variant, we applied a Bayesian test for co-localization 
19

 to all co-occurring 

eQTL-mQTL pairs, in order to estimate the probability that each QTL pair were due to the same causal 

variant.  The Bayesian co-localization requires specifying a prior probability for a SNP being associated 

with trait 1 (p1), trait 2 (p2), and both traits (p12).   We used a prior probability (p) of 10
-4

 for a SNP being 

associated with the expression trait (p1=10
-4

) and a SNPs being associated with a methylation trait 

(p2=10
-4

), as recommended by the developers.   Following the developer’s approach 
19

, we varied the 

value of p12 (10
-5

, 10
-6

, and 10
-7

) in order to evaluate the sensitivity of the results to the prior.  Our p12 

values of 10
-5

, 10
-6

, and 10
-7

 are interpreted as 1 in 10, 1 in 100, and 1 in 1000 probability that a SNP 

associated with expression is also associated with methylation (or vice versa).  

 

Partial Correlation Analysis 

Using our set of 3,695 potentially co-localized eQTL-mQTL pairs, we used data on 316 genotyped 

individuals with both expression and methylation data to conduct partial correlation analysis 
18

.  We first 

calculated the Pearson correlation coefficient between the expression probe and the methylation probe 

(both adjusted for expression and methylation PCs, respectively, as described above).  We then 

regressed both the methylation probe and the expression probe on the lead SNP, and took the residuals 

from these regressions to obtain expression and methylation values that lack the phenotypic variance 

due to the effect of the SNP.   We then compare the correlation coefficient before SNP adjustment vs. 

after SNP adjustment to test the independence of the eSNP on methylation/expression. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2016. ; https://doi.org/10.1101/094656doi: bioRxiv preprint 

https://doi.org/10.1101/094656
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

 

Mediation Analysis Methods 

Using our set of 3,695 potentially co-localized eQTL-mQTL pairs, we used data on 316 genotyped 

individuals with both expression and methylation data to conduct tests of mediation for two 

hypothesized pathways:  1) SNP -> Methylation -> Expression (“SME”) and 2) SNP -> Expression -> 

Methylation (“SEM”).  Mediation analysis was conducted as follows:  For all lead eSNP, the cis-eQTL 

association was re-estimated, adjusting for methylation of the CpG (and vice versa).  The difference 

between the beta coefficients before and after adjustment for the cis probe was expressed as the 

“proportion of the total effect that is mediated” (i.e., % mediation), calculated as (βunadj – βadj)/ βunadj
31

, 

with βunadj and βadj known as the total effect the direct effect, respectively.  All regressions were adjusted 

for expression and methylation PCs.  The Sobel P-value for mediation 
32

 was calculated by first 

estimating the cis-eQTL association adjusting for methylation (and vice versa): 

0 1cis adj SNP cis iY G Xβ β β ε= + + +  

We then estimated the eSNP’s association with the potentially mediator: 

0 2cis SNP iX Gβ β ε= + +  

The P-value was then estimated by comparing this following t statistic to a normal distribution: 

1 2 /t SEβ β=  

2 1

2 2 2 2
1 2SE β ββ σ β σ= +  

where SE is the pooled standard error term calculated from the above beta coefficients and their 

variances.  β1 β2 is often referred to as the indirect effect.   

 

Mediation analysis of simulated data 
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Using data on a bi-allelic SNP (G) for 316 participants (same sample sizes as our analyses), we simulated 

data on a molecular phenotype (X) as a randomly generated standard normal variable with a linear 

effect exerted by the SNP 

�� � ����� � ���    �	
�   ���  ~ 
�0,1�. 

X served as a mediator for the effect of the SNP on a second molecular phenotype (Y), which was 

generated as a standard normal variable with a linear effect exerted by the (X).   

�� � ����� � ���    �	
�   ���  ~ 
�0,1�. 

The variance in the mediator (X) explained by the SNP was varied from 0.01 to 0.75.  The magnitude of 

the effect of the mediator on the second molecular phenotype (βXY) was varied from 0.01 to 0.75.  We 

then used mediation analysis methods described in the section above to obtain a Sobel P-value and an 

estimate of the % mediation.  These analyses were conducted in two ways:  using X as the mediator and 

using Y as the mediator.   
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