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ABSTRACT	1	
Objective:  The advent of Electronic Medical Records (EMR) with large electronic imaging 2	
databases along with advances in deep neural networks with machine learning has provided a 3	
unique opportunity to achieve milestones in automated image analysis. Optical coherence 4	
tomography (OCT) is the most commonly obtained imaging modality in ophthalmology and 5	
represents a dense and rich dataset when combined with labels derived from the EMR. We 6	
sought to determine if deep learning could be utilized to distinguish normal OCT images from 7	
images from patients with Age-related Macular Degeneration (AMD).	8	

	9	

Design: EMR and OCT database study	10	

	11	

Subjects: Normal and AMD patients who had a macular OCT.	12	

	13	

Methods: Automated extraction of an OCT imaging database was performed and linked to 14	
clinical endpoints from the EMR. OCT macula scans were obtained by Heidelberg Spectralis, 15	
and each OCT scan was linked to EMR clinical endpoints extracted from EPIC. The central 11 16	
images were selected from each OCT scan of two cohorts of patients: normal and AMD. Cross-17	
validation was performed using a random subset of patients. Receiver operator curves (ROC) 18	
were constructed at an independent image level, macular OCT level, and patient level. 	19	

	20	

Main outcome measure: Area under the ROC.	21	

	22	

Results: Of a recent extraction of 2.6 million OCT images linked to clinical datapoints from the 23	
EMR, 52,690 normal macular OCT images and 48,312 AMD macular OCT images were 24	
selected. A deep neural network was trained to categorize images as either normal or AMD. At 25	
the image level, we achieved an area under the ROC of 92.78% with an accuracy of 87.63%. At 26	
the macula level, we achieved an area under the ROC of 93.83% with an accuracy of 88.98%. 27	
At a patient level, we achieved an area under the ROC of 97.45% with an accuracy of 93.45%. 28	
Peak sensitivity and specificity with optimal cutoffs were 92.64% and 93.69% respectively.	29	

	30	
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Conclusions: Deep learning techniques achieve high accuracy and is effective as a new image 31	
classification technique. These findings have important implications in utilizing OCT in 32	
automated screening and the development of computer aided diagnosis tools in the future.	33	

	34	

	 	35	
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INTRODUCTION	36	

	37	

Optical coherence tomography (OCT) has become the most commonly used imaging modality 38	
in ophthalmology with 4.39 million, 4.93 million, and 5.35 million OCTs performed in 2012, 2013, 39	
and 2014 respectively in the US Medicare population.1 Since its development in 1991,2 a 70-fold 40	
increase in OCT use for diagnosing age-related macular degeneration (AMD) was reported 41	
between 2002 and 2009.3 Furthermore, since the development of anti-angiogenic agents, OCT 42	
has become a critical tool for baseline retinal evaluation prior to initiation of therapy and 43	
monitoring therapeutic effect.4,5 This increase in the use of OCT imaging, with images stored in 44	
large electronic databases, highlights the ever-increasing time and effort spent by providers 45	
interpreting images.	46	

	47	

The key OCT findings in AMD, including drusen, retinal pigmented epithelium (RPE) changes, 48	
and subretinal and intraretinal fluid,4 share some common OCT features that are distinctively 49	
different from a normal retina.6 Correct identification of these characteristics allows for precise 50	
management of neovascular AMD and guides the decision of whether intravitreal therapy with 51	
anti-VEGF agents should be given or not.7–9  Computer aided diagnosis (CAD) has the potential 52	
for allowing more efficient identification of pathological OCT images and directing the attention 53	
of the clinician to regions of interest on the OCT images. 	54	

	55	

The concept of CAD is not novel and has been applied in radiology, a field where the increasing 56	
demand of imaging studies has begun to outpace the capacity of practicing radiologists.10 A 57	
number of CAD systems have been approved by the Food and Drug Administration (FDA) for 58	
lesion detection and volumetric analysis in mammography, chest radiography, and chest 59	
computed tomography.11	60	

	61	

Traditional image analysis required the manual development of convolutional matrices applied 62	
to an image for edge detection and feature extraction. In addition, prior work on OCT image 63	
classification of diseases has relied on machine learning techniques such as Principal 64	
Components Analysis, Support Vector Machine, or Random Forest.12–14 However recently, there 65	
has been a revolutionary step forward in machine learning techniques with the advent of deep 66	
learning where a many-layered neural network is trained to develop these convolutional 67	
matrices purely from training data.15 Specifically, the development of convolutional neural 68	
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network layers allowed for significant gains in the ability to classify images and detect objects in 69	
a picture.16–18 Within ophthalmology, deep learning has been recently applied at a limited 70	
capacity  to automated detection of diabetic retinopathy from fundus photos, visual field 71	
perimetry in glaucoma patients, grading of nuclear cataracts, and segmentation of foveal 72	
microvasculature, each with promising initial findings.19–22	73	

	74	

While deep learning has revolutionized the field of computer vision, their application is usually 75	
limited due to the lack of large training sets. Often several tens of thousands of examples are 76	
required before deep learning can be used effectively. With the ever increasing use of OCT as 77	
an imaging modality in ophthalmology along with the use of codified structured clinical data in 78	
the Electronic Medical Record (EMR), we sought to link two large datasets together to use as a 79	
training set for developing a deep learning algorithm to distinguish AMD from normal OCT 80	
images. 	81	

	82	

METHODS	83	

	84	

This study was approved by the Institutional Review Board of the University of Washington 85	
(UW) and was in adherence with the tenets of the Declaration of Helsinki and the Health 86	
Insurance Portability and Accountability Act. 	87	

	88	

OCT and EMR Extraction	89	
Macular OCT scan were extracted using an automated extraction tool from the Heidelberg 90	
Spectralis imaging database from 2006 to 2016. Each macular scan was obtained using a 61 91	
line raster macula scan, and every image of each macular OCT was extracted. The images 92	
were then linked by patient medical record number and dates to the clinical data stored in EPIC. 93	
Specifically, all clinical diagnoses and the dates of every clinical encounter, macular laser 94	
procedures, and intravitreal injections were extracted from the EPIC Clarity tables. 	95	

	96	

Patient and Image Selection	97	
A normal patient was defined as having no retinal ICD-9 diagnosis and better than 20/30 vision 98	
in both eyes during the entirety of recorded clinical history at UW. An AMD patient was defined 99	
as having the ICD-9 diagnosis of AMD (362.50, 362.51, and 362.52) by a retina specialist, at 100	
least one intravitreal injection in either eye, and worse than 20/30 vision in the better seeing 101	
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eye. Patients with other macular pathology by ICD-9 code were excluded. These parameters 102	
were chosen a priori to ensure that macular pathology was most likely present in both eyes in 103	
the AMD patients and absent in both eyes in the normal patients. Consecutive images of 104	
patients meeting this criteria were included and no images were excluded due to image quality. 105	
Labels from the EMR were then linked to the OCT macular images, and the data was stripped 106	
of all protected health identifiers.	107	

	108	

As most of the macular pathology is concentrated in foveal region, the decision was made a 109	
priori to select the central 11 images from each macular OCT set, and each image was then 110	
treated independently, labeled as either normal or AMD. The images were histogram equalized 111	
and the resolution down-sampled to 192x124 due to limitations of memory. The image set was 112	
then divided into two sets with 20% of the patients in each group placed into the validation set 113	
and the rest were used for training. Care was taken to ensure that the validation set and the 114	
training set contained images from mutually exclusive group of patients (i.e. no single patient 115	
contributed images to both the training and validation set). The order of images was then 116	
randomized in the training set. 	117	

	118	

Deep Learning Classification Model	119	
A modified version of the VGG16 convolutional neural network23 was used as the deep learning 120	
model for classification (Figure 1). Weights were initialized using the Xavier algorithm.24 Training 121	
was then performed using multiple iterations each with a batch size of 100 images with a 122	
starting learning rate of 0.001 with stochastic gradient descent optimization. At each iteration, 123	
the loss of the model was recorded, and at every 500 iterations, the performance of the neural 124	
network was assessed using cross-validation with the validation set. The training was stopped 125	
when the loss of the model decreased and the accuracy of the validation set decreased. 	126	

	127	

An occlusion test17 was performed to identify the areas most contributing to the neural network 128	
assigning the category of AMD. A blank 20x20 pixel box was systematically moved across every 129	
possible position in the image and the probabilities were recorded. The highest drop in the 130	
probability represents the region of interest that contributed the highest importance to the deep 131	
learning algorithm.	132	

	133	
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Caffe (http://caffe.berkeleyvision.org/) and Python (http://www.python.org) were used to perform 134	
deep learning. All training occurred using the NVIDIA Pascal Titan X Graphics Processing Unit 135	
(GPU) with NVIDA cuda (v8.0) and cu-dnn (v5.5.1) libraries (http://www.nvidia.com). Macular 136	
OCT level analysis was performed by averaging the probabilities of the images obtained from 137	
the same macular OCT. Patient level analysis was performed by averaging the probabilities of 138	
the images obtained from the same patient. Receiver-operator curves (ROC) were constructed 139	
using the probability output from the deep learning model. Statistics were performed using R 140	
(http://www.r-project.org). 	141	

	142	

RESULTS	143	

	144	

We successfully extracted 2.6 million OCT images of 43,328 macular OCT scans from 9,285 145	
patients. After linking the macular OCT scans to the EMR, 48,312 images from 4,392 normal 146	
OCT scans and 52,690 images from 4,790 AMD OCT scans were selected. A total of 80,839 147	
images (41,074 from AMD, 39,765 from normal) were used for training and 20,163 images 148	
(11,616 from AMD, 8,547 from normal) were used for validation. 	149	

	150	

After 8,000 iterations of training the deep learning model, the training was stopped due to 151	
overfitting occurring after that point.(Figure 2) ROC curves are shown at the image level, OCT 152	
macular level, and the patient level in Figure 3. The average time to evaluate a single image 153	
after training was complete was 4.97 milliseconds. 	154	

	155	

At the level of each individual image, we achieved an accuracy of 87.63% with a sensitivity of 156	
84.63% and a specificity of 91.54%. After constructing an ROC curve, the peak sensitivity and 157	
specificity with optimal cutoffs were 87.08% and 87.05% respectively. The area under the ROC 158	
curve (AUROC) was 92.77%. 	159	

	160	

By grouping the images in the same OCT scan and averaging the probabilities from each 161	
image, we achieved an accuracy of 88.98% with a sensitivity of 85.41% and a specificity of 162	
93.82%. After constructing the ROC curve, the peak sensitivity and specificity with optimal 163	
cutoffs were 88.63% and 87.77%. The AUROC was 93.82%.	164	

	165	
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By averaging the probabilities from each image from the same patient, we achieved an 166	
accuracy of 93.45% with a sensitivity of 83.82% and a specificity of 96.40%. After constructing 167	
the ROC curve, the peak sensitivity and specificity with optimal cutoffs were 92.64% and 168	
93.69%. The AUROC was 97.46%.	169	

	170	

Example images from the occlusion test are shown in Figure 4 showing that the neural network 171	
was successfully able to identify pathological regions on the OCT. These areas represent the 172	
most critical area in each image to the trained network in categorizing the image as AMD. 	173	

	174	

DISCUSSION	175	

	176	

The ever increasing use of digital imaging and EMRs provide opportunities to create deep and 177	
rich datasets for analysis. Our study demonstrates that a deep learning neural network was 178	
effective at distinguishing AMD from normal OCT images, and its accuracy was even higher 179	
when aggregate probabilities at the OCT macular scan and patient level were combined. The 180	
increase in the AUROC mainly occurred with an increase in the sensitivity (Figure 3) with 181	
inclusion of more images when aggregated. This most likely occurred as AMD infrequently 182	
affects the entire macula and normal appearing OCT images may be mixed in with a macular 183	
OCT scan obtained from an AMD patient. Another possible explanation is that the etiology of 184	
the CNVM may be incorrect in the EMR. For example, our AMD labeled images may have 185	
included myopic CNVM which has localized pathology with relatively normal OCTs outside the 186	
CNVM area. Thus, adding additional images may explain the increased sensitivity. 	187	

	188	

Only limited applications of deep learning models exist in ophthalmology. Abramoff et al. 189	
reported sensitivity of 96.8% and specificity of 87.0% in detecting referable diabetic retinopathy 190	
in 874 patients using deep learning model, but no details of the algorithm were included.20 191	
Asaoka et al. used a deep learning method to differentiate the visual fields of 27 patients with 192	
preperimetric open angle glaucoma from 65 controls.19 The AUROC of 92.6% was achieved 193	
with this study’s feed-forward network classifier, but the algorithm only used four layers of 194	
neurons. In contrast, our study deep learning algorithm included 21 layers of neurons with state 195	
of the art convolutional neural networking layers. Other smaller studies that have applied 196	
automated OCT classification algorithms did not integrate deep learning strategies and was 197	
limited by small sample size ranging from 32 to 384.12,19,20	198	
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 	199	

Our deep learning algorithm is a novel application to OCT classification in ophthalmology. To 200	
our best knowledge, the use of training and validation images from large EMR extraction has 201	
never been shown. In order to verify how the deep learning algorithm categorized the images as 202	
AMD, we performed an occlusion test where we systematically occluded every location in the 203	
image with a blank 20x20 pixel area.  The deep learning neural network successfully identified 204	
key areas of interest on the OCT image, which corresponded to the areas of pathology (Figure 205	
4).  206	
 207	
The application of occlusion testing provides insight into the trained deep learning model and 208	
which features were most important in distinguishing AMD images from normal images. In 209	
Figure 4C, occlusion testing did not show high intensity dependence in the area of nasal high 210	
choroidal transmission suggesting that the classifier was not using this as an important feature. 211	
One possible explanation is that in distinguishing normal from AMD OCT images, the classifier 212	
already achieved very low loss (Figure 2B) using the identified features and never discovered 213	
further improvements. Further studies could be performed where a classifier is specifically 214	
trained to distinguish specific AMD OCT features such as drusen, subretinal fluid, pigment 215	
epithelial detachments, and high choroidal transmission from each other. 	216	

	217	

Our study findings have several limitations. We only included images from patients who met our 218	
study criteria and the neural network was only trained on these images. However, we included 219	
consecutive real-world images and did not exclude images with poor quality. In addition, the 220	
training of this model was only done on images from a single academic center and the external 221	
generalizability is unknown. Future studies would include expanding the number of diagnoses, 222	
using all images from a macular OCT scan, including images from different OCT manufacturers, 223	
and validation on OCT scans from other institutions.	224	

	225	

In the future, our approach may be used to develop deep learning models that can have a 226	
number of wide-reaching applications. First, the models can be applied to various retinal or 227	
choroidal pathologies in which OCT evaluations are essential, including diabetic retinopathy or 228	
retinal vein occlusions. Second, in future studies using deep learning, automated macular OCT 229	
classification could be used as a screening tool for retinal pathology when the hardware cost of 230	
OCT machines decreases. This automated classification could be added to the majority of OCT 231	
machines being used in clinical practice without the need of integrating GPU as the inference 232	
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step of deep learning is computationally inexpensive compared to training and can be run on 233	
standard computers. The automated classification feature will likely be beneficial in a large 234	
screening model such as in an AMD screening system. Finally, deep learning models can 235	
identify concerning macular OCT images and efficiently display them to the clinician to aid in the 236	
diagnosis and treatment of macular pathology, much like computer-aided diagnosis models 237	
found in radiology. 	238	

	239	

In conclusion, we demonstrate the ability of a deep learning model to distinguish AMD versus 240	
normal OCT images and show encouraging results for the first application of deep learning to 241	
OCT images. Future follow up studies will include widening the number of diseases and 242	
showing external validity of the model using images from other institutions. 	243	

	244	

ACKNOWLEDGEMENTS	245	
We would like to thank Dr. Michael Boland for his assistance in identifying EPIC Clarity 246	
database values, the UW eScience Institute for their infrastructure support, and especially 247	
NVIDIA Corporation for their hardware GPU donation. 	248	

	249	

REFERENCES	250	

	251	

1.		 Centers	for	Medicare	&	Medicaid	Services.	Medicare	Provider	Utilization	and	Payment	252	
Data:	Physician	and	Other	Supplier.	https://www.cms.gov/Research-Statistics-Data-and-253	
Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-254	
Other-Supplier.html.	Accessed	May	20,	2016.	255	

2.		 Huang	D,	Swanson	EA,	Lin	CP,	Schuman	JS,	Stinson	WG,	Chang	W,	Hee	MR,	Flotte	T,	256	
Gregory	K,	Puliafito	CA,	others.	Optical	coherence	tomography.	Sci	N	Y	NY.	257	
1991;254(5035):1178.	258	

3.		 Stein	JD,	Hanrahan	BW,	Comer	GM,	Sloan	FA.	Diffusion	of	Technologies	for	the	Care	of	259	
Older	Adults	With	Exudative	Age-Related	Macular	Degeneration.	Am	J	Ophthalmol.	260	
2013;155(4):688-696.e2.	doi:10.1016/j.ajo.2012.10.003.	261	

4.		 Keane	PA,	Patel	PJ,	Liakopoulos	S,	Heussen	FM,	Sadda	SR,	Tufail	A.	Evaluation	of	Age-262	
related	Macular	Degeneration	With	Optical	Coherence	Tomography.	Surv	Ophthalmol.	263	
2012;57(5):389-414.	doi:10.1016/j.survophthal.2012.01.006.	264	

5.		 Ilginis	T,	Clarke	J,	Patel	PJ.	Ophthalmic	imaging.	Br	Med	Bull.	2014;111(1):77-88.	265	
doi:10.1093/bmb/ldu022.	266	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/094276doi: bioRxiv preprint 

https://doi.org/10.1101/094276
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.		 Sayanagi	K,	Sharma	S,	Yamamoto	T,	Kaiser	PK.	Comparison	of	Spectral-Domain	versus	267	
Time-Domain	Optical	Coherence	Tomography	in	Management	of	Age-Related	Macular	268	
Degeneration	with	Ranibizumab.	Ophthalmology.	2009;116(5):947-955.	269	
doi:10.1016/j.ophtha.2008.11.002.	270	

7.		 Keane	PA,	Liakopoulos	S,	Jivrajka	RV,	Chang	KT,	Alasil	T,	Walsh	AC,	Sadda	SR.	Evaluation	of	271	
Optical	Coherence	Tomography	Retinal	Thickness	Parameters	for	Use	in	Clinical	Trials	for	272	
Neovascular	Age-Related	Macular	Degeneration.	Investig	Opthalmology	Vis	Sci.	273	
2009;50(7):3378.	doi:10.1167/iovs.08-2728.	274	

8.		 Reznicek	L,	Muhr	J,	Ulbig	M,	Kampik	A,	Mayer	WJ,	Haritoglou	C,	Neubauer	A,	Wolf	A.	275	
Visual	acuity	and	central	retinal	thickness:	fulfilment	of	retreatment	criteria	for	recurrent	276	
neovascular	AMD	in	routine	clinical	care.	Br	J	Ophthalmol.	2014;98(10):1333-1337.	277	
doi:10.1136/bjophthalmol-2013-304399.	278	

9.		 Pron	G.	Optical	coherence	tomography	monitoring	strategies	for	A-VEGF–treated	age-279	
related	macular	degeneration:	an	evidence-based	analysis.	Ont	Health	Technol	Assess	Ser.	280	
[Internet].	2014	August;14(10):1–64.Available	from:	281	
http://www.hqontario.ca/evidence/publications-and-ohtac-recommendations/ontario-282	
health-technology-assessment-series/OCT-monitoring-strategies.	283	

10.		 Smieliauskas	F,	MacMahon	H,	Salgia	R,	Shih	Y-CT.	Geographic	Variation	in	Radiologist	284	
Capacity	and	Widespread	Implementation	of	Lung	Cancer	CT	Screening.	J	Med	Screen.	285	
2014;21(4):207-215.	doi:10.1177/0969141314548055.	286	

11.		 Van	Ginneken	B,	Schaefer-Prokop	CM,	Prokop	M.	Computer-aided	Diagnosis:	How	to	287	
Move	from	the	Laboratory	to	the	Clinic.	Radiology.	2011;261(3):719-732.	288	
doi:10.1148/radiol.11091710.	289	

12.		 Lemaître	G,	Rastgoo	M,	Massich	J,	Cheung	CY,	Wong	TY,	Lamoureux	E,	Milea	D,	290	
Mériaudeau	F,	Sidibé	D.	Classification	of	SD-OCT	Volumes	Using	Local	Binary	Patterns:	291	
Experimental	Validation	for	DME	Detection.	J	Ophthalmol.	2016;2016:1-14.	292	
doi:10.1155/2016/3298606.	293	

13.		 Srinivasan	PP,	Kim	LA,	Mettu	PS,	Cousins	SW,	Comer	GM,	Izatt	JA,	Farsiu	S.	Fully	294	
automated	detection	of	diabetic	macular	edema	and	dry	age-related	macular	295	
degeneration	from	optical	coherence	tomography	images.	Biomed	Opt	Express.	296	
2014;5(10):3568.	doi:10.1364/BOE.5.003568.	297	

14.		 Liu	Y-Y,	Chen	M,	Ishikawa	H,	Wollstein	G,	Schuman	JS,	Rehg	JM.	Automated	macular	298	
pathology	diagnosis	in	retinal	OCT	images	using	multi-scale	spatial	pyramid	and	local	299	
binary	patterns	in	texture	and	shape	encoding.	Med	Image	Anal.	2011;15(5):748-759.	300	
doi:10.1016/j.media.2011.06.005.	301	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/094276doi: bioRxiv preprint 

https://doi.org/10.1101/094276
http://creativecommons.org/licenses/by-nc-nd/4.0/


15.		 Arel	I,	Rose	DC,	Karnowski	TP.	Deep	Machine	Learning	-	A	New	Frontier	in	Artificial	302	
Intelligence	Research	[Research	Frontier].	IEEE	Comput	Intell	Mag.	2010;5(4):13-18.	303	
doi:10.1109/MCI.2010.938364.	304	

16.		 Krizhevsky	A,	Sutskever	I,	Hinton	GE.	Imagenet	classification	with	deep	convolutional	305	
neural	networks.	In:	Advances	in	Neural	Information	Processing	Systems.	;	2012:1097-306	
1105.	http://papers.nips.cc/paper/4824-imagenet-classification-w.	Accessed	October	20,	307	
2016.	308	

17.		 Zeiler	MD,	Fergus	R.	Visualizing	and	understanding	convolutional	networks.	In:	European	309	
Conference	on	Computer	Vision.	Springer;	2014:818-833.	310	
http://link.springer.com/chapter/10.1007/978-3-319-10590-1_53.	Accessed	October	20,	311	
2016.	312	

18.		 Kavukcuoglu	K,	Sermanet	P,	Boureau	Y-L,	Gregor	K,	Mathieu	M,	Cun	YL.	Learning	313	
convolutional	feature	hierarchies	for	visual	recognition.	In:	Advances	in	Neural	314	
Information	Processing	Systems.	;	2010:1090-1098.	http://papers.nips.cc/paper/4133-315	
learning-convolutional-feature-hierarchies-for-visual-recognition.	Accessed	October	20,	316	
2016.	317	

19.		 Asaoka	R,	Murata	H,	Iwase	A,	Araie	M.	Detecting	Preperimetric	Glaucoma	with	Standard	318	
Automated	Perimetry	Using	a	Deep	Learning	Classifier.	Ophthalmology.	2016;123(9):1974-319	
1980.	doi:10.1016/j.ophtha.2016.05.029.	320	

20.		 Abràmoff	MD,	Lou	Y,	Erginay	A,	Clarida	W,	Amelon	R,	Folk	JC,	Niemeijer	M.	Improved	321	
Automated	Detection	of	Diabetic	Retinopathy	on	a	Publicly	Available	Dataset	Through	322	
Integration	of	Deep	LearningDeep	Learning	Detection	of	Diabetic	Retinopathy.	Invest	323	
Ophthalmol	Vis	Sci.	2016;57(13):5200-5206.	doi:10.1167/iovs.16-19964.	324	

21.		 Gao	X,	Lin	S,	Wong	TY.	Automatic	Feature	Learning	to	Grade	Nuclear	Cataracts	Based	on	325	
Deep	Learning.	IEEE	Trans	Biomed	Eng.	2015;62(11):2693-2701.	326	
doi:10.1109/TBME.2015.2444389.	327	

22.		 Prentašic	P,	Heisler	M,	Mammo	Z,	Lee	S,	Merkur	A,	Navajas	E,	Beg	MF,	Šarunic	M,	Loncaric	328	
S.	Segmentation	of	the	foveal	microvasculature	using	deep	learning	networks.	J	Biomed	329	
Opt.	2016;21(7):075008.	doi:10.1117/1.JBO.21.7.075008.	330	

23.		 Simonyan	K,	Zisserman	A.	Very	deep	convolutional	networks	for	large-scale	image	331	
recognition.	ArXiv	Prepr	ArXiv14091556.	2014.	http://arxiv.org/abs/1409.1556.	Accessed	332	
October	20,	2016.	333	

24.		 Glorot	X,	Bengio	Y.	Understanding	the	difficulty	of	training	deep	feedforward	neural	334	
networks.	In:	Aistats.	Vol	9.	;	2010:249-256.	335	
http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf?hc_location=ufi.	336	
Accessed	October	20,	2016.	337	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/094276doi: bioRxiv preprint 

https://doi.org/10.1101/094276
http://creativecommons.org/licenses/by-nc-nd/4.0/


	338	

FIGURE LEGENDS	339	

	340	

FIGURE 1: Schematic of the deep learning model used. A total of 21 layers with Rectified Linear 341	
Unit (ReLU) activations were used. 	342	

	343	

FIGURE 2: Learning curve of the training of the neural network with accuracy (A) and loss (B). 344	
Each iteration represents 100 images being trained on the neural network. 	345	

	346	

FIGURE 3: Receiver-operator curves of three levels of classification. Image level classification 347	
was performed by considering each image independently. Macula level classification was 348	
performed by averaging the probabilities of all the images in a single macular volume. Patient 349	
level classification was performed by averaging the probabilities of all the images belonging to a 350	
single patient. 	351	

	352	

FIGURE 4: Examples of identification of pathology by deep learning algorithm. Images of optical 353	
coherence tomography (OCT) with age-related macular degeneration (AMD) pathology (A, B, C) 354	
are used as input images and hotspots (D, E, F) are identified using an occlusion test from the 355	
deep learning algorithm. The intensity of the color is determined by the drop in the probability of 356	
being labeled AMD when occluded. 	357	
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Table 1 – Baseline characteristics. 

  Normal AMD 
Images, n 48312 52690 
Macular 
Volumes, n 4392 6364 
Patients, n 1259 347 
Age, mean (SD) 56.96 14.76 70.1 17.58 
Gender     
  Male, n (%) 21615 44.74 25069 47.58 
  Female, n (%) 26697 55.26 27621 52.42 
Eye     
  Right, n (%) 24167 50.02 26246 49.81 
  Left, n (%) 24145 49.98 26444 50.19 
LogMAR VA, 
mean (SD) 0.00057 0.0648 0.3839 0.4999 
AMD, age-related macular degeneration; SD, standard deviation; VA, visual acuity 
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