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Abstract 

Motivation: Quality of sample preservation at ultralow temperatures for a long term is 

not well studied. To improve our understandings, we need an evaluation strategy for 

analyzing protein degradation or metabolism at subfreezing temperatures. In this 

manuscript, we obtained LC/MS (liquid chromatography-mass spectrometry) data of 

calculated protein signal intensities in HEK-293 cells to monitor them.  

Results: Our first trial for directly clustering the values has failed in proper arrangement 

of the sample clusters, most likely by the effects from “curse of dimensionality”. By 

utilizing rigid geometry with p-adic (I-adic) metric, however, we could succeed in 

rearrange the sample clusters to meaningful orders. Thus we could eliminate “curse of 

dimensionality” from the data set. We discuss a possible interpretation for a group of 

protein signal as a quasiparticle Majorana fermion. It is possible that our calculation 

elucidates a characteristic value of a system in almost neutral logarithmic Boltzmann 

distribution of any type.  

Contacts: f.peregrinusns@mbox.kyoto-inet.or.jp 
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1 Introduction 

Even frozen, biological samples are said to be degraded during aging, and most frozen 

cell cultures are stored until they aged for two years. However, what actual happens in 

those samples are not well studied, so far as we know. There are a few reports that 

describe the existence of enzymatic activities in frozen cultures, such as lipase and 

peroxidase activities (e.g. Parducci and Fennema 1978; Voituron et al. 2006). However, 

we still do not know proteomic details of cells stored at subfreezing temperatures. For 

LC/MS (liquid chromatography-mass spectrometry), the only report we know dealing 

with cooled environments is the report for frogs whose environments mimicked the 

environments of winter (Kiss et al. 2011). This report lacks solid statistic analysis and it 

is not for subfreezing environment. Therefore we need solid proteomic data set from 

actual frozen cultures under long term storage at subfreezing environments to evaluate 

the potential degradation/metabolism.  

 To do this, first we need to set up an evaluation procedure that can well 

distinguish the samples from long term storage from the samples freshly prepared. 

Clustering analyses are popular approaches for the evaluation. Based on particular 

criteria that can evaluate similarity/dissimilarity, clustering analyses can observe 

meaningful groups in the data. The approaches are based on bottom-up calculation of 

the data, and there is no criterion outside of the system. However, there still remain 

problems such as how we define the groups and the selection of actual clustering 

methods. If the topological structure of the hierarchical tree or index numbers of 

clustering group are the same among all the different clustering methods, the output of 

the analyses is sound; however, the case is not always achieved: there might be some 

discrepancies and they cast doubt to the confidence of the results.  

 Mainly there are two types of clustering analysis: hierarchical clustering and 

non-hierarchical clustering. Hierarchical clustering can be calculable if there is a certain 

sort of distance/dissimilarity of the data point, and is able to join the data point based on 

close relationships among the point, until it can combine all the observed data set. 

Roughly speaking, it reduces multidimensional data to two dimensional data, with data 

labeling axis and clustering distance axis. The representative methods are: simple 

linkage, complete linkage, group average, weighted average, centroid, median, Ward’s 

method. If we set dissimilarity of i, j, k as Ci, Cj, Ck,  
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���� � �� , ��� � ���	�� , ��
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and the values of α, β and � are described in Table 1.  

 

Table 1. Parameters of hierarchical clustering methods and their evaluation. 

method αi αj β � dissimilarity monotony metric 

single 1/2 1/2 0 -1/2 no 

restriction 

T reduction 

complete 1/2 1/2 0 1/2 no 

restriction 

T expansion 

group 

average 

ni/(ni + 

nj) 

nj/(ni + 

nj) 

0 0 no 

restriction 

T conserved 

weighted 

average 

1/2 1/2 0 0 no 

restriction 

T conserved 

centroid ni/(ni + 

nj) 

nj/(ni + 

nj) 

- ni 

nj/(ni + 

nj)
2 

0 E2 F conserved 

& 

reduction 

median 1/2 1/2 -1/4 0 E2 F conserved 

& 

reduction 

Ward (ni + 

nk)/(ni 

+ nj + 

nk) 

(nj + 

nk)/(ni 

+ nj + 

nk) 

-nk/(ni 

+ nj + 

nk) 

0 E2’ T conserved 

& 

expansion 

 

E2, E2’, T, F are square Euclid distance, a half of square Euclid distance, true and false, 

respectively. It is easily recognizable that β, � values are correction values based on a 

triangle of i, j, k. Metric expansion/reduction mean renewal of ongoing clustering by 

farther distance of each data length/vice versa. Monotony means clustering of lengths at 

each calculation step is monotonically increasing; which is not true in centroid and 

median methods. Depending on the situation, either T or F case is favored.  

 Non-hierarchical clustering, for example k-means method, is an optimization 

method based on portioning of groups and classification. First of all, we have to set the 
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number of groups, k, among the data set. As dissimilarity, we use square Euclid distance. 

After that, we set initial grouping and score each group, and put samples one by one. 

We can select the score of lower case and repeat the process. In the sense that we should 

select the number of groups it is top-down approach, but from other aspects it is 

bottom-up. All these eight methods are easy to be equipped in computer and very 

frequently used, compared to other complex methodologies.  

 One problem for the analyses is, due to high dimensionality (more than 1000) 

of the samples, there is “curse of dimensionality” effect and the variances among 

samples become large and sparse, resulting in meaningless output of the clustering 

analysis (e.g. Ronan et al. 2016). A solution of this procedure is utilizing machine 

learning method for evaluation. However, the high dimensionality results in very large 

or sometimes incalculable value of Akaike information criterion, which exhibits a doubt 

to the solution appeared.  

 In this manuscript, we show you another mathematical solution for 

pretreatment of clustering analyses, based on rigid geometry. The most important part 

of clustering is what type of metric we use in the analyses, and we would like to say 

p-adic metric (of prime ideal) based on rigid geometry is very favorable to discriminate 

control samples and samples endured long-term storage. As a definition of metric, (i) it 

satisfies separation axiom (not necessarily non-negative); (ii) the identity of 

indiscernibles; (iii) it satisfies symmetry; (iv) it satisfies triangle inequality. As 

examples of metric, there are absolute distance, Chebyshev distance, Euclid distance, 

average Euclid distance, square Euclid distance, Minkowski distance, correlation 

efficiency, cosine efficiency etc. The selection of metric gives significant difference in 

output of the calculation (e.g. Ronan et al. 2016). The common principle for modern 

geometry is that it converts the observed values to either nilpotent state for 

convergence/divergence or -1 state for oscillation, to handle the system easier than the 

original system. Rigid geometry, which is most famous among similar mathematical 

field, based on complete non-archimedean field and has a history from 1962 introduced 

by John Tate (Tate 1971; Fujiwara and Kato 2006; Kato 2011), utilizing p-adic elliptic 

curve to solve the situation. Non-archimedean valuation of the system enables 

converged values in global, but locally freed values from high dimensionality. The 

topology is called G(Grothendieck)-topology. Probably we would be able to 

demonstrate the first successful example of applying rigid geometry to biological data 
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set, exhibiting freedom from “curse of dimensionality” effects that unifies the output 

topology of clustering without investing difficulty in interpreting the clustering results. 

 

2 Methods 

 

2.1 Cell culture 

Human HEK-293 cell line originated from embryonic kidney was purchased from 

RIKEN (Japan). The original cultures were frozen on either March the 18th 2013 (3 yrs 

sample) or March the 5th 2014 (2 yrs sample), and used in experiments between 

February and June 2016. The strain was cultured in MEM (Modified Eagle’s Medium) 

+ 10% FBS (Fatal Bovine Serum) + 0.1 mM NEAA (Non-Essential Amino Acid) at 

37°C with 5% CO2. Subculturing was performed in 0.25% trypsin, and original cells 

from RIKEN before our experiments, were frozen obeying the standard protocol of 

RIKEN: in culture medium with 10% DMSO (dimethyl sulfoxide), they were cooled 

until reaching 4°C at -2°C/min, stayed for 10 min, frozen until reaching -30°C at 

-1°C/min, stayed for 10 min, and cooled until reaching -80°C at -5°C/min and stayed 

overnight. The next day, they were transferred to liquid nitrogen storage. Freezing 

conditions for actual control experiments in our study are described in Results section. 

In brief, ‘fresh’ means fresh samples immediately underwent protein extraction 

processes. ‘1 h’ means they were harvested and stayed for 1 h at -80°C with freezing 

medium. ‘o/n-o/n’ means they were harvested and stayed overnight at -80°C with 

freezing medium, then transferred to liquid nitrogen storage overnight. 

 

2.2 Protein extraction, alkylation and digestion 

Proteins of HEK-293 were extracted by the standard protocol of RIPA Buffer (nacalai 

tesque, Inc., Kyoto, Japan). In brief, ~106 of harvested cells were washed in 

Krebs-Ringer-Buffer (KRB; 154 mM NaCl, 5.6 mM KCl, 5.5 mM glucose, 20.1 mM 

HEPES (pH 7.4), 25 mM NaHCO3) once. They were resuspended in 30 µl of RIPA 

Buffer, taking in and out through 21G needles for destruction and incubated on ice for 1 

h. Then they were centrifuged at 10,000 g for 10 min at 4°C, followed by collection of 

supernatants, quantified the amounts of proteins by Micro BCA Protein Assay Kit 

(ThermoFisher SCIENTIFIC, Inc., Waltham, U.S.A.) and continued to the processes of 

XL-Tryp Kit Direct Digestion (APRO SCIENCE, INC., Naruto, Japan). The samples 
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were solidified in acrylamide gels, washed twice in ultrapure water, washed again three 

times in dehydration solution, and dried. Then the samples were continued to the 

processes in In-Gel R-CAM Kit (APRO SCIENCE, INC., Naruto, Japan). The samples 

were reducted for 2 h at 37°C, alkylated for 30 min at room temperature, washed five 

times with ultrapure water and twice with destaining solution, then dried. The resultant 

samples were trypsinized overnight at 35°C. The next day, digested peptides dissolved 

were collected by ZipTipC18 (MERCK MILLIPORE, CORP., Billerica, U.S.A.). The 

tips were dampened with acetonitrile twice and equilibrated twice by 0.1% 

trifluoroacetic acid.  The peptides were collected by ~20 cycles of aspiration and 

dispensing, washed with 0.1% trifluoroacetic acid twice and eluted by 0.1% 

trifluoroacetic acid /50% acetonitrile with aspiration and dispensing five times × three 

tips followed by vacuumed drying up. The finalized samples were stored at -20°C. 

Before performing LC/MS, they were resuspended in 0.1% formic acid, and the 

amounts were quantified by Pierce Quantitative Colorimetric Peptide Assay 

(ThermoFisher SCIENTIFIC, Inc., Waltham, U.S.A.). 

 

2.3 LC/MS 

LC/MS was performed by Medical Research Support Center, Graduate School of 

Medicine, Kyoto University with Quadrupole-Time of flight [Q-Tof] type mass 

spectrometer TripleTOF 5600 (AB SCIEX Pte., Ltd., Concord, Canada). The 

procedures obeyed their standard protocols. The loading amounts for each sample were 

1 µg. The obtained quantitative data for identified proteins as Unused information were 

extracted by ProteinPilot 4.5.0.0 software (AB SCIEX Pte., Ltd., Concord, Canada).  

 

2.4 Clustering analyses and machine learning of the pattern 

Hierarchical clustering analyses were performed by standard hclust function in R 3.2.3 

(https://cran.r-project.org). The actual hierarchical methods used were: single linkage; 

complete linkage; group average; weighted average; centroid; median; Ward’s method. 

k-means method was performed by standard kmeans function in R 3.2.3. It was 

calculated based on all eleven samples. As machine learning program, 11-1-1 

hierarchical neural network analysis was performed in R 3.2.3 with a package nnet and 

factors cl (the number of raw) were calculated as a characterization index of pattern. For 

calculation, we only used Unused values appeared in all the eleven samples to avoid 
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distortion of the calculation come from failures in identification within LC/MS, not 

from significantly small signal values (N = 800). The actual data of Unused values for 

calculation are shown in Table S1.  

 

2.5 Utilizing a p-adic (I-adic) metric embedded on rigid geometry 

Now we set an analogy (a grounding metaphor) of biological data space (as base) and 

mathematical space (as target). We will not get into details of the opposite direction of 

analogy, as we still do not understand how the target space behaves in details 

mathematically. We will think a projection from the base to the target, and also utilize 

theories for formal schemes in analyses of projected data (linking metaphors). The 

improvement of mathematical metrics data of Unused values was directed by ideas in 

rigid geometry as follows. Please also refer Adachi (2016). In brief, the data from each 

sample were first arranged in their ranks k of Unused values Nk, approximated by 

logarithmic approximation:  �� � � � � ln �. 

The actual R2 values were approximately 0.84-0.95. Then  

�	�
 � ln �

��ln �  

was calculated as a deviation index from logarithmic distribution. After that,  

|�| � �����

�  

were calculated as an index of absolute fitness values for ln(protein density) predicted 

from logarithmic Boltzmann distribution of the protein signals. Then, average signal 

values of the sample E(N) was calculated and an expected overall cooperative fitness of 

each protein for their promising future � � |�|���� 

was calculated as p values of a p-adic (or prime ideal I-adic) metric of prime ideals. A 

Euclidean metric of a complex s = Re(s) + p√-1, �	Re	�	
 � Re	�


	 � 	�	 � �

	 

obviously satisfies (i) separation axiom; (ii) the identity of indiscernibles; (iii) 

symmetry; (iv) triangle inequality. s values also fulfill the requirement as a parameter of 

a high-dimensional theta function that converged absolutely and uniformly on complex 

three-dimensional compact subset (Neukirch 1999; Adachi 2016). To understand this, 

we would relate the theta function to the upper half plane �  �. Setting complex 
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���
! ", # � $∏ "& � � '� ! " | � � �(), and Hecke ring # is the Minkowski space. 

Then dual space of the Hecke ring #�

  � and natural logarithm of it, '#�|#�  *	�
 ln |�|) + '#�|#�  � ln|�|). We can successfully define '� ! � | � � #� �√�1#�


 ).  � + " / # / #� / #�

  

is the form we need for constituting theta function converging absolutely and uniformly 

on every compact subset # 0 # 0 � (Neukirch 1999). We can say s, and especially p, 

have quasi-compactnesses and quasi-separations.  

 Finally, a flag manifold,  

1 � ln ��ln �  

was calculated and a set of v is a coherent rigid analytic space with a coherent formal 

scheme '2�|2�  ln ��) (it has to be an adequate formal scheme but not necessary to 

be Noetherian scheme and thus we enable to include non-Noetherian schemes such as 

irreversible time-asymmetric model) divided by a p-adic blow-up lnp with 

quasi-compactness and quasi-separation (Fujiwara and Kato 2006; Kato 2011). If we 

regard 34 ��  is on Tate Algebra (this is a single assumption required for this work), a 

quotient by an ideal lnp is an isomorphic to k-Banach Algebra, which is an affinoid 

algebra with quasi-compactness and quasi-separation. v (in original non-archimedean it 

should be –v, however, the opposite sign does not make difference in further discussion 

as v metric) becomes affinoid in locally closed immersions among the affinoid varieties 

when the projections are bijective, neglecting the case p = 1 (Gerritzen and Grauert 

1969; Temkin 2005). From arithmetic calculations based on -v Nk space v is on an 

ultrametirc space, but now we calculate v from Nk and only think of v on Euclidean 

metric space. A Euclidean metric of v, �	1	 � 1

	 obviously satisfies (i) separation 

axiom; (ii) the identity of indiscernibles; (iii) symmetry; (iv) triangle inequality. We do 

not use the top k = 1 proteins for analyses due to the impossibility of the calculation by 

1/lnk reaching infinity.  

For the proof that v obeys rigid geometry, first, we show you Schottky-type 

uniformization of the elliptic curve on the complex. Let periodic lattice Λ, expected N 

to be E(N) and a normalization factor of P as Nk/E(N) = PDNk;  Λ � 278	9 � :9
, 
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	: ! � � '; ! "|ℑ	;
 < 0)
, ln ��� � ln ���
! ". 

" ���� >??@ "�  �� � �� , 
" Λ⁄ � "� B�⁄ � C2 | 2  D*	�
� mod�� � D���

��

����

E. 
Infinite dimensional covering of the last sentence is Schottky-type 

uniformization (c.f. Fujiwara and Kato 2006). Note that |q|p < 1. This is identical to 

geometric type of prime number theorem PE(N)πG(x) ~ PE(N)ex/x, where πG(x) is a 

prime counting function of the value x = Nk. On an Weierstrass elliptic curve E: y2 = 4x3 

– g2x –g3, Tate curve can be realizable only if  

|F	*
|� � G1728 J	
�

J	
� � 27J�

	
G < 1, 

which means assuming g2 << 1 and |g3| >> 1 would result in collapse of a Tate 

system. That is, if the relative effects from outside world on x variant is too large, the 

interacting efficiency of the x constitutes y2 would lose the identity of the system, and 

this limit the size of system.  

Then, let M be a differentiable manifold; Ω0(M) be a space of smooth function 

on a rigid analytic space M, Ωi(M) be a space of i-th differential form. di: Ωi(M) -> 

Ωi+1(M) represents exterior derivative and elements of Ker di and Im di are closed form 

and exact form, respectively. di+1 di = 0 and  0 K Ω�	M
 K Ω
	M
 K Ω		M
 K Ω�	M
 K N 

is a crystalline complex, cohomological to crystalline cohomology (Grothendieck, 1966; 

1968). That is,  O��
� 	M
 � Ker ��/Im ���
 

is an i-th crystalline cohomology group. Therefore Hi
dR = 0 and that ‘any i-th closed 

form is exact form’ are equivalent. We can take a set of rigid analytic space, modular Nk 

as Ω. Please note that setting p as an element of Coxeter group, an identity element of p 

corresponds to an identity element of Hecke ring. d = p is thus proper. Furthermore, i = 

v is smooth when p ≠ 1. Since exterior derivative of p is 0 and obviously p is exact form 

unless v = 0, Hi
dR = 0. v = lnN(t)/lnp (t is time) is obviously on unit polydiscs of rigid 

analytic space, rendering locally ringed G-topologized space with a sheaf of 

non-archimedean field, which ensures a covering by open subspaces isomorphic to 
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affinoids. Shifting –v (non-archimedean for 1/Nk = p-v) to v metric (non-archimedean for 

Nk = pv) does not change this property, considering 1/Nk space as basis. In other words, 

lnNk is related to the kernel of present signal space and lnp is related to the kernel of 

potential signal space, which is the image of past signal space. The division of them, v is 

the image of potential signal space, which reflects the physiological situation of the 

system adapted to expecting environments without any noise of current system. Overall, 

the system described here has a rigid cohomology (Kedlaya 2009). Considering Nk = 

PDNk and P = 1/(Daζ(s)) in this case (Adachi 2016),  

1 � �� ln � � � ln � � ln Q	�
*	�
 ln|�|  

and overconvergence of the v values is thus achieved due to cancelling out of high 

dimensionality in N, a together with topological characteristics (G-topology) of v on 

quasi-compactness and quasi-separation as mentioned before.  

 

3 Results 

3.1 Direct analyses of Unused values in LC/MS resulted in non-proper clustering 

of samples either by hierarchical or k-means clustering method, but showed 

obscure patterning by machine learning 

First, we extracted proteins from HEK-293 cells that underwent different freezing 

conditions. As a control, we collected ‘fresh’ samples from culturing cells, ‘1 h’ 

samples from the cells frozen for 1 h at -80°C, and ‘o/n-o/n’ samples from the cells 

frozen overnight at -80°C and subsequently transferred to liquid nitrogen overnight. For 

the samples of interest we used the sample preserved in liquid nitrogen for 2 or 3 years. 

See Methods for more detail. After performing LC/MS, we extracted information of 

Unused values and performed clustering analyses of various hierarchical clustering 

methods and also k-means methods. As results, the fluctuation based on different 

experiments affect the data to significant extents, such that we could not obtain any 

meaningful clustering by these methods as shown in Fig. 1. The control samples and the 

samples with long-term storage were mixed up. By machine learning based on neural 

network, however, exhibited clustering of cl values on both control samples and storage 

samples. The samples from 2-years-preservation varied from the control values, and an 

only 3-years sample occupied between those clusters (Fig. 1). These results suggest that 

there might be “curse of dimensionality” effects, which based on significantly varied 
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values of each data point in high dimensionality that disturbs convergence of the output 

values (e.g. Ronan et al. 2016). To confirm this idea, the number of unknown 

parameters in neural network is 1630. The image of these ideas is described in Fig. 2A. 

Obviously actual structures of geometric space are important for the resultant output of 

the calculation (Ronan et al. 2016). In this first analyses, we used simple Unused values 

as dissimilarity, partly in square Euclidean distance.  

 

3.2 A p-adic metric based on rigid geometry eliminated “curse of dimensionality” 

effects on LC/MS data 

To avoid the pitfalls described above, the first choice as a solution is to design more 

proper metric for calculations. If we set a proper metric for calculation based on 

geometry, which enables nilpotent for convergence/divergence of values and 

converging to the value of -1 as oscillation, we can extract more overconverged output 

from the observed data set to discriminate the characteristics observed. One of the 

popular methods for this trial is rigid geometry. Non-archimedean valuation field in the 

geometry is easy to converge compared to Archimedean real filed or complex field, 

with p-adic (I-adic) metric including a subring of norm < |1|. The geometry globally 

converges the values, but the values are locally free, enabling freedom from the 

restriction by “curse of dimensionality”. The example image to utilize this idea by 

quotient is described in Fig. 2B (e.g. Cornelissen and Kato 2005). Consider icosahedron 

with 12 vertices in blue color, 20 barycenters (the center of the triangle with 20 faces) in 

green color, 30 edges with 30 midpoints in red color. Projecting the icosahedron from 

its center to a sphere maps tessellation of the sphere by 120 triangles as shown in Fig. 

2B left. The angles are π/2 for red, π/3 for green, and π/5 for blue. A generator is:  

R � STQ 00 1U , VQ � Q�
 11 �	Q � Q�

WX , Q � �	��/� 

The icosahedron has 6 cyclic subgroups of order 5, 10 cyclic subgroups of order 3, and 

15 cyclic subgroups of order 2. The quotient of this Riemann sphere by the group I is 

shown in Fig. 2B right. 2, 3, 5 correspond to midpoints of edges, barycenters of faces, 

and vertices, respectively. The complexity of the system is much more simplified.  

 Now we defined a p-adic (I-adic) metric based on rigid geometry as in 

Methods section as a pretreatment of data before clustering/machine learning, and 

obtained the results as Fig. 3. Obviously control samples and samples of long-term 
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storage clustered separately in any type of proposed methods, suggesting freedom from 

“curse of dimensionality”. Although the means of variances in the original method and 

the rigid method do not represent the situation (60±10 and 6000±8000 for 95% 

confidential, respectively). The data from the rigid method have 10 outliers (See Fig. 4 

for the skewness) that have larger values than Euclidian values of the same ranks. When 

samples of top 10 variances are excluded, the means of variances become 44±5 and 

14±3, respectively, with p = 5 x 10-20 for t-test, indicating release from “curse of 

dimensionality”. As a control, machine learning by neural network showed the same 

tendency as the previous section, with the number of unknown parameter value as 1630.  

 Interestingly, the distribution of v values can be approximated by a power 

function with an absolute value of multiplier as ~3/2 (Fig. 4). If we set the multiplier as 

Hurwitz-Kronecker class number H(dH) (Adachi 2016), dH = 16 (Zagier 2000) and the 

dimension corresponds to a non-anomalous weight of 16 almost without internal 

interactions in Tachikawa and Yonekura (2016) and Witten (2016), on ν bands of 

Majorana fermion with 3 + 1 or 2 + 1 (3 spatial dimensional Nk and time dimension, or 

the parameter s of 2 real dimension and time-dimension) spacetime. For Majorana 

fermion, the particle and antiparticle are the same and in condensed matter physics, it 

can be regarded as quasiparticle. That is, if a group of a protein behaves as almost a 

single type of population regarding the synthetic fitness of it, it can be regarded as 

Majorana fermion.  

 

4 Discussion 

Utilizing p-adic rigid geometry, we seem to succeed in eliminating the “curse of 

dimensionality” effects from significantly diverged sample data, at least in LC/MS data 

set of HEK-293. Basically if the sum of the number of dimensions (∑nd) exceed the 

original number of model dimensions (in our case it should be n = 1630, according to 

neural network), the values could be converged assuming ∑nd – n number of traces 

becomes nilpotent (Weyl 1953). 800 x 11 = 8800 > 1630 and the observed convergence 

of v is expected beyond underdetermined system. To support this idea, clustering of f-1, 

f-2 and 2y2, which were mis-clustered in Fig. 1, could be clustered well in v metrics in 

all the methods (Fig. 5), with 800 x 3 = 2400 > 1606. At least this allows us to evaluate 

whether the samples are from nearly fresh materials or underwent significant lengths of 

storage at low temperatures. The success is entirely based on an algebraic, analytic and 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2016. ; https://doi.org/10.1101/094391doi: bioRxiv preprint 

https://doi.org/10.1101/094391
http://creativecommons.org/licenses/by-nc-nd/4.0/


topological geometric analysis based on rigid geometry. So far as we know, this is the 

first work that applies ‘rigid geometry’, as the term developing in mathematical fields 

since 1962, to biological studies. The interesting point is that this methodology can be 

applicable to any type of almost neutral logarithmic Boltzmann-type distribution in any 

type of systems interested. The agreement of results in both a supervised machine 

learning and several unsupervised clustering analyses demonstrates the power of this 

methodology. Even in biology, we can apply similar approach from protein society 

inside cells in this study to community dynamics in microbes (Adachi 2016). 

Application to other research field such as chemistry, physics, astronomy and earth 

science, is promising if we can successfully introduce ‘fitness’ idea to the fields.  

 dH = 16 case can be interpreted as (2 dimensional s × 4 usual spacetime 

dimensions) × 2 (interaction of the two particles) = 16. In other word 2^2^2 (three 2s 

with multipliers) = 16. This model neglects fluctuation to the other dimensions that 

results in 24 dimensions (See also Adachi 2016). In this case,  

1 � ln ��ln � � Y Y !
� Ψ 

 is a four-component Majorana fermion with weak coupling (Tachikawa and Yonekura 

2016).  

 

5 Conclusions  

We have succeeded in the release from “curse of dimensionality” of observed difference 

among the samples of long term storages and control samples with LC/MS data in 

HEK-293 cells. The success was entirely based on topological characteristics of p-adic 

metric on rigid geometry. It may have a potential to calculate a characteristic value of a 

system with almost neutral logarithmic Boltzmann distribution of any type.  
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Legends to Figures 

 

Fig. 1. Clustering of Unused value sets of each protein in LC/MS (N = 800). f-1, 2, 3; 

freshly prepared ‘fresh’ samples in experiments 1, 2, 3, respectively. 1h1, 1h2; samples 

frozen at -80°C for 1 h (‘1h’) in experiments 1, 2, respectively. o/1, o/2; samples stayed 

at -80°C o/n and then in liquid nitrogen storage o/n (‘o/n-o/n’) in experiments 1, 2, 

respectively. 2y1, 2, 3; samples preserved in liquid nitrogen storage of RIKEN for 

approximately 2 years in experiments 1, 2, 3, respectively. 3y; a sample preserved in 

liquid nitrogen storage of RIKEN for approximately 3 years. The numbers in k-means 

method are the index numbers of classified groups. The numbers in neural network are 

factors cl values, which represents one-dimensional characteristics of the systems. 

Please also read Methods. 

 

Fig. 2. (A) “Curse of dimensionality” effects, with sparser geometric distribution of data 

points. See also Ronan et al. (2016). (B) Example of geometric conversion to a simpler 

system: quotient of icosahedral tessellation on a Riemann sphere by I. See also 

Cornelissen and Kato (2005).  

 

Fig. 3. Clustering of newly invented v value sets of each protein in LC/MS (N = 800). 

f-1, 2, 3; freshly prepared ‘fresh’ samples in experiments 1, 2, 3, respectively. 1h1, 1h2; 

samples frozen at -80°C for 1 h (‘1h’) in experiments 1, 2, respectively. o/1, o/2; 

samples stayed at -80°C o/n and then in liquid nitrogen storage o/n (‘o/n-o/n’) in 

experiments 1, 2, respectively. 2y1, 2, 3; samples preserved in liquid nitrogen storage of 

RIKEN for approximately 2 years in experiments 1, 2, 3, respectively. 3y; a sample 

preserved in liquid nitrogen storage of RIKEN for approximately 3 years. The numbers 

in k-means method are the index numbers of classified groups. The numbers in neural 

network are factors cl values, which represents one-dimensional characteristics of the 

systems. Please also read Methods. 

 

Fig. 4. Ranked variance distributions of Unused values and v values of proteins used for 

calculations (N = 800). x-axis; the rank of values. y-axis; the actual variance values.  
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Fig. 5. Clustering of newly invented v value sets of each protein in LC/MS (N = 800). 

f-1, 2; freshly prepared ‘fresh’ samples in experiments 1, 2 respectively. 2y2; a sample 

preserved in liquid nitrogen storage of RIKEN for approximately 2 years in the 

experiment 2. The numbers in k-means method are the index numbers of classified 

groups. The numbers in neural network are factors cl values, which represents 

one-dimensional characteristics of the systems. Please also read Methods. 

 

Table S1. The table of Unused values for identified proteins. Please also see the legend 

of Fig. 1.  
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