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biallelic markers in arbitrarily many populations

Nicolas Alcala and Noah A. Rosenberg
Department of Biology, Stanford University, Stanford, CA 94305-5020, USA

ABSTRACT FST is one of the most widely used statistics in population genetics. Recent mathematical studies have
identified constraints on FST that challenge interpretations of FST as a measure with potential to range from 0 for
genetically similar populations to 1 for divergent populations. We generalize results obtained for population pairs to
arbitrarily many populations, characterizing the mathematical relationship between FST , the frequency M of the more
frequent allele at a polymorphic biallelic marker, and the number of subpopulations K. We show that for fixed K, FST has
a peculiar constraint as a function of M, with a maximum of 1 only if M = i/K for integers i with dK/2e ≤ i ≤ K− 1. For
fixed M, as K grows large, the range of FST becomes the full closed or half-open unit interval. For fixed K, however, some
M < (K− 1)/K always exists at which the upper bound on FST is constrained to be below 2

√
2− 2 ≈ 0.8284. In each of

three migration models—island, rectangular stepping-stone, and linear stepping-stone—we use coalescent simulations to
show that under weak migration, FST depends strongly on the allele frequency M when K is small, but not when K is
large. Finally, using data on human genetic variation, we employ our results to explain the generally smaller FST values
between pairs of continents relative to global FST values. We discuss implications for the interpretation and use of FST .
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GENETIC differentiation, in which individuals from the same
subpopulation are more genetically similar than are indi-

viduals from different subpopulations, is a central concept in
population genetics. It can arise from a large variety of pro-
cesses, including from aspects of the physical environment such
as geographic barriers and variable permeability to migrants, as
well as from biotic phenomena such as assortative mating and
self-fertilization. Genetic differentiation among populations is
thus a pervasive feature of population-genetic variation.

To measure genetic differentiation, Wright (1951) introduced
the fixation index FST , defined as the “correlation between ran-
dom gametes, drawn from the same subpopulation, relative to the
total.” Many definitions of FST and related statistics have since
been proposed (reviewed by Holsinger and Weir 2009). For a
polymorphic biallelic marker, FST is often defined as a ratio of
among-subpopulation variance σ2

S in the frequency of a specific
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allele A to the “total variance” σ2
T (Weir 1996):

FST =
σ2

S
σ2

T
. (1)

Denoting by pk the frequency of allele A in subpopulation k and
by M the mean frequency of allele A across all K subpopula-
tions, σ2

S is defined as the variance of pk across subpopulations,
σ2

S = 1
K ∑K

k=1(pk −M)2. The total variance σ2
T is defined as the

variance in an indicator of allelic state for an allele randomly
drawn from the entire population, in other words, the variance
of a Bernoulli variable with mean M, σ2

T = M(1−M). Because
by assumption the locus is polymorphic, M 6= 1 and σ2

T > 0.
FST and related statistics have a wide range of applications.

For example, FST is used as a descriptive statistic whose values
are routinely reported in empirical population-genetic studies
(Holsinger and Weir 2009). It is employed as a test statistic for
spatially divergent selection, either acting on a locus (Lewontin
and Krakauer 1973; Bonhomme et al. 2010) or, using compar-
isons to a corresponding phenotypic statistic QST , on a trait
(Leinonen et al. 2013). FST is also used as a summary statistic for
demographic inference, to measure gene flow between subpopu-
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Table 1 Studies describing the mathematical constraints on FST . HS and HT denote the within-subpopulation and total heterozy-
gosities, respectively, δ denotes the absolute difference in the frequency of a specific allele between two subpopulations, and M
denotes the frequency of the most frequent allele.

Reference Number of alleles Number of subpopulations Variable in terms of which constraints
are reported∗

Hedrick 1999 unspecified value ≥ 2 ∞ HS

Long and Kittles 2003 unspecified value ≥ 2 fixed finite value ≥ 2 HS

Rosenberg et al. 2003 2 2 δ

Hedrick 2005 unspecified value ≥ 2 fixed finite value ≥ 2 HS

Maruki et al. 2012 2 2 HS, M

Jakobsson et al. 2013 unspecified value ≥ 2 2 HT , M

Edge and Rosenberg 2014 fixed finite value ≥ 2 2 HT , M

This paper 2 fixed finite value ≥ 2 M
∗Instead of heterozygosities HS or HT , some studies consider homozygosities JS = 1− HS or JT = 1− JT .

lations (Slatkin 1985), or via approximate Bayesian computation,
to estimate demographic parameters (Cornuet et al. 2008).

Applications of FST generally assume that values near 0 indi-
cate that there are almost no genetic differences among subpop-
ulations, and that values near 1 indicate that subpopulations are
genetically different (Hartl and Clark 1997; Frankham et al. 2002;
Holsinger and Weir 2009). Mathematical studies, however, have
challenged the simplicity of this interpretation, commenting that
the range of values that FST can take is considerably restricted
by the allele frequency distribution (Table 1). Such studies have
highlighted a direct relationship between allele frequencies and
constraints on the range of FST , through functions of the allele
frequency distribution such as the mean heterozygosity across
subpopulations, HS. The maximal FST has been shown to de-
crease as a function of HS, both for an infinite (Hedrick 1999)
and for a fixed finite number of subpopulations K ≥ 2 (Long and
Kittles 2003; Hedrick 2005). Consequently, if subpopulations dif-
fer in their alleles but separately have high heterozygosity, then
HS can be high and FST can be low; FST can be near 0 even if
subpopulations are completely genetically different in the sense
that no allele occurs in more than one subpopulation.

Detailed mathematical results have clarified the relationship
between allele frequencies and FST in the case of K = 2 sub-
populations. Considering a biallelic marker, Maruki et al. (2012)
evaluated the constraint on FST by the frequency M of the most
frequent allele: the maximal FST decreases monotonically from
1 to 0 with increasing M, 1

2 ≤ M < 1. Jakobsson et al. (2013)
extended this result to multiallelic markers with an unspecified
number of distinct alleles, showing that the maximal FST in-
creases from 0 to 1 as a function of M when 0 < M < 1

2 , and
decreases from 1 to 0 when 1

2 ≤ M < 1 in the manner reported
by Maruki et al. (2012). Edge and Rosenberg (2014) generalized
these results to the case of a fixed finite number of alleles, show-
ing that the maximal FST differs slightly from the unspecified
case when the fixed number of distinct alleles is odd.

In this study, we characterize the relationship between FST
and the frequency M of the most frequent allele, for a biallelic
marker and an arbitrary number of subpopulations K. We de-
rive the mathematical upper bound on FST in terms of the fre-
quency M of the most frequent allele, extending the biallelic

2-subpopulation result to arbitrary K. To assist in interpreting
the bound, we simulate the joint distribution of FST and M in
three migration models, describing its properties as a function
of the number of subpopulations and the migration rate. The
K-population upper bound on FST as a function of M facilitates
an explanation of counterintuitive aspects of global human ge-
netic differentiation. We discuss the importance of the results
for applications of FST more generally.

Mathematical constraints

Model
Our goal is to derive the range of values FST can take—the lower
and upper bounds on FST—as a function of the frequency M of
the most frequent allele for a biallelic marker when the number
of subpopulations K is a fixed finite value greater than or equal
to 2. We consider a polymorphic locus with two alleles, A and a,
in a setting with K subpopulations contributing equally to the
total population. We denote the frequency of allele A in subpop-
ulation k by pk. The frequency of allele a in subpopulation k is
1− pk. Each allele frequency pk lies in the interval [0, 1].

The mean frequency of allele A across the subpopulations
is M = 1

K ∑K
k=1 pk, and the mean frequency of allele a is 1−M.

Without loss of generality, we assume that allele A is the more
frequent allele in the total population, so that M ≥ 1

2 ≥ 1−M.
Because by assumption the locus is polymorphic, M 6= 1.

We assume that the allele frequencies M and pk are paramet-
ric allele frequencies of the total population and subpopulations,
and not estimated values computed from data. For simplicity,
we hereafter refer to FST as F.

F as a function of M

Eq. 1 expresses F as a ratio of among-subpopulation variance, σ2
S ,

to total variance in allele frequency, σ2
T . We can write F in terms

of allele frequencies by substituting σ2
S and σ2

T in eq. 1 with their
respective expressions in terms of allele frequencies:

F =

1
K

K
∑

k=1
(pk −M)2

M(1−M)
, (2)
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where pk ranges in [0, 1] and M ranges in [ 1
2 , 1).

Note that this expression is equivalent to the expression for
FST in the GST framework of Nei (1973), also used in eq. 1 of
Jakobsson et al. (2013) and eq. 1 of Edge and Rosenberg (2014). In
that context, GST is written in terms of a ratio of the mean within-
subpopulation heterozygosity, HS = 1− 1

K ∑K
k=1[p

2
k + (1− pk)

2],
to the total heterozygosity, HT = 1− [M2 + (1−M)2]:

GST = 1− HS
HT

. (3)

Simplifying eq. 2 by noting that ∑K
k=1 pk = KM leads to:

F =

(
1
K

K
∑

k=1
p2

k

)
−M2

M(1−M)
. (4)

For fixed M, we seek the vectors (p1, p2, . . . , pK), with pk ∈ [0, 1]
and 1

K ∑K
k=1 pk = M, that minimize and maximize F.

Lower bound

From eq. 4, for all M ∈ [ 1
2 , 1), setting pk = M in all subpopu-

lations k yields F = 0. The Cauchy-Schwarz inequality guar-
antees that K ∑K

k=1 p2
k ≥ (∑K

k=1 pk)
2, with equality if and only if

p1 = p2 = . . . = pK . Hence, K ∑K
k=1 p2

k = (∑K
k=1 pk)

2, or, divid-
ing both sides by K2, 1

K ∑K
k=1 p2

k = M2, requires p1 = p2 = . . . =
pK = M. Examining eq. 4, (p1, p2, . . . , pK) = (M, M, . . . , M) is
thus the only vector that yields F = 0. We can conclude that the
lower bound on F is equal to 0 irrespective of M, for any value
of the number of subpopulations K.

Upper bound
To derive the upper bound on F in terms of M, we must maxi-
mize F in eq. 4, assuming that M and K are constant. Because
all terms in eq. 4 depend only on M and K except the positive
term ∑K

k=1 p2
k in the numerator, maximizing F corresponds to

maximizing ∑K
k=1 p2

k at fixed M and K.
Denote by bxc the greatest integer less than or equal to x, and

by {x} = x− bxc the fractional part of x. Using a result from
Rosenberg and Jakobsson (2008), Theorem 1 from Appendix A
states that the maximum for ∑K

k=1 p2
k satisfies

K

∑
k=1

p2
k ≤ bKMc+ {KM}2, (5)

with equality if and only if allele A has frequency 1 in bKMc
subpopulations, frequency {KM} in a single subpopulation, and
frequency 0 in all other subpopulations. Substituting eq. 5 into
eq. 4, we obtain the upper bound for F:

F ≤ bKMc+ {KM}2 − KM2

KM(1−M)
. (6)

The upper bound on F in terms of M has a piecewise structure,
with changes in shape occurring when KM is an integer.

For i = bK/2c, bK/2c+ 1, . . . , K− 1, define the interval Ii by
[ 1

2 , i+1
K ) for i = bK/2c in the case that K is odd and by [ i

K , i+1
K )

for all other (i, K). For M ∈ Ii, bKMc has a constant value i.
Writing x = KM− bKMc = KM− i so that M = i+x

K , for each
interval Ii, the upper bound on F is a smooth function

Qi(x) =
K(i + x2)− (i + x)2

(i + x)(K− i− x)
, (7)

where x lies in [0, 1) (or in [ 1
2 , 1) for odd K and i = bK/2c), and

i lies in [b K
2 c, K− 1].

The conditions under which the upper bound is reached
illuminate its interpretation. The maximum requires the most
frequent allele to have frequency 1 or 0 in all except possibly
one subpopulation, so that the locus is polymorphic in at most
a single subpopulation. Thus, F is maximal when fixation is
achieved in as many subpopulations as possible.

Figure 1 shows the upper bound on F in terms of M for
various values of K. It has peaks at values i

K , where it is possible
for the allele to be fixed in all K subpopulations and for F to
reach a value of 1. Between i

K and i+1
K , the function reaches

a local minimum, eventually decreasing to 0 as M approaches
1. The upper bound is not differentiable at the peaks, and it is
smooth and strictly below 1 between the peaks. If K is even, the
upper bound begins from a local maximum at M = 1

2 , whereas
if K is odd, it begins from a local minimum at M = 1

2 .

Properties of the upper bound
Local maxima. We explore properties of the upper bound on F
as a function of M for fixed K by examining the local maxima
and minima. The upper bound is equal to 1 on interval Ii if
and only if the numerator and denominator in eq. 7 are equal.
Noting that K ≥ 2, this condition is equivalent to x2 = x and
hence, because 0 ≤ x < 1, x = {KM} = 0. Thus, on interval Ii
for M, the maximal F is 1 if and only if KM is an integer.

KM has exactly b K
2 c integer values for M ∈ [ 1

2 , 1). Con-
sequently, given K, there are exactly b K

2 c maxima at which
F can equal 1, at M = K+1

2K , K+3
2K , . . . , 2K−2

2K if K is odd and at
M = K

2K , K+2
2K , . . . , 2K−2

2K if K is even.
This analysis finds that F is only unconstrained within the

unit interval for a finite set of values of the frequency M of
the most frequent allele. The size of this set increases with the
number of subpopulations K.

Local minima. Equality of the upper bound at the right endpoint
of each interval Ii and the left endpoint of Ii+1 for each i from
b K

2 c to K− 2 demonstrates that the upper bound on F is a con-
tinuous function of M. Consequently, local minima necessarily
occur between the local maxima. If K is even, then the upper
bound on F possesses K

2 − 1 local minima, each inside an inter-
val Ii, i = K

2 , K
2 + 1, . . . , K−2. If K is odd, then the upper bound

has K−1
2 local minima, the first in interval [ 1

2 , K+1
2K ), and each of

the others in an interval Ii, with i = K+1
2 , K+3

2 , . . . , K− 2. Note
that because we restrict attention to M ∈ [ 1

2 , 1), we do not count
the point at M = 1 and F = 0 as a local minimum.

Theorem 2 from Appendix B describes the relative positions
of the local minima within intervals Ii, as a function of the num-
ber of subpopulations K. From Proposition 1 of Appendix B,
for fixed K, the relative position of the local minimum within
interval Ii increases with i; as a result, the leftmost dips in the
upper bound (those near M = 1

2 ) are less tilted toward the right
endpoints of their associated intervals than are the subsequent
dips (nearer M = 1). The unique local minimum in interval Ii
lies either exactly at M = i+1/2

K = 1
2 for the leftmost dip for odd

K (Proposition 2)—or slightly to the right of the midpoint i+1/2
K

of interval Ii in other intervals, but no farther from the center
than M = i+2−

√
2

K ≈ i+0.5858
K (Proposition 3).

The values of the upper bound on F at the local minima as
a function of i are computed in Appendix B (eq. B.5) by sub-
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Figure 1 Bounds on F as a function of the frequency of the most frequent allele, M, for different numbers of subpopulations K. (A)
K = 2. (B) K = 3. (C) K = 7. (D) K = 10. (E) K = 40. The shaded region represents the space between the upper and lower bounds
on F. The upper bound is computed from eq. 6; for each K, the lower bound is 0 for all values of M.

stituting the positions M of the local minima into eq. 6. From
Proposition 4 of Appendix B, for fixed K, the value of F at the lo-
cal minimum in interval Ii decreases as i increases. The maximal
F among local minima increases as K increases (Proposition 5).
The upper bound on F at the local minimum closest to M = 1

2
tends to 1 as K → ∞ (Proposition 5). The upper bound on F at
the local minimum closest to M = 1, however, is always smaller
than 2

√
2− 2 ≈ 0.8284 (Proposition 6).

In conclusion, although F is constrained below 1 for all values
of M in the interior of intervals Ii = [ i

K , i+1
K ), the constraint is re-

duced as K → ∞ and in the limit, it even completely disappears
in the interval Ii closest to M = 1

2 . Nevertheless, there always
exists a value of M < K−1

K for which the upper bound on F is
lower than 2

√
2− 2 ≈ 0.8284.

Mean range of possible F values. We now evaluate how
strongly M constrains the range of F as a function of the number
of subpopulations K. To do so, we compute the mean maximum
F across all possible M values. This quantity, denoted A(K),
corresponds to the area between the lower and upper bounds
on F as a function of M divided by the length of the domain
of possible M values, 1

2 . Small values of A(K) near 0 indicate
a strong constraint, whereas large A(K) values near 1 indicate
that for all M, F can range over most of the interval from 0 to 1.
A(K) can also be interpreted as the mean maximum F attainable
when M is uniformly distributed between 1

2 and 1.

Because the lower bound on F is 0 for all M between 1
2 and

1, A(K) corresponds to the area under the upper bound on F
divided by 1

2 , or twice the integral of eq. 6 between 1
2 and 1:

A(K) = 2
1∫

M= 1
2

bKMc+ {KM}2 − KM2

KM(1−M)
dM. (8)

To compute A(K), we break the integral into a sum of integrals
over intervals Ii. If K is even, then we consider intervals Ii =
[ i

K , i+1
K ), with i = K

2 , K
2 + 1, . . . , K − 1. If K is odd, then we

use the sum of integrals over intervals I = [ 1
2 , K+1

2K ) and Ii =

[ i
K , i+1

K ), with i = K+1
2 , K+3

2 , . . . , K− 1.
By construction of Qi(x) (eq. 7), in each interval Ii, the upper

bound on F is equal to Qi(x), with x = {KM}. In the odd
case, because K+1

2 is an integer, on interval [ 1
2 , K+1

2K ), bKMc has
a constant value K−1

2 and {KM} = KM− K−1
2 , and the upper

bound is equal to Q K−1
2
(x). Making the substitution x = KM− i,

we obtain dx = K dM and we can write eq. 8 in terms of Qi(x):

A(K)=



2
K

K−1

∑
i= K

2

1∫
0

Qi(x) dx, K even

2
K

( 1∫
1
2

Q K−1
2
(x) dx+

K−1

∑
i= K+1

2

1∫
0

Qi(x) dx
)

, K odd.

(9)

The integral is computed in Appendix C. We obtain, for both
even and odd K:

A(K) = 1− K + 2(K+1) ln K− 4
K

K

∑
i=2

i ln i. (10)

We also compute an asymptotic approximation Ã(K) of eq. 10
in Appendix C, producing the asymptotic relationship

A(K) ∼ Ã(K), (11)

where

Ã(K) = 1− ln K
3K
− 4 ln C

K
. (12)

Here, C ≈ 1.2824 represents the Glaisher-Kinkelin constant.
For K = 2, A(K) = 2 ln 2− 1 ≈ 0.3863, in accord with the K =

2 case of Jakobsson et al. (2013). Interestingly, the constraint on
the mean range of F disappears as the number of subpopulations
K → ∞. Indeed, from eqs. 11 and 12, we immediately see that
limK→∞ A(K) = 1 (Figure 2). As a mean of 1 indicates that F
ranges from 0 to 1 for all values of M (except possibly on a set of
measure 0), for large K, the range of F is approximately invariant
with respect to the mean allele frequency M.

The increase of A(K) with K is monotonic, as demonstrated in
Theorem 3 from Appendix C. By numerically evaluating eq. 10,
we find that although A(2) ≈ 0.3863, for K ≥ 7, A(K) exceeds
0.75, and for K ≥ 46, A(K) exceeds 0.95. Nevertheless, although
the mean of the upper bound on F approaches 1, we have shown
in Proposition 6 from Appendix B that for large K, values of M
continue to exist at which the upper bound on F is constrained
substantially below 1.

Evolutionary processes and the joint distribution of M
and F for a biallelic marker and K subpopulations

To illustrate the mathematical properties of F in the context of
evolutionary models, we simulated the joint distribution of F
and M under simple biological scenarios, and compared this
distribution to the mathematical bounds on F. This analysis con-
siders allele frequency distributions generated by evolutionary
models, rather than treating M as uniformly distributed in [ 1

2 , 1).
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Figure 2 The mean A(K) of the upper bound on F over the
interval M ∈ [ 1

2 , 1), as a function of the number of subpop-
ulations K. A(K) is computed from eq. 10 (black line). The
approximation Ã(K) is computed from eq. 12 (gray dashed
line). A numerical computation of the relative error of the ap-
proximation as a function of K, |A(K)− Ã(K)|/A(K), finds
that the maximal error for 2 ≤ K ≤ 1000 is 0.00174, achieved
when K = 2. The x-axis is plotted on a logarithmic scale.

Simulations
We simulated independent single-nucleotide polymorphisms
under the coalescent, using the software MS (Hudson 2002). We
considered a population of total size KN diploid individuals
subdivided into K subpopulations of equal size N. At each
generation, a proportion m of the individuals in a subpopulation
originated from another subpopulation, with the subpopulations
of origin determined by the migration model. Thus, the scaled
migration rate is 4Nm, and it corresponds to twice the number
of individuals in a subpopulation that originate elsewhere.

We considered three migration models (Figure 3), the finite
island model (Maruyama 1970; Wakeley 1998) and the finite
rectangular and linear stepping-stone models (Maruyama 1970;
Wilkinson-Herbots 1998). In the island model, migrants have
the same probability m

K−1 to come from any other subpopulation.
In the rectangular stepping-stone model, subpopulations are
arranged on a rectangular bounded habitat. Each subpopulation
receives migrants from each adjacent subpopulation with the
same probability. Subpopulations not on the habitat boundaries
receive migrants at the same rate m

4 from each of four adjacent
subpopulations; subpopulations on habitat edges receive mi-
grants from each of three adjacent subpopulations at rate m

3 ;
subpopulations at vertices receive migrants from each of two
adjacent subpopulations at rate m

2 . In the linear stepping-stone
model, subpopulations are arranged along a linear bounded
habitat. Each subpopulation receives migrants from each ad-
jacent subpopulation at the same rate. We consider reflecting
boundaries, so that interior subpopulations receive migrants
at rate m

2 from each of two adjacent subpopulations, whereas
subpopulations at habitat boundaries receive migrants from a
single adjacent subpopulation at rate m.

We examined three values of K: 2, 7, and 40. For K = 2, all
three migration models are equivalent. Under the rectangular
stepping-stone model, for K = 7, we considered a habitat of
4× 2 subpopulations with one subpopulation missing at the
edge (Figure 3B); for K = 40, we considered an 8× 5 habitat. We
used three values of 4Nm: 0.1, 1, and 10. Note that under the
coalescent model in MS, time is scaled in units of 4N generations,
so there is no need to specify the subpopulation sizes N. To
obtain independent SNPs, we used the MS command -s to fix
the number of segregating sites to 1. For each parameter pair
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Figure 3 Three migration models. (A) Island model. (B) Rect-
angular stepping-stone model. (C) Linear stepping-stone
model. Quantities on the arrows represent the backward mi-
gration rates between pairs of subpopulations.

(K, 4Nm), we performed 100,000 replicate simulations, sampling
100 sequences per subpopulation in each replicate. F values were
computed from the parametric allele frequencies.

Fixing the number of segregating sites to 1 and accepting all
coalescent genealogies entails an implicit assumption that all
genealogies have equal potential to produce exactly one segre-
gating site. We therefore also considered a different approach to
generating SNPs; instead of fixing the number of SNPs to 1, we
assumed an infinitely-many-sites model with a specified scaled
mutation rate θ, discarding simulations leading to more than 1
segregating site. We chose θ so that the expected number of seg-
regating sites in a constant-sized population—S = ∑KN−1

i=1
θ
i —

was 1. This approach produces similar results to the fixed-S
simulation (Figure S1). MS commands appear in File S1.

Weak migration in the island model
Under the island model with weak migration (4Nm = 0.1), the
joint distribution of M and F is highest near the upper bound on
F in terms of M, for all K (Figure 4A-C). For K = 2, most SNPs
have M near 0.5, representing fixation of the major allele in one
subpopulation and absence in the other, and F near 1 (orange
and red areas in Figure 4A). The mean F in sliding windows
for M closely follows the upper bound on F in terms of M. For
K = 7, most SNPs have M near 4

7 , 5
7 , or 6

7 , representing fixation
of the major allele in 4, 5, or 6 subpopulations and absence in
the other subpopulations, and F ≈ 1 (Figure 4B). The mean F
closely follows the upper bound on F. For K = 40, most SNPs
either have M near 37

40 , 38
40 , or 39

40 , and F ≈ 1, or M < 37
40 and

F ≈ 0.92 (Figure 4C). The mean F follows the upper bound on
F for M > 37

40 . For M < 37
40 , it lies below the upper bound and

does not possess the peaks characteristic of the upper bound.
Coalescent theory provides a framework to understand these

observations. Wakeley (1999) showed that in the limit in which
the migration rate is much lower than the coalescence rate (i.e.,
4Nm � 1), coalescence follows two phases. In the scattering
phase, lineages coalesce in each subpopulation, leading to a state
with a single lineage per subpopulation. In the collecting phase,
lineages from different subpopulations coalesce. As a result,
considering K subpopulations with equal sample size n, when
4Nm� 1, genealogies tend to have K long branches close to the
root, each corresponding to a subpopulation and each leading
to n shorter terminal branches. These K long branches coalesce
as pairs of them accumulate by migration in shared ancestral
subpopulations. A random mutation on such a genealogy is
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Figure 4 Joint density of the frequency M of the most frequent
allele and F in the island model, for different numbers of sub-
populations K and scaled migration rates 4Nm (where N is
the subpopulation size and m the migration rate). (A) K = 2,
4Nm = 0.1. (B) K = 7, 4Nm = 0.1. (C) K = 40, 4Nm = 0.1. (D)
K = 2, 4Nm = 1. (E) K = 7, 4Nm = 1. (F) K = 40, 4Nm = 1.
(G) K = 2, 4Nm = 10. (H) K = 7, 4Nm = 10. (I) K = 40,
4Nm = 10. The black solid line represents the upper bound
on F in terms of M (eq. 6); the red dashed line represents the
mean F in sliding windows of M of size 0.02 (plotted from 0.51
to 0.99). Colors represent the density of SNPs, estimated us-
ing a Gaussian kernel density estimate with a bandwidth of
0.007, with density set to 0 outside of the bounds. SNPs are
simulated using coalescent software MS, assuming an island
model of migration and conditioning on 1 segregating site.
See Figure S1 for an alternative algorithm to simulating SNPs.
Each panel considers 100,000 replicate simulations, with 100
lineages sampled per subpopulation.

likely to occur in one of two places. It can occur on a long branch
during the collecting phase, in which case the derived allele
will have a frequency of 1 in all subpopulations whose lineages
descend from the branch, and 0 in the other subpopulations.
Alternatively, it can occur toward the terminal branches in the
scattering phase, in which case the mutation will be at frequency
pk > 0 in a single subpopulation, and at frequency 0 in all
others. These scenarios that are likely under weak migration—
in which one of the alleles is fixed in some subpopulations or
present only in a single subpopulation—correspond closely to
conditions under which the upper bound on F is reached at
fixed M. Thus, the properties of likely genealogies under weak
migration explain the proximity of F to its upper bound.

Intermediate migration in the island model
Under the island model with intermediate migration (4Nm = 1),
for all K, the joint density of M and F is highest at lower values
of F than in the case of weak migration (Figure 4D-F). For K = 2,
most SNPs have M > 0.8, and the mean F in sliding windows
for M is almost equidistant from the upper and lower bounds on
F in terms of M, nearing the upper bound as M increases (Figure
4D). For K = 7, most SNPs have M > 0.9; as was seen for K = 2,
the mean F in sliding windows for M is almost equidistant from
the upper and lower bounds on F, moving toward the upper
bound as M increases (Figure 4E). For K = 40, the pattern is
comparable, most SNPs having M > 0.95 (Figure 4F).

With intermediate migration, migration is sufficient that more
mutations than in the weak-migration case generate polymor-
phism in multiple subpopulations. A random mutation is likely
to occur on a branch that leads to many terminal branches from
the same subpopulation, but also to branches from other subpop-
ulations. Thus, the allele is likely to have intermediate frequency
in multiple subpopulations. This configuration does not gener-
ate the conditions under which the upper bound on F is reached,
so that except at the largest M, intermediate migration leads to
values that are not as close to the upper bound as in the weak-
migration case. For large M, the rarer allele is likely to be only
in one subpopulation, so that F is nearer to the upper bound.

Strong migration in the island model
With strong migration (4Nm = 10), the joint density of M and
F nears the lower bound on F in terms of M (Figure 4G-I). For
each choice of K, most SNPs have M > 0.9 and F ≈ 0, with the
mean F increasing somewhat as K increases from 2 to 7 and 40.

In the limit in which migration is strong, because lineages can
migrate between subpopulations quickly, they can also coalesce
quickly, irrespective of their subpopulations of origin. As a
result, a random mutation is likely to occur on a branch that
leads to terminal branches from many subpopulations. The allele
is expected to be at comparable frequency in all subpopulations,
so that F is likely to be small. This scenario corresponds to the
conditions under which the lower bound on F is approached.

Rectangular and linear stepping-stone models
Under the rectangular stepping-stone model, properties of F
in relation to M are qualitatively similar to those under the is-
land model, but with higher F (Figures 5B,E,H and 6B,E,H).
For a fixed number of subpopulations K, the geometry in the
rectangular stepping-stone model, with 2 to 4 connections per
subpopulation, generates less migration among the subpopu-
lations, so that the genetic difference among subpopulations is
higher than in the fully connected graph of the island model.
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Figure 5 Joint density of the frequency M of the most frequent
allele and F, for different migration models and scaled migra-
tion rates 4Nm, considering K = 7 subpopulations. Panels
A,D,G for the island model are copied from Figure 4B,E,H
for ease of comparison. The simulation procedure and figure
design follow Figure 4.

Thus, with M, K, and 4Nm held constant, F is generally higher
in the rectangular stepping-stone model.

In the linear stepping-stone model, F is higher still than in
the rectangular model (Figures 5C,F,I and 6C,F,I). Connectivity
among subpopulations is reduced, with each subpopulation
having only 1 or 2 neighbors. The probability that a mutation
remains localized and fixed in some subpopulations while being
absent in others is greater than in the other geometries, so that F
exceeds that observed in the other models.

Proximity of the joint density of M and F to the upper bound
To illustrate the influence of evolutionary processes on the rela-
tionship of F to the upper bound and to summarize the features
of Figures 4, 5, and 6, we can quantify the proximity of the
joint density of M and F to the bounds on F in terms of M, as a
function of K, 4Nm and the migration models.

For a set of Z loci, denote by Fz and Mz the values of F and
M at locus z, respectively. The mean F for the set, denoted F̄, is

F̄ =
1
Z

Z

∑
z=1

Fz, (13)

A corresponding mean maximum F given the observed Mz,
z = 1, 2, . . . , Z, denoted F̄max, is the sum of the maximal values
of F across the Z loci (eq. 6):

F̄max =
1
Z

Z

∑
z=1

bKMzc+ {KMz}2 − KM2
z

KMz(1−Mz)
. (14)

The ratio F̄/F̄max gives a sense of the proximity of the F values to
their upper bounds: it ranges from 0, when F values at all SNPs
equal their lower bounds, to 1, when F values at all SNPs equal
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Figure 6 Joint density of the frequency M of the most frequent
allele and F, for different migration models and scaled migra-
tion rates 4Nm, considering K = 40 subpopulations. Panels
A,D,G for the island model are copied from Figure 4C,F,I for
ease of comparison. The simulation procedure and figure de-
sign follow Figure 4.

their upper bounds. Figure 7 shows the ratio F̄/F̄max under the
three migration models, for different values of K and 4Nm.

For each model and each value of the number of subpopu-
lations, F̄/F̄max decreases with 4Nm. This result summarizes
the influence of the migration rate observed in Figures 4, 5, and
6: F values tend to be close to the upper bound under weak
migration, and near the lower bound under strong migration.

For a fixed number of subpopulations and a fixed scaled
migration rate, F̄/F̄max is smaller under the island model than
under the rectangular stepping-stone model, and smaller un-
der the rectangular model than under the linear model. This
observation can be explained by the stronger constraints on mi-
gration in the linear case, in which immigrants come from at
most 2 other subpopulations, than in the rectangular case, with
up to 4 neighbors, and the island model, with K− 1. The smaller
number of neighbors prevents genetic homogenization between
subpopulations and thus leads to larger F values.

Under the island model, F̄/F̄max is only minimally influenced
by the number of subpopulations K (Figure 7A). Even though
the upper bound on F in terms of M is strongly affected by K,
the proximity of F to the upper bound is similar across K val-
ues. Under the rectangular and linear stepping-stone models,
however, K has a stronger influence on F̄/F̄max, which increases
with K (Figure 7B,C). This result can be explained by noting that
unlike in the island model, which is fully connected irrespective
of the number of subpopulations, at a fixed migration rate, the
increasing number of subpopulations produces greater isolation
of distant subpopulations in the stepping-stone models, generat-
ing greater genetic differentiation and thus leading to F values
closer to their upper bounds.
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Figure 7 F̄/F̄max, the ratio of the the mean F to the mean maxi-
mal F given the observed frequency of the most frequent allele
M, as a function of the number of subpopulations K and the
scaled migration rate 4Nm, for three migration models. (a) Is-
land model. (b) Rectangular stepping-stone model. (c) Linear
stepping-stone model. Colors represent values of K: 2, 7, and
40. F values are computed from coalescent simulations using
MS, for 10,000 independent SNPs and 100 lineages sampled per
subpopulation. F̄max is computed from eq. 14.

Application to human genomic data

We now use our theoretical results to explain observed patterns
of human genetic differentiation, and in particular, to explain
the impact of the number of subpopulations. We employ data
from Li et al. (2008) on 577,489 SNPs from 938 individuals of the
Human Genome Diversity Panel (HGDP; Cann et al. 2002), as
compiled by Pemberton et al. (2012). We use the same division of
the individuals into seven geographic regions that was examined
by Li et al. (2008) (Africa, Middle East, Europe, Central and South
Asia, East Asia, Oceania, America). We computed the parametric
allele frequencies for each region, averaging across regions to
obtain the frequency M of the most frequent allele. We then
computed F for each SNP, averaging F values across SNPs to
obtain the overall F for the full SNP set.

To assess the impact of the number of subpopulations K on
the relationship between M and F, we computed F for all 120 sets
of two or more geographic regions (Figure 8). The 21 pairwise
F values range from 0.007 (between Middle East and Europe)
to 0.101 (Africa and America), with a mean of 0.057, standard
deviation of 0.027, and median of 0.061. F is substantially larger
for sets of three geographic regions. The smallest value is larger,
0.012 (Middle East, Europe, Central/South Asia), as is the largest
value, 0.133 (Africa, Oceania, America), the mean of 0.076, and
the median of 0.089. Among the 21× 5 = 105 ways of adding a
third region to a pair of regions, 83 produce an increase in F. For
17 sets of three regions, the value of F exceeds that for each of its
three component pairs.

The pattern of increase of F with the inclusion of additional
subpopulations can be seen in Figure 9A, which plots the F
values from Figure 8 as a function of K. The magnitude of
the increase is greatest from K = 2 to K = 3, decreasing with
increasing K. From K = 3 to 4, 82 of 140 additions of a region
increase F; 54 of 105 produce an increase from K = 4 to 5, 21 of
42 from K = 5 to 6, and 3 of 7 from K = 6 to 7. The seven-region
F of 0.102 exceeds all the pairwise F values.

The larger F values with increasing K can be explained by
the difference in constraints on F in terms of M (Figure 10). For
fixed M, as we saw in the increase of A(K) with K (Figure 2), the
permissible range of F values is smaller on average for F values
computed among smaller sets of populations than among larger
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Figure 8 Mean F values across loci for sets of geographic re-
gions. Each box represents a particular combination of 2, 3, 4,
5, 6, or all 7 geographic regions. Within a box, the numerical
value shown is 100× F among the regions. The regions consid-
ered are indicated by the pattern of "." and "X" symbols within
the box, with "X" indicating inclusion and "." indicating exclu-
sion. From left to right, the regions are Africa, Middle East,
Europe, Central/South Asia, East Asia, Oceania, America.
Thus, for example, X...X.. indicates the subset {Africa, East
Asia}. Lines are drawn between boxes that represent nested
subsets. A line is colored red if the larger subset has a higher
F value, and blue if it has a lower F. Computations rely on
577,489 SNPs from the Human Genome Diversity Panel.
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A B

Figure 9 F values for sets of geographic regions as a function
of K, the number of regions considered. (A) F̄, computed using
eq. 13. (B) F̄/F̄max, computed using eq. 14. For each subset of
populations, the value of F is taken from Figure 8. The mean
across subsets for a fixed K appears as a solid red line, and the
median as a dashed red line.

sets. For example, the maximal F value at the mean M of 0.76
observed in pairwise comparisons is 0.33 for K = 2 (black line in
Figure 10A), while the maximal F value at the mean M of 0.77
observed for the global comparison of seven regions is 0.86 for
K = 7 (Figure 10B). Given the stronger constraint in pairwise
calculations, it is not unexpected that pairwise F values would
be smaller than the values computed with more regions, such as
in the full 7-region computation. Interestingly, the effect of K on
F is largely eliminated when F values are normalized by their
maxima (Figure 9B). The normalization, which takes both K and
M into account, generates a nearly constant trend in the mean
and median of F as a function of K, with higher values for K = 2.

Discussion

We have evaluated the constraint imposed by the frequency M of
the most frequent allele on the range of FST , for arbitrary many
subpopulations. Although the range of FST is unconstrained
within the unit interval for a finite set of values of M—M = i

K ,
where i is an integer greater than or equal to K

2 —it is constrained
below 1 for all other values of M. We have found that the number
of subpopulations K has a considerable impact on the range of
FST , with a weaker constraint on FST as K increases. As was
shown by Jakobsson et al. (2013), for K = 2, considering all
possible values of M, FST values are restricted to 38.63% of the
possible space. Considering K = 100, however, FST values can
occupy 97.47% of the space. Although the mean over M values of
the permissible interval for FST approaches the full unit interval
as K → ∞, we find that for any K, there exists an allele frequency
M < (K− 1)/K for which the maximal F is lower than 2

√
2− 2.

Multiple studies have highlighted the relationship between
FST and M in two subpopulations, for biallelic markers (Rosen-
berg et al. 2003; Maruki et al. 2012), and more generally, for
an unspecified (Jakobsson et al. 2013) or specified number of
alleles (Edge and Rosenberg 2014). We have extended these
results to the case of biallelic markers in a specified but arbi-
trary number of subpopulations, comprehensively describing
the relationship between FST and M for the biallelic case. The
study is part of an increasing body of work characterizing the
mathematical relationship of population-genetic statistics with
quantities that constrain them (Hedrick 1999, 2005; Rosenberg
and Jakobsson 2008; Reddy and Rosenberg 2012). As we have
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Figure 10 Joint density of the frequency M of the most fre-
quent allele and F in human population-genetic data, consid-
ering 577,489 SNPs. (A) F computed for pairs of geographic re-
gions. The density is computed from the set of F values for all
21 pairs of regions. (B) F computed among K = 7 geographic
regions. The figure design follows Figure 4.

seen, such relationships contribute to understanding the behav-
ior of the statistics in evolutionary models and to interpreting
counterintuitive results in human population genetics.

Properties of FST in evolutionary models. Our work extends clas-
sical results about the impact of evolutionary processes on FST
values. Wright (1951) showed that in an equilibrium population,
FST is expected to be near 1 if migration is weak, and near 0 if
migration is strong. On the basis of our simulations, we can
more precisely formulate this proposition: considering a SNP at
frequency M in an equilibrium population, FST is expected to be
near its upper bound in terms of M if migration is weak and near 0
if migration is strong. This formulation of Wright’s proposition
makes it possible to explain why SNPs subject to the same migra-
tion process can display a variety of FST patterns; indeed, under
weak migration, we expect FST values to mirror the considerable
variation in the upper bound on FST in terms of M.

We also provide a framework for interpreting properties
of FST across multiple migration models. Maruyama (1970)
showed that under the linear stepping-stone model, FST values
tend to be closer to 1 than under an island model. Our results
provide a more precise formulation of this classical pattern: un-
der stepping-stone models, FST values tend to be closer to their
upper bound in terms of M than under an island model.

Lower FST values in pairwise comparisons than in comparisons of
more subpopulations. FST values have often been compared
across computations with different numbers of subpopulations.
Such comparisons appear frequently, for example, in studies of
domesticated animals such as horses, pigs, and sheep (Cañon
et al. 2000; Kim et al. 2005; Lawson Handley et al. 2007). In human
populations, Table 1 of the microsatellite study of Rosenberg et al.
(2002) presents comparisons of FST values for scenarios with K
ranging from 2 to 52. Table 3 of Rosenberg et al. (2006) compares
FST values for microsatellites and biallelic indels in population
sets with K ranging from 2 to 18. Major SNP studies have also
compared FST values for scenarios with K = 2 and K = 3 groups
(Hinds et al. 2005; International HapMap Consortium 2005).

Our results suggest that such comparisons between FST val-
ues with different K can hide an effect of the number of sub-
populations, especially when some of the comparisons involve
the most strongly constrained case of K = 2. For human ge-
netic differentiation, we found that owing to a difference in
the FST constraint for different K values, pairwise FST values
between continental regions were consistently lower than FST
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computed using three or more regions, and sets of three regions
were identified for which the FST value exceeded the values for
all three pairs of regions in the set. The effect of K might help
illuminate why SNP-based pairwise FST values between human
populations (Table S11 of 1000 Genomes Project Consortium et al.
2012) are generally smaller than estimates that use all popula-
tions together (11.1% of genetic variance due to between-region
or between-population differences; Li et al. 2008). Our results
suggest that comparing FST values with different choices of K
can generate as much difference—twofold—as comparing FST
with different marker types (Holsinger and Weir 2009). This
substantial impact of K on FST merits further attention.

Consequences for the use of FST as a test statistic. The effects of
constraints on FST extend beyond the use of FST as a statistic
for genetic differentiation. In FST-based genome scans for lo-
cal adaptation, tracing to the work of Lewontin and Krakauer
(1973), a hypothesis of spatially divergent selection at a candi-
date locus is evaluated by comparing FST at the locus with the
FST distribution estimated from a set of putatively neutral loci.
Under this test, FST values smaller or larger than expected by
chance are interpreted as being under stabilizing or divergent se-
lection, respectively. Modern versions of this approach compare
FST values at single loci with the distribution across the genome
(Beaumont and Nichols 1996; Akey et al. 2002; Foll and Gaggiotti
2008; Bonhomme et al. 2010; Günther and Coop 2013).

The constraints on FST in our work and the work of Jakobsson
et al. (2013) and Edge and Rosenberg (2014) suggest that FST
values strongly depend on the frequency of the most frequent
allele. Consequently, we expect that FST outlier tests that do
not explicitly take into account this constraint will result in a
deficit of power at loci with high- and low-frequency alleles.
Because pairwise FST and FST values in many populations have
different constraints, we predict that the effect of the constraint
on outlier tests relying on a single global FST (e.g., Beaumont
and Nichols 1996; Foll and Gaggiotti 2008) will be smaller than
in tests relying on pairwise FST (e.g., Günther and Coop 2013).

Conclusion. Many recent articles have noted that FST often be-
haves counterintuitively (Whitlock 2011; Alcala et al. 2014; Wang
2015)—for example, indicating low differentiation in cases in
which populations do not share any alleles (Balloux et al. 2000;
Jost 2008) or suggesting less divergence among populations than
is visible in clustering analyses (Tishkoff et al. 2009; Algee-Hewitt
et al. 2016). It has thus become clear that observed FST patterns
often trace to peculiar mathematical properties of FST—in partic-
ular its relationship to other statistics such as homozygosity or
allele frequency—instead of to biological phenomena of interest.
Our work here, extending approaches of Jakobsson et al. (2013)
and Edge and Rosenberg (2014), seeks to characterize those prop-
erties, so that the influence of mathematical constraints on FST
can be disentangled from biological phenomena.

In response to a mathematical dependence of FST on the
within-subpopulation mean heterozygosity HS, Wang (2015)
has proposed plotting the joint distribution of HS and FST , in
order to assess the correlation between the two statistics. Us-
ing the island model, Wang (2015) argued that when HS and
FST are uncorrelated, FST is expected to be more informative
about the demographic history of a species than when they are
strongly correlated and FST is merely a reflection of the within-
subpopulation diversity. Our results suggest a related frame-
work: studies can compare plots of the joint distribution of M
and FST with the bounds on FST in terms of M. This framework,

which examines constraints on FST in terms of allele frequen-
cies in the total population, complements that of Wang (2015),
which considers constraints in terms of subpopulation allele
frequencies. Such analyses, considering FST together with ad-
ditional measures of allele frequencies, are desirable in diverse
scenarios—for explaining counterintuitive FST phenomena, for
avoiding overinterpretation of FST values, and for making sense
of FST comparisons across settings that have a substantial differ-
ence in the nature of one or more underlying parameters.
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Appendix A. Demonstration of eq. 5

This appendix provides the derivation of the upper bound on
∑K

k=1 p2
k as a function of K and M.

Theorem 1. Suppose σ > 0 and K ≥ bσc+ 1 are specified, where
K is an integer. Considering all sequences {pk}K

k=1 with pk ∈ [0, 1],
∑K

k=1 pk = σ, and k < ` implies pk < p`, ∑∞
k=1 p2

k is maximal if and
only if pk = 1 for 1 ≤ k ≤ bσc, pbσc+1 = σ− bσc, and pk = 0 for
k > bσc+ 1, and its maximum is (σ− bσc)2 + bσc.

Proof. This theorem is a special case of Lemma 3 from Rosenberg
and Jakobsson (2008), which states (changing notation for some
of the variables to avoid confusion): “Suppose A > 0 and C > 0
and that dC/Ae is denoted L. Considering all sequences {pi}∞

i=1
with pi ∈ [0, A], ∑∞

i=1 pi = C, and i < j implies pi ≥ pj, H(p) =
∑∞

i=1 p2
i is maximal if and only if pi = A for 1 ≤ i ≤ L − 1,

pL = C− (L− 1)A, and pi = 0 for i > L, and its maximum is
L(L− 1)A2 − 2C(L− 1)A + C2.”

In our special case, we apply the lemma with A = 1 and
C = σ. We also restrict consideration to sequences of finite rather
than infinite length; however, our condition K ≥ bσc+ 1 for the
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number of terms in the sequence guarantees that the maximum
in the case of infinite sequences—which requires dσe ≤ bσc+ 1
nonzero terms—is attainable with sequences of the finite length
we consider. For convenience in numerical computations, we
state our result using the floor function rather than the ceiling
function, requiring some bookkeeping to obtain our corollary.

If σ is not an integer, then in Lemma 3 of Rosenberg and
Jakobsson (2008), L = bσc+ 1, and the maximum occurs with
p1 = p2 = . . . = pbσc = 1, pbσc+1 = σ − bσc, and pk = 0
for k > bσc + 1, equaling L(L − 1)A2 − 2C(L − 1)A + C2 =
(bσc+ 1)bσc − 2σbσc+ σ2.

If σ is an integer, then bσc = dσe = σ, and the maximum
occurs with p1 = p2 = . . . = pσ = 1, pσ+1 = σ− bσc = 0, and
pk = 0 for k > σ + 1, equaling L(L− 1)A2− 2C(L− 1)A+C2 =
bσc(bσc − 1)− 2σ(bσc − 1) + σ2.

In both cases, the maximum simplifies to (σ− bσc)2 + bσc,
noting that bσc = dσe = σ in the latter case.

In our application of the theorem in the main text, we as-
sume ∑K

k=1 pk = KM, so that KM plays the role of σ. We thus
obtain that the maximal value of ∑K

k=1 p2
k for sequences {pk}K

k=1
with pk ∈ [0, 1], k < ` implies pk < p`, and ∑K

k=1 pk = KM
is (KM− bKMc)2 + bKMc, with equality if and only if pk = 1
for 1 ≤ k ≤ bKMc, pbKMc+1 = {KM}, and pk = 0 for k >

bKMc+ 1. Considering all sequences {pk}K
k=1 with pk ∈ [0, 1]

and not necessarily ordered such that k < ` implies pk < p`, the
maximum is achieved when any bKMc terms of the sequence
equal 1, one term is {KM}, and all remaining terms are 0.

Appendix B. Local minima of the upper bound on F

This appendix derives the positions and values of the local min-
ima in the upper bound on F in terms of M (eq. 6).

Positions of the local minima
To derive the positions of the local minima of the upper bound
on F in terms of M, we study the function Qi(x) (eq. 7) on the
interval [0, 1) for x, where i = bKMc and x = KM− i, so that
M = i+x

K . Recall that K and i are integers with K ≥ 2 and i in
[b K

2 c, K− 1]. Note that x < 1 ensures that M < 1, in accord with
our assumption of a polymorphic locus.

Theorem 2. Consider fixed integers K ≥ 2 and i in [b K
2 c, K− 1].

(i) Qi(x) has no local minimum on [0, 1) for K = 2 or for i = K− 1.
(ii) For K ≥ 3 and i in [b K

2 c, K− 2], Qi(x) has a unique local mini-
mum on the interval [0, 1) for x, with position denoted xmin.
(iii) For odd K ≥ 3 and i = K−1

2 , xmin = 1
2 .

(iv) For all other (K, i) with K ≥ 3 and i in [b K
2 c, K − 2], xmin =

λ(K, i), where

λ(K, i) =
i(K− i)−

√
i(i + 1)(K− i)(K− i− 1)
2i− K + 1

. (B.1)

Proof. We take the derivative of Qi(x):

dQi(x)
dx

=
−K(2i− K + 1)x2 + 2iK(K− i)x− iK(K− i)

(i + x)2(K− i− x)2 .

(B.2)
As 1

2 ≤ M = i+x
K < 1, the denominator in eq. B.2 is non-zero,

and dQi(x)/dx = 0 is equivalent to a quadratic equation in x:

− K(2i− K + 1)x2 + 2iK(K− i)x− iK(K− i) = 0. (B.3)

If i = K−1
2 , then the quadratic term in eq. B.3 vanishes and

eq. B.3 becomes a linear equation in x, with solution x = 1
2 . That

the solution is a local minimum follows from the continuity of
Qi(x) on [0, 1) together with the fact that Qi(0) = Qi(1) = 1
and Qi(x) < 1 for 0 < x < 1. Consequently, if K is odd, then the
local minimum for i = K−1

2 occurs at M = i+x
K = 1

2 , the lowest
possible value of M. This establishes (iii).

Excluding i = K−1
2 for odd K, for all i ∈ [b K

2 c, K − 2] with
K ≥ 3, eq. B.3 has a unique solution in [0, 1); this solution has
x = λ(K, i) (eq. B.1). The other root of eq. B.3 exceeds 1. That x =
λ(K, i) represents a local minimum is again a consequence of the
continuity of Qi(x) on [0, 1) together with Qi(0) = Qi(1) = 1
and Qi(x) < 1 for 0 < x < 1. This establishes (ii) and (iv).

For the case of i = K − 1, eq. B.3 has a double root at
x = 1, outside the permissible domain for x, [0, 1). Qi(0) = 1,
0 ≤ Qi(x) ≤ 1 on [0, 1), and Qi(x) approaches 0 as x → 1. Con-
sequently, Qi(x) has no local minimum for i = K− 1. For K = 2,
i = K− 1 is the only possible value of i, and Qi(x) has no local
minimum. This establishes (i).

Positions of the local minima for fixed K as a function of i
Having identified the locations of the local minima, we now
explore how those locations change at fixed K with increasing i.
For fixed K ≥ 3, we consider xmin from Theorem 2 as a function
of i on the interval [b K

2 c, K− 2]. It is convenient to define interval
I∗, equaling [ K

2 , K− 2] for even K and (K−1
2 , K− 2] for odd K.

Proposition 1. Consider a fixed integer K ≥ 3.
(i) The function xmin(i) increases as i increases from b K

2 c to K− 2.
(ii) Its minimum is xmin(

K−1
2 ) = 1

2 if K is odd, and xmin(
K
2 ) =

K
4 (K−

√
K2 − 4) if K is even.

(iii) Its maximum is xmin(1) = 1
2 for K = 3, and for K > 3, it is

xmin(K− 2) =
2(K− 2)−

√
2(K− 2)(K− 1)

K− 3
. (B.4)

Proof. By Theorem 2, for fixed K ≥ 3 and i ∈ I∗, xmin(i) is given
by eq. B.1. Treating i as continuous, we take the derivative:

dxmin(i)
di

=

[
(K−i)(K−i−1)+i(i+1)

][
2i(K−i−1)+K−1−2

√
f (i)

]
2(2i− K + 1)2

√
f (i)

,

where f (i) = i(i+1)(K−i)(K−i−1). Because all other terms of
dxmin(i)/di are positive for i in (K−1

2 , K− 2], dxmin(i)/di has the
same sign as 2i(K− i− 1)+K− 1− 2

√
f (i).

Rearranging terms, we have

√
f (i) =

√[
i(K−i−1)+

K−1
2

]2

− (K− 2i− 1)2

4
.

Because −(K − 2i − 1)2/4 < 0 for i in (K−1
2 , K−2],

√
f (i) <√

[i(K− i− 1) + (K− 1)/2]2, and −2
√

f (i) > −2i(K − i −
1)− K + 1. Consequently, 2i(K − i− 1) + K − 1− 2

√
f (i) > 0

for all i in (K−1
2 , K− 2]. Thus, dxmin(i)/di > 0 for all i in I∗, and

xmin(i) increases with i in this interval.
For odd K and i = K−1

2 , eq. B.1 gives limi→(K−1)/2+ λ(K, i) =
1
2 . Thus, because xmin(

K−1
2 ) = 1

2 by Theorem 2, xmin(i) is con-
tinuous at K−1

2 . The function xmin(i) therefore increases with i
in the closed interval [b K

2 c, K− 2]. This proves (i).
Because xmin(i) increases with i for all i in [b K

2 c, K − 2],
xmin(i) is minimal when i is minimal. For K odd, the mini-
mal value of i is K−1

2 . From Theorem 2, xmin(
K−1

2 ) = 1
2 for all
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odd K. For even K, the minimal value of i is K
2 . From Theorem 2,

xmin(
K
2 ) =

K
4 (K−

√
K2 − 4). This proves (ii).

Similarly, xmin(i) is maximal when i is maximal. From Theo-
rem 2, the maximal value of i for which there exists a minimum
of Qi(x) is i=K−2, and the position of this local minimum is
xmin(K− 2) = [2(K− 2)−

√
2(K− 2)(K− 1)]/(K− 3). In par-

ticular, for K=3, K−1
2 = K−2 = 1, so there is a unique local

minimum at position xmin(
K−1

2 ) = 1
2 . This proves (iii).

Positions of the first and last local minima as functions of K
We now fix i and examine the effect of K on the local minimum
at fixed i. We first focus on the interval closest to M = 1

2 —the
first local minimum of the upper bound on F.

Proposition 2. Consider integers K ≥ 3.
(i) For odd K, the relative position xmin(

K−1
2 ) of the first local mini-

mum does not depend on K and is 1
2 .

(ii) For even K, the relative position xmin(
K
2 ) of the first local min-

imum decreases as K → ∞, tends to 1
2 , and is bounded above by

4− 2
√

3 ≈ 0.5359.

Proof. For odd K, the interval closest to M = 1
2 is [ 1

2 , 1
2 + 1

2K ).
In this interval, from Proposition 1ii, the minimum occurs at
xmin(

K−1
2 ) = 1

2 irrespective of K. This proves (i).
For even K, the interval for M closest to M = 1

2 is [ 1
2 , 1

2 + 1
K ).

In this interval, from Proposition 1ii, the minimum has position
xmin(

K
2 ) =

K
4 (K−

√
K2 − 4). The derivative of this function is

dxmin(
K
2 )

dK
= − (K−

√
K2 − 4)2

4
√

K2 − 4
,

which is negative for all K ≥ 3. Thus, xmin(
K
2 ) decreases with

K for K ≥ 3. In addition, as K → ∞, xmin(
K
2 ) →

1
2 . Because

xmin(
K
2 ) decreases with K, its maximum value is reached when

K is minimal. The minimal even value of K is K = 4. Thus,
xmin(

K
2 ) ≤ xmin(

4
2 ) = 4− 2

√
3. This proves (ii).

By Proposition 2, if K is large and even, then the first local
minimum lies near the center of the interval [ 1

2 , 1
2 + 1

K ) for M.

Proposition 3. For integers K ≥ 3, the relative position xmin(K− 2)
of the last local minimum increases as K → ∞, and tends to 2−

√
2 ≈

0.5858.

Proof. From Theorem 2, for K = 3 and K = 4, there is a single
local minimum. Hence, from Proposition 2, the position of the
last local minimum is xmin(1) = 1

2 for K = 3 and xmin(2) =

4 − 2
√

3 ≈ 0.5359 for K = 4. The position of the last local
minimum then increases from K = 3 to K = 4.

If K > 3, from Proposition 1iii, the position of the last local
minimum follows eq. B.4. We take the derivative

dxmin(K− 2)
dK

=
(3K− 5)− 2

√
2(K− 2)(K− 1)

(K− 3)2√2(K− 2)(K− 1)
.

For K > 3, the denominator is positive, and dxmin(K− 2)/dK
has the same sign as its numerator. Because for K > 3,
(3K − 5)2 − 8(K − 2)(K − 1) = (K − 3)2 > 0, we have
3K − 5 > 2

√
2(K− 2)(K− 1) and a positive numerator. Then

dxmin(K− 2)/dK > 0, and xmin(K− 2) increases for K > 3.
From eq. B.4, xmin(K− 2) tends to 2−

√
2 ≈ 0.5858 as K → ∞.

Thus, the last local minimum is not at the center of interval IK−2;

m
in m

in

last local minimum

first local minimum

A B

last local minimum

first local minimum

Figure B1 The first and last local minima of F as functions of
the frequency M of the most frequent allele, for K ≥ 3 sub-
populations. (A) Relative positions within the interval [ i

K , i+1
K )

of the first and last local minima, as functions of K. The posi-
tion xmin(i) of the local minimum in interval Ii is computed
from eq. B.1. If K is odd, then this position is xmin(

K−1
2 ); if K

is even, then it is xmin(
K
2 ). The position of the last local mini-

mum is xmin(K − 2). Dashed lines indicate the smallest value
for xmin(i) of 1

2 , and the limiting largest value of 2−
√

2. (B)
The value of the upper bound on F at the first and last local
minima, as functions of K. These values are computed from
eq. 6, taking bKMc = i and {KM} = xmin(i), with xmin(i) as
in part (A). Dashed lines indicate the limiting values of 1 and
2
√

2− 2 for the first and last local minima, respectively.

rather, it is nearer to the upper endpoint. Because xmin(K− 2)
increases with K, xmin(K − 2) < limK→∞ xmin(K − 2), and the
last local maximum has position bounded above by 2−

√
2.

As we have shown in Proposition 1i that for fixed K, as i
increases from b K

2 c to K−2, the relative position of the local min-
imum increases, this relative position is restricted in the interval
[xmin(b K

2 c), xmin(K− 2)]. Further, because from Proposition 2,
xmin(

K−1
2 ) = 1

2 for odd K and xmin(
K
2 ) > 1

2 for even K, and
from Proposition 3, xmin(K− 2) < 2−

√
2, the relative positions

of the local minima must be in the interval [ 1
2 , 2−

√
2).

Figure B1 illustrates as functions of K the relative positions
of the first local minimum (xmin(

K−1
2 ) for K odd, xmin(

K
2 ) for K

even) and the last local minimum (xmin(K− 2)). The restriction
of these positions to the interval [ 1

2 , 2−
√

2) is visible, with the
first local minimum lying closer to the center of interval [0, 1)
for x than the last local minimum. The decrease in the position
of the first local minimum for even K alternating with values of
1
2 for odd K (Proposition 2) and the increase in the position of
the last local minimum (Proposition 3) are visible as well.

Values at the local minima
We obtain the value of the local minima of the upper bound on
F in each interval Ii by substituting into eq. 7 the value of i for
interval Ii and its associated xmin(i) from Theorem 2. We obtain

Qi(xmin(i)) =
K
[
i + xmin(i)2]− [i + xmin(i)]

2

[i + xmin(i)] [K− i− xmin(i)]
. (B.5)

Note that for odd K, although λ(K, i) is undefined at i = K−1
2 ,

xmin(i) is continuous. Thus, Qi(xmin(i)) is also defined and
continuous for all i ∈ [b K

2 c, K− 2]. We consider Qi as a function
of i on this interval.

Proposition 4. For fixed K ≥ 3, the local minima Qi(xmin(i)) de-
crease as i increases from b K

2 c to K− 2.
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Proof. We take the derivative dQi(xmin(i))/di for fixed K and
i ∈ I∗. From eqs. B.5 and B.1,

dQi(xmin(i))
di

=

√
f (i)K(2i− K + 1)u(i)

w(i)2[w(i) + K(2i− K + 1)]2
,

where w(i) =
√

f (i) − i(i + 1) and u(i) = 2(K2 − 1)
√

f (i) +
2(K2 + 1)i2 − (K− 1)(2iK2 + K2 − K + 2i).

For all i ∈ I∗, the denominator of the derivative is positive,
as are

√
f (i), K, and 2i− K + 1. Hence, dQi(xmin(i))/di has the

same sign as u(i).
Because f (i) decreases for i∈[ K−1

2 , K−2],
√

f (i) ≥√
f (K−1

2 ) = K2−1
4 , and K2−1−4

√
f (i) ≥ 0. We factor u(i):

u(i) = 2(K2 + 1)
(

i− v(i)− K− 1
2

)(
i + v(i)− K− 1

2

)
,

where v(i) =
√
(K2 − 1)(K2 − 1− 4

√
f (i))/(2

√
K2 + 1). Be-

cause v(i) ≥ 0, for all i ≥ K−1
2 , i + v(i)− K−1

2 ≥ 0. Thus, the
sign of u(i) is given by the sign of

i−v(i)−K−1
2

=
(2i−K+1)

√
K2+1−

√
(K2−1)(K2−1−4

√
f (i))

2
√

K2+1
.

For i ∈ (K−1
2 , K− 2],

K2(2i−K−1)4

4(K−1)2(K+1)2 =

[
K2 − 1

4
−

(K2+1)[i− K−1
2 ]2

K2−1

]2

− f (i) > 0,

and hence,

− 4
∣∣∣∣K2 − 1

4
− (K2 + 1)[i− (K− 1)/2]2

K2 − 1

∣∣∣∣ < −4
√

f (i). (B.6)

The term [i − (K − 1)/2]2 increases as a function of i for i ∈
[ K−1

2 , K− 2]. Hence, K2−1
4 − (K2+1)[i−(K−1)/2]2

K2−1 decreases with i.
It is minimal at the largest value in the permissible domain for i,

or i = K− 2, with minimum 3K(K−1)2−4
2(K−1)(K+1) . The denominator of

this quantity is positive and the numerator increases with K. It is
thus minimal for K = 3, at which 3K(K− 1)2 − 4 = 32 > 0. This

proves that K2−1
4 −

(K2+1)[i−(K−1)/2]2

K2−1 > 0 for i ∈ [ K−1
2 , K−2].

We can then remove the absolute value in eq. B.6, and
rearrange to obtain (K2 + 1)(2i − K + 1)2 < (K2 − 1)(K2 −
1 − 4

√
f (i)). Both sides of this inequality are positive for

i ∈ (K−1
2 , K − 2], and we can take the square root to obtain

√
K2 + 1(2i − K + 1) <

√
(K2 − 1)(K2 − 1− 4

√
f (i)). Hence

i− v(i)− K−1
2 < 0 for i ∈ (K−1

2 , K− 2], dQi(xmin(i))/di < 0 for
i ∈ I∗, and the local minima Qi(xmin(i)) decrease with i.

Proposition 5. For K = 3, the first local minimum Qi(xmin(i)) has
value 2

3 ; for K ≥ 3, the first local minimum increases as a function of
K and tends to 1 as K → ∞.

Proof. From Proposition 2i, for K odd, the first local minimum
is reached for i = K−1

2 and x = 1
2 , and the upper bound on F is

Q K−1
2
( 1

2 ) = 1− 1
K . Thus, for K = 3, the first local minimum has

value Q1(
1
2 ) =

2
3 . For even K, the first local minimum is reached

if i = K
2 and x = xmin(

K
2 ), with upper bound on F equal to

Q K
2

(
xmin

(
K
2

))
=

(K− 2)
[
K(K + 1)− (K + 1)

√
K2 − 4− 2

]
√

K2 − 4(K−
√

K2 − 4)
.

(B.7)

Denote by ∆1(K) = Q K
2
(xmin(

K
2 )) − (1 − 1

K−1 ) the differ-
ence between the first local minimum for even K and the first
local minimum for odd K − 1, and by ∆2(K) = (1− 1

K+1 ) −
Q K

2
(xmin(

K
2 )) the difference between the first local minimum for

odd K + 1 and the first local minimum for even K. To show that
the first local minimum increases with K, we must show that for
all even K ≥ 4, (i) ∆1(K) > 0, and (ii) ∆2(K) > 0.

For (i), subtracting 1− 1
K−1 from eq. B.7, we have

∆1(K) =
(K−2)

[
(K+2)

(
K2−K−1

)
−
√

K2−4
(
K2+K−1

)]
(K− 1)

√
K2−4

(
K−
√

K2−4
) .

Because all other terms are positive for K ≥ 3, ∆1(K) has the
same sign as (K + 2)(K2 − K − 1)−

√
K2 − 4(K2 + K − 1). Di-

viding by
√

K + 2, this quantity in turn has the same sign as√
K + 2(K2 − K − 1)−

√
K− 2(K2 + K − 1). This last quantity

is positive for K ≥ 4, as when we multiply it by the positive√
K + 2(K2 − K− 1) +

√
K− 2(K2 + K− 1), the result reduces

simply to the number 4. This proves (i).
For (ii), subtracting eq. B.7 from 1− 1

K+1 , we have

∆2(K) =
(K+2)

[√
K2−4

(
K2−K−1

)
−(K−2)(K2+K−1)

]
(K+1)

√
K2−4

(
K−
√

K2−4
) .

Because all other terms are positive for K ≥ 3, ∆2(K) has
the same sign as

√
K2 − 4

(
K2 − K− 1

)
− (K − 2)(K2 + K −

1). Dividing by
√

K− 2, this quantity has the same sign as√
K + 2(K2 − K− 1)−

√
K− 2(K2 + K− 1), which was shown

to be positive in the proof of (i). This demonstrates (ii).
From (i) and (ii), the value of the upper bound on F at the first

local minimum increases with K for all K ≥ 3. To see that the
limiting value is 1 as K → ∞, we note that the subsequence of
values 1− 1

K at odd K tends to 1 as K → ∞. As the sequence of
values of the first local minimum with increasing K is monotonic
and bounded above by 1, it is therefore convergent; as it has a
subsequence converging to 1, the sequence converges to 1.

Proposition 6. For K = 3, the last local minimum Qi(xmin(i)) has
value 2

3 ; for K ≥ 3, the last local minimum increases as a function of
K and tends to 2

√
2− 2 as K → ∞.

Proof. From Proposition 5, for K = 3, the single local minimum
has value 2

3 . By Theorem 2, for K > 3, the last local minimum
is reached when i = K− 2 and x = xmin(K− 2), in which case
from eqs. B.5 and B.1, the upper bound on F is

QK−2(xmin(K− 2)) =
2 (K− 2)

[√
2(K− 1)2−

√
h(K) (K+1)

]
√

h(K)(
√

h(K)−
√

2)2
,

(B.8)
where h(K) = (K− 2)(K− 1).

We examine the derivative of QK−2(xmin(K − 2)) with re-
spect to K. For K ≥ 3, h(K) > 0, and

dQK−2(xmin(K−2))
dK

=
α(K)

√
2√

h(K)(
√

h(K)−
√

2)
4 ,

where α(K) = 3K(K− 1)2 − 4− 2
√

2(K− 1)(K + 1)
√

h(K). For
K > 3, the derivative has the same sign as α(K).
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We note that

(K− 3)4K2

8(K− 1)2(K + 1)2 =

[
3(K− 1)2K− 4

2
√

2(K− 1)(K + 1)

]2

−h(K) ≥ 0,

with equality only at K = 3. Because 3K(K− 1)2 − 4 is positive

for K ≥ 3, 3K(K−1)2−4
2
√

2(K−1)(K+1)
≥
√

h(K), with equality only at K = 3.

Thus, α(K) > 0 and dQK−2(xmin(K− 2))/dK > 0 for K > 3,
and hence, the last local minimum increases with K.

For the limit as K → ∞, we take the limit of QK−2(xmin(K−
2)) in eq. B.8, obtaining 2

√
2− 2 ' 0.8284.

Appendix C. Computing the mean range of F

This appendix provides the computation of the integral A(K)
(eq. 9) and its asymptotic approximation Ã(K).

Computing A(K)

From eq. 9, we can compute A(K) by a sum over intervals. We
use a partial fraction decomposition. For b K

2 c ≤ i ≤ K− 2,

Qi(x) = 1− K +
i(i + 1)

i + x
+

(K− i)(K− i− 1)
K− i− x

.

1∫
0

Qi(x) dx =1− K + i(i+1) ln
( i+1

i

)
+ (K−i)(K−i−1) ln

( K−i
K−i−1

)
.

For i = K− 1,

Qi(x) = 1− K +
i(i + 1)

i + x
.

1∫
0

QK−1(x) dx = 1− K + (K−1)K ln
( K

K−1

)
.

For i = K−1
2 ,

1∫
1
2

Q K−1
2
(x) dx =

1−K
2

+
(K− 1

2

)(K + 1
2

)
ln
(K + 1

K− 1

)
.

Thus, when K is even,

A(K) =
2
K

K−1

∑
i= K

2

1∫
0

Qi(x) dx

=− 2
K

K−1

∑
i= K

2

(K−1) +
2
K

K−1

∑
i= K

2

[
i(i+1) ln

( i+1
i

)]

+
2
K

K−2

∑
i= K

2

[
(K−i)(K−i−1) ln

( K−i
K−i−1

)]

=1− K +
2
K

K−1

∑
i=1

[
i(i+1) ln

( i+1
i

)]
.

When K is odd,

A(K) =
2
K

1∫
1
2

Q K−1
2
(x) dx +

2
K

K−1

∑
i= K+1

2

1∫
0

Qi(x) dx

=
2
K

1−K
2

+
2
K

(K− 1
2

)(K + 1
2

)
ln
(K + 1

K− 1

)
− 2

K

K−1

∑
i= K+1

2

(K−1) +
2
K

K−1

∑
i= K+1

2

[
i(i+1) ln

( i+1
i

)]

+
2
K

K−2

∑
i= K+1

2

[
(K−i)(K−i−1) ln

( K−i
K−i−1

)]

=1− K +
2
K

K−1

∑
i=1

[
i(i+1) ln

( i+1
i

)]
.

(C.1)

The expressions for A(K) are equal for even and odd K. We
can simplify further:

K−1

∑
i=1

i(i + 1) ln
(

i + 1
i

)
=

K

∑
i=2

(i− 1)i ln i−
K−1

∑
i=2

i(i + 1) ln i

= K(K + 1) ln K− 2
K

∑
i=2

i ln i.

(C.2)
Substituting the expression from eq. C.2 into eq. C.1 and simpli-
fying, we obtain eq. 10.

Asymptotic approximation for A(K) (eqs. 11 and 12)
To asymptotically approximate A(K), we first need a large-K ap-
proximation of ∑K

i=2 i ln i. Because ∑K
i=2 i ln i = ln[H(K)], where

H(K) = ∏K
i=1 ii is the hyperfactorial function, we can use classi-

cal results about the asymptotic behavior of H(K):

lim
K→∞

H(K)

exp(− K2

4 )K
K2
2 + K

2 +
1
12

= C, (C.3)

where C is the Glaisher-Kinkelin constant. Because the logarithm

function is continuous at C, ln[H(K)]/[exp(− K2

4 )K
K2
2 + K

2 +
1
12 ] has

limit ln C as K → ∞. Thus, if we write f (K) ∼ g(K) for two
functions that satisfy limK→∞[ f (K)/g(K)] = 1, then

K

∑
i=2

i ln i ∼ −K2

4
+

(
K2

2
+

K
2
+

1
12

)
ln K + ln C. (C.4)

Substituting the expression from eq. C.4 into eq. 10, we obtain
eq. 11 and function Ã(K) (eq. 12).

Monotonicity of eq. 10 in K
Theorem 3. A(K) increases monotonically in K for K ≥ 2.

Proof. We must show that ∆A(K) = A(K + 1)− A(K) > 0 for
all K ≥ 2. From the expression for A(K) in eq. 10, we have:

∆A(K) = −1 + 2K ln
(

1 +
1
K

)
− 2 ln K +

4
K
∑

i=2
i ln i

K(K + 1)
. (C.5)

To show that ∆A(K) > 0, we find a lower bound for ∆A(K),
denoted D(K), and then show that D(K) > 0.
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We first find a lower bound for ∑K
i=2 i ln i. From the Euler-

Maclaurin summation formula, we have

K

∑
i=2

i ln i =
( K∫

1

x ln x dx
)
+

K ln K
2

+

K∫
1

(ln x+ 1)
(

x−bxc− 1
2

)
dx.

For all positive integers i ≥ 2,

i∫
i−1

(ln x+ 1)
(

x−bxc− 1
2

)
dx =

1
4

[
2i− 1− 2i(i− 1) ln

(
i

i− 1

)]
.

(C.6)
This integral can be seen to be positive by employing the
equivalence for i > 1 of 2i − 1 − 2i(i − 1) ln( i

i−1 ) > 0 with
exp[ 2i−1

2i(i−1) ] >
i

i−1 . This latter inequality follows from the in-

equality exp(x) > 1 + x + x2

2 for x > 0 from the Taylor expan-

sion of ex, noting that 1 + 2i−1
2i(i−1) +

1
2
[ 2i−1

2i(i−1)

]2
> i

i−1 .
Consequently, as the integral in eq. C.6 is positive for each

i ≥ 2,
∫ K

1 (ln x + 1)(x− bxc − 1
2 ) dx > 0, and

K

∑
i=1

i ln i >
( K∫

i=1

x ln x dx
)
+

K ln K
2

=
K(K + 1) ln K

2
+

1− K2

4
.

(C.7)

As a result, the following function is a lower bound for ∆A:

D(K) = −1 + 2K ln
(

1 +
1
K

)
− 2 ln K +

4
[ K(K+1) ln K

2 + 1−K2

4
]

K(K + 1)

= −2 +
1
K
+ 2K ln

(
1 +

1
K

)
.

Dividing by 2K and substituting u = 1
K , for K > 0, D(K) > 0 if

and only if f (u) = ln(1 + u)− u + u2

2 > 0 for u > 0. It can be
seen that this latter inequality holds by noting that f (0) = 0 and
f ′(u) = 1

1+u − 1 + u = u2

1+u > 0.
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