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Abstract

Background: Replication timing experiments that use label incorporation and
high throughput sequencing produce peaked data similar to ChIP-Seq
experiments. However, the differences in experimental design, coverage density,
and possible results make traditional ChIP-Seq analysis methods inappropriate for
use with replication timing.

Results: To accurately detect and classify regions of replication across the
genome, we present Repliscan. Repliscan robustly normalizes, automatically
removes outlying and uninformative data points, and classifies Repli-seq signals
into discrete combinations of replication signatures. The quality control steps and
self-fitting methods makes Repliscan generally applicable and more robust than
previous methods that classify regions based on thresholds.

Conclusions: Repliscan is simple and effective to use on organisms with different
magnitude genome sizes and sequencing coverage as low as 2.4x.
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Background
The most essential property of the cell is its ability to accurately duplicate its DNA

and divide to produce two daughter cells [1]. The cell’s replication cycle starts with

G1 phase, in which molecules essential for cell division are produced, then proceeds

to replicating DNA in S phase. After all DNA in the genome is duplicated, the

cell continues to grow in G2 phase until it divides into two daughter cells at the

end of Mitosis, or M phase, at which point it is ready to start the cell cycle again

(Figure 1).

To ensure accuracy and efficiency, S phase is complex and highly regulated. In-

stead of duplicating in a single zipping motion, reminiscent of transcription, DNA is

synthesized in regions at distinct times in eukaryotes, initiating at multiple origins

of replication [2]. This synthesis process takes place in a live cell, so replication

mechanisms need to be coordinated with active transcription and chromatin con-

figuration. For example, early replication correlates with chromatin accessibility

[3].

To better understand the coordinated program of DNA replication, two types of

protocols have been developed to examine genome-wide DNA replication during S

phase: one based on the time of replication, TimEx [4, 5], and the other based on

incorporation of a labeled precursor into newly replicated DNA, Repli-seq/Repli-

chip [6, 7, 8, 9, 10, 11]. Time of replication (TimEx) measures DNA coverage at
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Figure 1 Overview of the cell cycle. Cell division takes place in two stages: interphase and
mitosis. Interphase is when a cell copies its genome in preparation to physically divide during
mitosis. Interphase starts with cell growth and preparation for DNA synthesis in Gap (G1). After
G1, DNA is replicated in regions during the Synthesis (S) phase. The cell then transitions into a
second growth phase - Gap 2 (G2). When the cell has finished growing, the cell divides into two
daughter cells in Mitosis (M).

sequential times in S-phase. The normalized early S-phase signal should be mostly

1x coverage, additively transitioning to 2x coverage in late S-phase. In contrast to

this method, Repli-seq/Repli-chip works by only sequencing newly replicated DNA.

Theoretically, in a single cell, this means once a region is replicated, it should not

appear in samples taken at later times, except in the case of allelic timing differences.

Both methods have been shown to yield similar results [12, 13] for when and where

genomic regions replicate, but each requires a distinct type of analysis. The methods

described in this paper focuses on data produced by label incorporation (Repli-seq).

Data Description

In continuation to our analysis of A. thaliana chromosome 4 in 2010 [14], we updated

our laboratory protocol to be more stringent and return higher-resolution data as

described in Hansen et al. 2010[11], Bass et al. 2014[15], Bass et al. 2015[16], and

Wear et al. 2016[17]. We increased the sensitivity of the labelling process by using 5-

Ethynyl-2’-deoxyuridine (EdU), which does not require harsh denaturation of DNA,

unlike 5-Bromo-2’-deoxyuridine (BrdU) used in previous work. A flow cytometer is

then used to separate labeled from unlabeled nuclei, and to resolve labeled nuclei

into different stages of S phase based on their DNA content. Next, DNA is extracted

from sorted nuclei. The newly replicated DNA is immunoprecipitated and then

sequenced using an Illumina sequencer. Previous protocols used microarrays for

labeled DNA detection, which provided signal on probes at fixed intervals across

a genome. Directly sequencing the immunoprecipitated DNA allows for single-base

replication timing resolution for any organism with a reliably-assembled reference

genome.

Following the Repli-seq protocol, we created an exemplar A. thaliana dataset

for development, with nuclei from: G1 (non-replicating control) and early, middle,

and late S phase. While the amplification, fragmentation, and sequencing of next
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generation sequencing (NGS) libraries should be unbiased and random, physical

factors affect the sequenceability of each region. To correct for these effects, we use

the raw non-replicating DNA from the G1 control to normalize any sequenceability

trends.

Introducing Repliscan

In addition to our updated laboratory protocol for generically measuring DNA

replication, we needed to improve the sensitivity and robustness of our analyti-

cal method. In previous work, log-ratios and aggressive smoothing were used to

classify genomic regions by their time of replication. While this yielded results

with high true positive rates, we found that this approach over-smoothed our high

resolution sequencing data. We created the Repliscan method to analyze generic,

DNA sequence-based replication timing data. Accepting any number of S-phase

timepoints as input, Repliscan removes uninformative or outlying data, smooths

replication peaks, and classifies regions of the genome by replication time.

Methods
The analysis of the replication time data starts like any other DNA sequencing anal-

ysis, with quality control, mapping, and alignment filtering. Quality control con-

sisted of removing contaminating 3’ universal sequencing adapters from the paired

reads, and trimming the 5’ ends with quality scores below 20 with the program

Trim Galore![18] version 0.3.7, which is designed to maintain read pairs. While it

is obvious that low-quality regions need to be removed or masked because those

base calls are untrustworthy, any contaminating sequences from adapters hinder

the alignment process even more because they are always high-quality and may

comprise a large part of the read. Therefore, reads in the output from Trim Galore!

shorter than 40 base pairs were discarded, and resulting singletons (unpaired reads)

were not included for alignment.

We then used bwa-mem [19] version 0.7.12 with default parameters to align the

quality-filtered reads to the TAIR10 A. thaliana reference genome [20]. After align-

ment, we filtered out any reads with multiple alignments using samtools[21] version

1.3. Removing these non-uniquely aligning reads is essential because they come

from repetitive elements or other duplications in the genome that could replicate

at different times, thereby confounding region classification into discrete replication

times. After our stringent alignment requirements, fewer than 0.5% of our reads

were identified as duplicates by samtools. We decided that removing the duplicates

from our data was unnecessary due to the depth of our sequencing and localized na-

ture of segmentation spikes. We also performed a correlation analysis of our samples

and replicates, confirming their identities based on similarity.

Windowing

The DNA sequencing workflow leaves us with raw replication signals across a

genome, which we must classify into distinct genomic regions and assign replication

times. Our methods for this process build on methods from Lee et al.[14] and are

illustrated in Figure 2.
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Figure 2 Repliscan workflow. Diagram of the preliminary alignment and quality control methods
in green at the top, and the Repliscan methods in blue at the bottom.
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At first glance, Repli-seq data appears similar to dense ChIP-seq [22], when viewed

in a genome browser (Figure 3). However, instead of highlighting a limited num-

ber of coverage peaks as sites of molecular interactions, replication timing data

consists of coverage across the entire genome accented with extremely wide peaks

corresponding to regions of replication initiation and subsequent spreading. This

background coverage with subtle, broad increases in depth makes deep coverage

essential to reduce sampling error when detecting statistically-relevant differences.

Even though the cost of sequencing has plummeted since 2007, deep-coverage DNA

sequencing is still expensive for higher eukaryotes.

Lee et al. defined putative replicons in A. thaliana and calculated the median

length to be 107 kilobases [14]. To achieve greater signal depth in each replication

timing sample, we transformed each BAM alignment file into 1 kilobase coverage

windows using bedtools [23]. While this transformation slightly reduces the res-

olution of our analysis, Figure 3 shows that the proportion of sampling error to

measured signal is greatly reduced with the increased coverage. The windows also

put all changes in coverage on the same coordinate system, simplifying comparisons

between samples and experiments.

Figure 3 Replication signal and sampling uncertainty. The top two graphs show raw and
windowed replication signal across A. thaliana chromosome 3. The bottom two graphs show raw
and windowed replications signals at 18.5-19.0 megabases from the top view as represented by the
gray selection area. The red bars represent sampling uncertainty (

√
λ for Poisson distributions).

We chose 1 kilobase windows because they not only reduce sampling error, but are

also two orders of magnitude smaller than the expected A. thaliana replicons. This

is important to detect fine-grained features, such as early S replication spreading

into middle and late S. We suggest that, when adapting Repliscan to other species,

the expected replicon size be factored into calculations that establish window size

and sequencing depth.

Replicate Aggregation and Normalization

To further decrease sampling effects, and achieve consistent results between exper-

iments, we used multiple biological replicates and adopted aggregation methods to

either increase coverage or summarize replication signals using functions provided by

“bedtools map” [23]. For experiments with low coverage, we pooled timing t = 1..T

replicates r = 1..R together by summing coverage signal k across each window
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i = 1..N .

kit =
R∑

r=1

kitr (1)

When coverage was sufficient, we used the signal mean (or the more robust signal

median) to clean up aberrant coverage. For these methods, replicates were first nor-

malized for sequencing depth using sequence depth scaling [24]. This normalization

step removed differences in sequencing depth between replicates by scaling each

sample to an average depth of 1x.

kit = median

(
N ∗ kitr∑N

i=1 kitr

)
(2)

After aggregation, the combined signals were normalized once more to scale any

imbalances in replicates back to 1x, prior to making comparisons between replication

times.

kit =
N ∗ kit∑N

i=1 kit
(3)

Our A. thaliana test data was relatively high coverage at 30x, so we used the median

function to generate a robust signal, instead of using the default sum.

Reducing Type I Error

Repliscan aims to detect and highlight peaks of replication coverage, but some peaks

may be too high and may in fact be false-positives caused by errors in the reference.

For instance, if a repetitive element is present three times in the actual genome, but

present only once in the reference sequence due to assembly error, all reads would

align uniquely to the same location. If two of those elements replicate early and

the third in middle S phase, the early peak would be twice as large and dominate

the classification process. To reduce type I error arising from genomic repeats, we

needed to detect and exclude these areas from the final classification because there

is no way to resolve such duplications without improving the reference genome.

The distribution of sequencing coverage is bounded on the left at zero, with very

long, positive tails. Before we can detect any outliers we first need to transform the

data to actually fit a probability distribution. We found that both the square root

and log transforms stabilized the spread and skew by shortening the positive tail

and lengthening the [0,1) tail. Outliers were detected in the transformed data using

four different methods:

fitting a gamma distribution to the log transformed data,

log(Kt) ∼ Γ(αt, βt) ≡ Gamma(αt, βt) (4)

fitting a gamma distribution to the square root transformed data,

√
Kt ∼ Γ(αt, βt) ≡ Gamma(αt, βt) (5)
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fitting a normal distribution to the log transformed data,

log(Kt) ∼ N (µ, σ2) ≡ Normal(µ, σ2) (6)

or calculating the whisker bounds (WB) of a boxplot from the log transformed data

Xt = log(Kt) (7)

IQR(Xt) = P75(Xt)− P25(Xt) (8)

WB(Xt) = [P25(Xt)− 1.5 ∗ IQR(Xt), P75(Xt) + 1.5 ∗ IQR(Xt)] , (9)

where P is the percentile function. (10)

We use scipy[25] version 0.15.0 to fit all probability distributions to the actual

coverage windows. Windows with coverage in the upper and lower 2.5% tails of the

calculated probability distributions, or outliers when using whiskers, are considered

unrepresentative and removed (Figure 4).

log(kit) =

0 P97.5(αt, βt) < X < P2.5(αt, βt)

kit Otherwise
(11)

For simple cases, or when the transformed data does not resemble a probability

distribution, we also provide the option of a rank-based (percentile) cutoff. By

default, this will remove the upper and lower 2.5% coverage values, but this value

can also be customized by the user.

The large spikes of coverage that this method removes may comprise a signifi-

cant amount of coverage, so we perform another round of normalization to return

the sample to 1x coverage. Each of the five methods has its own strengths and

computation complexity. Most coverage data can be accurately modeled with the

normal distribution. For cases when the transformed coverage distributions are still

skewed, we suggest using the gamma distributions. If for some reason, the cover-

age data is multimodal, the whisker or percentile cutoff methods will both remove

outliers from the data. We recommend the whisker method over a percentile cutoff

because the whiskers remove data from a derived distribution, while the percentile

indiscriminately removes a percentage of the data.

Normalize for Sequenceability

Amplification, fragmentation, and shotgun sequencing DNA is a non-uniform ran-

dom process. Coupled with imperfect alignment efficiency from repetitive regions

and incomplete reference genomes, artificial peaks arising from differences in the

efficiency with which specific genomic regions can be sequenced are easy to confuse

with actual signal peaks. This does not have a significant impact on comparisons

between samples, but makes it difficult to compare adjacent genomic regions. Our

sequencing protocol included a sample of non-replicating G1 DNA to correct for

this phenomenon.

In G1, the cell is growing in physical size but no DNA replication is taking place,

so the copy number of each sequence in the genome is at the 2C level. Variations in
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Figure 4 Outlying coverage in chromosome 3. Based on the normal distribution fit (yellow) to
the log transformed coverage distribution of early (E), middle (M), and late (L) S-phase data,
windows that fall in the tails shaded in gray are removed from the analysis.

sequenceability can thus be separated from variations in signal attributable to DNA

replication. Dividing each of the S-phase samples by the G1 sample normalizes each

of the windows by giving the ratio of treatment coverage over expected coverage.

rt =
kt
k1

, where k1 is the control. (12)

To better illustrate this process, consider two replication coverage windows next to

each other: the first one is easy to sequence, and therefore produces more fragments

per unit input DNA than the second window, which is hard to sequence. The nor-

malization step would lower the signal from the first window, dividing it by a big

coverage number from G1. It would also raise the signal from the second window,

which would be divided by a smaller G1 number, making the two windows more

comparable and reducing background noise. We recommend that such a control be

implemented in all DNA sequencing based experiments to detect replication tim-

ing, on the basis that a non-replicating G1 control is the best, and most uniform

representation of the genome. However, in the event that a non-replicating G1 is

not sequenced, all S-phase samples can be combined to synthesize a total-S control.

Haar Wavelet Smoothing

Data sampling is always affected by noise. Noise can either be averaged out with

more sampling through replicates and by the application of robust statistical meth-

ods, or by summarizing ranges of data and losing some resolution. Adding replicates
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for additional statistical power is cost-prohibitive, especially for larger genomes. In-

stead, we adopted the Haar wavelet transform to summarize replication data as

an orthonormal series generated by the Haar wavelet. Using wavelets[26] version

1.0, we performed a maximum overlap discrete wavelet transform with the Haar

wavelet using reflected boundaries and level 3 smoothing on a per-chromosome ba-

sis for each sample and replicate. Wavelet decomposition is designed to represent

a signal as a collection of frequencies. Level 3 decomposition represents a signal as

the upper 87.5% of frequencies. Smoothing works as a low-pass filter, where small

and frequent changes are removed, while large and wide changes are preserved.

We specifically chose the Haar wavelet over other smoothing methods because it

is a square function with discrete boundaries and thus resembles the signals we aim

to detect. General smoothing methods like LOESS and moving average methods

produce stabilized trends from data, but they work by summarizing subsets of

the whole picture. A moving average will change a square peak into a sawtooth

pattern the size of the smoothing window and will be affected by a single point

of noise. LOESS is designed to model trends in sliding subsets of the data, but

each of the least-squares regression steps are vulnerable to noise as with the moving

average. LOESS will also spread out peaks in our data because of our uniform

window size (1 kilobase), and is designed to accurately model clusters of points.

As demonstrated in Figure 5A with simulated data, the Haar wavelet accurately

removes low-amplitude and high-frequency noise to reconstruct the original signal

without artificially expanding the peaks of replication signal. Applying the moving

average, LOESS, and Haar wavelet to actual A. thaliana data in Figure 5B shows

that both the moving average and LOESS can capture large trends, but the Haar

wavelet excels at highlighting subtle peaks in the data without under smoothing.

Figure 5 Smoothing comparisons. A - Noise (green) is added to an original signal (purple), and
then smoothed with a 4 unit (40 point) moving average (orange), a 5 unit (25% subset) LOESS
(red), and a level 3 Haar wavelet (blue). Both the moving average and LOESS spread out the
peaks and artificially lowered signal amplitudes, while the Haar wavelet keeps bounds and peak
heights close to the original. B - The A. thaliana middle S-phase normalized signal (green), is
smoothed with a moving average (orange), LOESS (red), and the level 3 Haar wavelet (blue) for
comparison.

We experimented with several levels of decomposition with our data, and found

that the low-frequency trends preserved with level 3 aligned to genes, transposable

elements, and histone marks on each genome the best. If the window size is kept at

the default of 1 kilobase, this decomposition level can be kept the same because the

same frequencies are represented. If the window size is changed to accommodate

different sequencing depths, we suggest that users experiment with different decom-

position levels, because this essentially changes the sampling rate of the analysis.
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Defining Replication

The analysis to this point yields a smoothed ratio of normalized replication ratio

signals rcwt in windows w = 1..Y per chromosome c = 1..X, with a range of

[0, ∞) that can be compared to each other, and leads to the question of which

signals can be considered confidently as resulting from DNA replication. Lee et

al.[14] originally considered array-based replication signals greater than the control

as actively replicating in their investigation of A. thaliana as follows.

replicatingct(w) =

1, if rcwt > 1

0, otherwise
, where cw = i (13)

The Repliscan software allows users to adopt this threshold method, but we also

include more robust methods to define replication. The simple threshold approach

above is appropriate when considering replication as a ratio, but because all signals

from the early, middle, and late S-phase samples represent labeled - and therefore,

replicating - DNA, even signals that are less than the control must be considered as

reflecting some level of replication activity. In other words, even though there may

be noise in the data, all replication signals should be genuine because EdU is only

incorporated into newly replicated DNA. Instead of simply choosing a smaller ratio

threshold, we implemented a percentile cutoff based on the distribution of the ratios.

By default, this method removes the lowest 2% of the values for a chromosome in

a given sample.

replicatingct(w) =

1, if rcwt > P0.02(rct)

0, otherwise
(14)

While this method is a data-dependent means for establishing a cutoff, it was not

considered ideal for an automatic analysis for two reasons. First, a cutoff is still being

dictated, even if it is more robustly supported than in previous analyses. Second,

this cutoff will always remove a flat percentage of the values, even if there is no

evidence they are not high-quality data points. To improve on these deficiencies, we

implemented a threshold for replication that depends on the information provided

in addition to the data.

To maximize the fraction of a chromosome with valid replication signal (or infor-

mation), we designed an optimization method that incorporates as much of each

chromosome as possible by analyzing the rate of coverage. Using data from all time

points, coverage is defined as the fraction of windows with a signal greater than the

threshold in at least one replication time.

coverage(Tc) =
rcwt > Tc

Y
, where Tc is the threshold for chromosome c (15)

Starting from the point of the largest absolute change in coverage (slope), the

replication threshold is lowered until the absolute chromosome fraction per sam-
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ple/control coverage differential goes below 0.1, effectively leveling out.

mTc = arg max
Tc

(|coverage‘(Tc)|) (16)

T̂c = arg max
Tc<mTc

(|coverage‘(Tc)| < 0.1) (17)

Rcwt =

rcwt, if rcwt > T̂c

0, otherwise
(18)

This coverage differential method starts from the maximum amount of information

(max absolute differential) and then lowers the threshold, incorporating smaller

signals, until the rate of genome coverage slows down (Figure 6). Such a search

pattern circumvents any local optima in the coverage signal that may have stalled

a gradient descent. That being said, we implemented the threshold to run on a

per-chromosome basis to minimize the effect of any structural differences between

chromosomes.

Figure 6 Replication threshold from coverage. The upper plot shows how much of A. thaliana
chromosome 3 will be kept for downstream analysis as a function of the signal threshold. The
lower plot shows the chromosome coverage differential as a function of the threshold. The vertical
red line in each plot marks the optimal threshold of 0.92.

The end result is a method that includes as much of the genome and coverage

information as possible, but only returns windows with acceptable levels of cover-

age. Our method is generically applicable to experiments using the same Repli-seq

protocol because the threshold is calculated from the data. A critical benefit is that

users are not required to be masters of their data or this tool, and can instead focus

on interpretation.

Classification/Segmentation

Given a signal that can confidently be considered as arising from DNA replication,

we are able to classify segments of the genome according to when in the cell cycle
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they are replicated. Suppose that in one of the windows in Chromosome 3, we have

the following levels of replication in Table 1.

Table 1 Example coverage values to demonstrate replication timing classification.

Time Early Middle Late

Coverage 0.93 0.8 3.0
Replicating 0.93 0 3.0

We already know that any values below 0.92 in Chromosome 3 are not considered

replicating, so the middle S-phase value would become 0 and we would say this

window replicates in both early and late S-phase. However, the late replication level

is 3 times higher than that of early, which is just past the threshold for replication.

Instead of making another replication threshold, we implemented a general solution

to compare values against each other using a proportion.

First, on a window-by-window basis, we take the infinity norm of all values, which

means we divide all values by the maximum for that window position.

Sct(w) =
Rcwt

‖Rcw‖∞
(19)

This operation scales the largest value to 1 and the others to the range [0,1]. A time

signal is then classified as predominantly replicating Cct(w) if the normalized value

is greater than 0.5, or at least half the size of the largest signal for that window.

Cct(w) =

1, if Sct(w) > 0.5,

0, otherwise
(20)

The infinity-norm ensures that the largest value will always be classified as repli-

cating, and this classification method allows for a window to be called strongly

replicating at more than one time in S-phase (e.g. both early and late) when other

signals are within 50% of the maximum value. Besides 0.5 being easy to test for, this

creates an equally partitioned solution space in the form of an n-dimensional hy-

percube. In the case of the A. thaliana data, the space is a 3-dimensional cube with

each dimension being one of the time points: early, middle, and late S-phase. The

0.5 partition then creates 8 equal-sized sub-cubes corresponding to each possible

combination of times:

{Non-replicating, Early, Middle, and Late}

along with

{Early-Middle, Middle-Late, Early-Late, and Early-Middle-Late}

S-phase replication combinations.

Results and Discussion
Data

To demonstrate the ability of our methods to adapt to different datasets, we ran

our pipeline on the A. thaliana Col-0 cell culture data (PRJNA330547) that was
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used to develop these methods, and a separate similarly prepared Z. mays B73

replication timing dataset (PRJNA327875) also from our lab.

A.thaliana

The A. thaliana experiment was comprised of 3 early S bioreplicates, 3 middle S

bioreplicates, 3 late S bioreplicates, and 1 G1 sample. Each bioreplicate was paired-

end sequenced to 36x coverage. The unique and properly-paired alignment rate for

each sample was approximately 85%, yielding a total of 30x viable replication data

from each sample. Due to the high coverage, we decided to use 1 kilobase windows

and merge bioreplicates with the median function for our analysis.

Z. mays

In the Z. mays experiment, there were 3 early S bioreplicates, 3 middle S biorepli-

cates, 2 late S bioreplicates, and 2 G1 technical replicates. Each bioreplicate was

paired-end sequenced to about 5x coverage. While there were more reads than the

A. thaliana experiment, the Z. mays genome is much larger, so coverage was lower.

Using the B73 AGPv3 genome assembly, the unique and properly-paired alignment

rate for each sample was approximately 99%, yielding a total of 5x viable replica-

tion data from each bioreplicate. We decided to use the same 1 kilobase windows for

this dataset, and deemed the summation of bioreplicates was necessary to achieve

enough coverage to highlight peaks in the data.

Segmentation Overview

Using 1 kilobase windows, median aggregation for A. thaliana, and sum aggregation

for Z. mays, we used our default pipeline to classify the replication timing of our

data. We generated Figure 7 to show the replication segmentation classification of

Chromosome 3 in A. thaliana and Chromosome 10 in Z. mays.

Figure 7 Comparison of A. thaliana and Z. mays segmentation. Following the segmentation
legend on the right, A. thaliana chromosome 3 (top) and Z. mays chromosome 10 (bottom) have
been classified into segmentation regions by Repliscan. The large white regions in the A. thaliana
figure are unclassified regions due to outlying coverage. Below each replication segmentation is a
depiction of the chromosome, with the centromere location marked in yellow [27, 28].

In both instances, early replication is concentrated toward the ends of the chro-

mosome arms, with middle and late replication becoming more prominent closer to

the centromere and the highest concentration of late replicating sequences in the

heterochromatin surrounding the centromere. These timing maps demonstrate that

the method developed using the A. thaliana data was successfully applied to the

lower coverage Z. mays data after only choosing to aggregate replicates using the

sum instead of the median.
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Segment Composition and Size

Instead of viewing the chromosomes as a whole, we can also get an idea of predom-

inant replication times by looking at the proportional composition. Figure 8 shows

that Early, Early-Middle, and Middle-Late S-phase replication makes up most of the

segmentation profiles for A. thaliana Chromosome 3. About 6% of the chromosome

is missing around the centromere and heterochromatic knob, which probably would

have been classified in the Middle to Late times based on what we do see. In Z.

mays, we see a more uniform distribution of Chromosome 10, which is 5-fold larger,

across the replication segmentation classes. Lee et al.[14] previously hypothesised

a two-stage replication program, but our results, which were generated at higher

resolution, show a more even spread (Figure 8).

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Chromosome

A. thaliana Chromosome 3

Z. mays Chromosome 10

Segmentation Composition
E

EM

EL

EML

M

ML

L

Figure 8 Composition of replication segmentation. The segment composition shows that
replication in A. thaliana is skewed towards early S replication, while Z. mays has an even
distribution across early, middle, and late S. We can also see that the non-sequential early-late
(EL) and early-middle-late (EML) classifications comprise a very small proportion of the classified
segments in both cases.

The Early-Late and Early-Middle-Late comprise a small portion of the chromo-

somes in both organisms and could arise naturally in the data through allelic and

cell population differences. Figure 9 shows a different summary of the segmentation

breakdown, highlighting the segment size distribution with boxplots. Once again,

Early-Late and Early-Middle-Late segments are distinct in that their lengths are

small relative to the other timing categories.

Downsampling and Stability of Results

The relatively small genome size of A. thaliana allowed us to obtain extremely deep

sequencing coverage, which is currently cost-prohibitive for larger genomes. To esti-

mate a minimum coverage requirement for our methods, we simulated experiments

with lower coverage via downsampling. We first generated 3 technical replicates by

randomly sorting the original alignment files. We removed reads from each of the

replicates in 1% increments without replacement. Each of the 300 (100 x 3) simu-

lated experiments were analyzed using both median and sum aggregation, and no

(none), log gamma, square root gamma, normal, and whisker outlier removal. To

account for differences arising from the sorting order, the final classification for each

window was determined by majority across the 3 replicates. Classification ties were

broken by treating the early, middle, and late time classification combination as a

2-bit binary number, and taking the median.

After confirming that the segmentation profiles from all three 100% replicates were

identical to our original segmentation, differences for each run type were calculated
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Figure 9 Segment size distribution. Boxplots for every combination of replication time,
illustrating the distribution of segment sizes. Early (E) and mid-late (ML) S were largest in A.
thaliana, while early and late (L) were largest in Z. mays.
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Figure 10 Segmentation differences in downsampled data. After downsampling the A. thaliana
data, the accuracy of median (top) and sum (bottom) aggregation, and outlier detection using log
gamma, none (NA), normal, square root gamma, and whiskers. Inflection points in the differences
are labeled with black diamonds.

as percent differences from the 100% version. All differences were compounded and

plotted as a fraction of the whole chromosome in Figure 10. The most obvious

results are the spikes of differences in both the median and sum log transformed

gamma runs when the iterative fitting function failed to converge (Figure 11).
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Figure 11 Unconverged log gamma fit. Most of the data is removed when the iterative fitting
function fails to converge with the log transformed gamma distribution. Instances like this produce
the spikes of differences in Figure 10.

Shifting attention to the square root gamma experiments in Figure 10, we see that

the fit function never fails to converge, but there is increased variability of results

among each level of downsampling. All other probability functions are very stable

between downsampling runs. We even see that summing the coverage to 90x pro-

vides no improvement over the median - even at low coverage levels. The inflection

point of differences show that the most stable method was aggregating replicates

with the median operation and removing coverage by fitting a normal distribution

to the log transformed data. Results from this method began to drastically diverge

when downsampled to 8%, or 2.4x coverage. This indicates 5x coverage for the com-

monly studied species Z. mays (2.3 gigabase genome[29]) is sufficient to calculate

a replication profile, which is quite tractable for a laboratory of modest financial

means.

General Application of Repliscan

To demonstrate that Repliscan is generally applicable, we used it to analyze two

published Repli-seq datasets: Human fibroblast data from Hansen et al. 2010[11]

(GSM923444) and D. melanogaster data from Lubelsky et al. 2014[30] (PR-

JNA63463).

The Human fibroblast Repli-seq data contains samples from 6 fractions of S phase

(G1b, S1, S2, S3, S4, and G2) with two replicates each providing an average depth

of 0.02x coverage. Original results were first replicated by combining reads from

both replicates, removing signals with more than 4 reads per 150 basepair window,

and then calculating the percent of total coverage in 50 kilobase windows sliding by

1 kilobase. To use this data with Repliscan, we first needed a sequencing control.

Both G1b and G2 contain isolated and replicating DNA in this experiment, so we

combined G1b, S1-4, and G2 to create a total-S control in the Repliscan input

configuration. We then ran Repliscan using default parameters and a window size

of 50 kilobases and compared the results to the original in Figure 12. Given that

there were 6 fractions of S-phase in the Repliscan input, there were (26 − 1) 63

possible classifications, but only 22 were present in the output. Repliscan presented

temporally sensible results with replication initiating in G1b and spreading to G2

all while using the default parameters of Repliscan (Figure 12). We compared the

results of Repliscan to the “BJ-G1 segment” regions published by Hansen et al. in

Supplementary Table S4 using the accuracy statistical measure.
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accuracy = (TP + TN)/(TP + FN + TN + FP ) (21)

Where TP is the number of G1bS1 Repliscan classifications that match “BJ-

G1 segment”, FN is the number of non-G1bS1 classifications that match “BJ-

G1 segment”, TN is the number of non-G1bS1 classifications that also do not match

“BJ-G1 segment”, and FP is the number of G1bS1 classifications that do not match

“BJ-G1 segment.” We found that our Repliscan reanalysis had an accuracy of 83%

with the published “BJ-G1 segment” results.

Figure 12 Human fibroblast Repli-seq. 50 kilobase sliding window replication signals (blue)
reproduced from Hansen et al., published “BJ-G1 segment” regions, and 50 kilobase Repliscan
results (bottom).

We also reproduced the original continuous replication profiles of Lubelsky et al..

Replicates were combined from each fraction of S phase (Early, Early-Mid, Late-

Mid, and Late) and aligned to the dm3 Release 5.12 genome. Unique alignments

were kept and the RPKM was calculated in 10 kilobase windows along the genome.

The RPKMs from the 4 samples were then weighted and combined to create a single

replication signal from 0 to 1. The replication signal was then LOESS smoothed with

a span of 200 kilobases (20 bins). This continuous signal was then classified as early

replication when the value was less than or equal to 0.5, and late replication when

above 0.5 (Figure 13).

Similar to the work by Hansen et al., this experiment did not contain an non-

replicating G1 control, so we combined all fractions into a total-S control. We then

crafted two input configurations: one with Early Early, Early-Mid and Late Mid-

Late, Late (2S) to match the discrete results of Lubelsky et al., and another with

Early, Early-Mid, Mid-Late, and Late classifications (4S) to highlight the classifica-

tion capabilities of Repliscan. Coverage averaged around 4.4x, so we ran Repliscan

with both (2S and 4S) input configurations and default arguments at 10 kilobase

windows (Figure 13).

The Repliscan configuration with two S-phase fractions (2S) highly resembled the

thresholded continuous signal (Lubelsky > 0.5) with a statistical accuracy measure

of 95%. When Repliscan was run all 4 S-phases, more information was revealed

about the replication timeline. Looking at the two left-most regions late regions of
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Figure 13 D. melanogaster KC167 Repli-Seq. Reproduction of the LOESS smoothed continuous
replication profile (Lubelsky LOESS), and the thresholded, discrete early (blue) and late timing
domains (Lubelsky > 0.5) from original Lubelsky et al. study. Repliscan segmentation results with
Early Early, Early-Mid and Late Mid-Late, Late replication (2S), and Early, Early-Mid, Mid-Late,
and Late replication (4S) configuration with 10 kilobase windows.

“Lubelsky > 0.5” in Figure 13, we can see that the continuous signal rides along

the 0.5 threshold, and Repliscan predicted a long region of EMS-EMLS with all

four fractions of S taken into context, instead of detecting an initiation site in the

center. This situation is a good example of the type of coarse grained calls that we

are trying to avoid with Repliscan by allowing combinations of replication in our

classifications. Our 4S results were also found to be highly similar with the discrete

data, with a statistical accuracy of 78%.

Conclusions
Based on our results from running Repliscan on both A. thaliana and Z. mays

data, we have demonstrated that our methods offer a robust solution to analyze

replication timing experiments that use label incorporation and a G1 control. We

have significantly improved on previous methods by incorporating non-destructive

Haar smoothing, using optimization methods to define replication, and classification

through signal proportion. When run using the same parameters but using data from

different organisms, the methods automatically tuned their thresholds to adjust for

differences in coverage. Downsampling our data showed our methods provided stable

results at as little as 2.4x coverage. We also demonstrated that Repliscan can be

used to classify replication regions in external Repli-seq data by applying it to both

low-coverage Human and high-coverage D. Melanogaster experiments with 4 to 6 S-

phase fractions and synthetic total-S controls. There is no current consensus pipeline

for validation, so we compared the published results from the external datasets to

those from Repliscan. We found that the Repliscan results were on average 85%

identical to the original findings of these papers.

In-depth explorations of the replication programs in A. thaliana and maize will

be published separately. We think these methods provide a path for greater un-

derstanding of the DNA replication program in plants, humans, and other higher

organisms.

List of Abbreviations
TimEx: Time of replication

Repli-seq: Replication label incorporation sequencing
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Edu: 5-Ethynyl-2’-deoxyuridine

BrdU: 5-Bromo-2’-deoxyuridine

NGS: Next generation sequencing

SRA: Sequence read archive

G1: Gap 1 of cell division

G2: Gap 2 of cell division

S: Synthesis phase of cell division

E: Early S-phase replication

M: Middle S-phase replication

L: Late S-phase replication

WB: Whisker bounds
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