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Abstract

A network analysis of the resting state (RS) and language task (LT) of fRMI data sets is pre-

sented. Specifically, the analysis compares the impact of the global signal regression of gray matter

signal on the graph parameters and community structure derived of functional data. It was found

that, without gray matter signal regression (GSR), the group comparison showed no significant

changes of the global metrics between the two conditions studied. With gray matter signal re-

gression, significant differences between the global (local) metrics for the conditions were obtained.

The mean degree, the clustering coefficient of the network and the mean value of the local efficiency

were metrics with significant changes. The community structure of group connectivity matrices

was explored for both conditions (RS and LT) and for different preprocessing steps. When gray

matter signal regression was performed, small changes of the community structure were observed.

Approximately, the same regions were classified in the same communities before and after GSR.

This means, that the community structure of the data is weakly affected by this preprocessing step.

The modularity index presented significant changes between conditions (RS and LT) and between

different preprocessing pipeline.
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1. INTRODUCTION

In the present work, we studied how global signal regression of the gray matter signal

changes brain network parameters and network community structure, when two conditions

were compared. The two conditions under study were the resting state of the brain and a

language (word production) task. Three main topics are relevant for the current work: 1)

The effect of global signal regression (GSR) in fMRI data; 2) The resting state of the brain;

3) The functional differences between the brain at rest and the brain at task.

Regarding the first topic, a natural question that arises is, whether or not it is appropriate

to apply GSR. This question has been focus of current scientific debate. Intrinsic to GSR,

there exist unwanted and desirable consequences [1]. Among the unwanted effects of GSR

we have that: i) It introduces negative correlations that were not present before [2–5]; ii)

The correlation distribution is altered by the rescaling of the correlation values around a

new mean. In consequence, it affects the values of local and long range correlations.; iii)

It has negative effects for the interpretation of the group comparison [6]; iv) GSR reduces

the spatial extent and intensity of coherent activated regions [7]. Among the desirable

effects it is possible to enumerate: i) GSR removes uninteresting global fluctuations that

blur the functional organization of the brain, and also increases the specificity of functional

connectivity results. This is the case for the regression of the signal from ventricles and from

white matter [8, 9]; ii) It increases the strength and reliability of experimental results. For

example by taking whole head GSR, it is possible to improve the correspondence between

functional and structural connectivity [8]; iii) GSR attenuates residual motion artifacts that

can confound group comparison [10, 11].

The idea of using whole head GSR comes from the fact that the spatial distribution of

the signal is present in a significant way in every gray matter voxel of the brain [8, 12].

Although this fact justifies the use of whole head GSR, as a suitable preprocessing step for

fMRI-based brain network construction, the neuronal or non-neuronal origin of it, has not

been well established. Many works using whole head GSR as a preprocessing step have been

found that the brain posses a functional intrinsic architecture of anti-correlated networks

[2, 13–15].

Regarding the second topic, the resting state of the brain, it has been established that the

brain at rest presents significant correlations between BOLD-fMRI time series of anatomical
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regions separated from each other. These correlations have been interpreted as functional

communication between brain regions, the so often called ”resting state networks” [2, 14, 16].

The current view about resting state networks establishes that they constitute a baseline for

brain activity. Brain (resting state or task) networks from fMRI data can be detected using

model dependent algorithms such as the seed driven approach see, e.g.,[2, 12, 17], or using

algorithms independent of models, such as Principal Component Analysis (PCA) [18] and

Probabilistic Independent Component Analysis (PICA) [19]. More recently, the network

science framework has been applied to the study of brain connectivity. The advantage of

the network formalism is that offers a natural context to study in a quantitative way, the

functional and anatomical features of the brain [20–25].

Finally, respect to previous research on functional differences between the resting state

of the brain, and the brain in a guided task, the important conclusions obtained include:

i) The functional architecture of the brain present in resting state is also present during

many tasks [26, 27]; ii) The recognition of a primary and secondary network cores that

shape the brain activity. One primary core that is stable, and common to many task states,

and one secondary core that is flexible and transient [26–29]; iii) As consequence of the

different configuration of the networks, the connectivity patterns can be used to identify the

underlying task [28, 30]. The present work has some common and different characteristics

with the previous work presented in [31]. Among the common characteristics, we have that

the conditions studied in both works are the same, the resting state and a language task,

also both works studied the functional connectivity patterns of the conditions. Among the

characteristics that are different between the works, we have that, the present paper gave

more attention to the study of the network metrics derived from the connectivity patterns,

and the community structure of them.

Therefore, the aims of this work are: 1) Answer the question whether GSR should be

applied as a preprocessing step in a graph analysis of brain networks from fMRI data; 2)

Find out if network features can be used to distinguish between different brain conditions,

namely, the resting state (RS) and a language task (LT).

The evidence presented reinforce the evidence that the GSR introduces global and local

changes in the group comparison the metrics, and also suggest that the gray matter signal

regression may be a suitable preprocessing step for the fMRI images.
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FIG. 1. Language task paradigm. First 60 seconds (baseline period): black screen was shown to

the subject. Cross (rest periods): black cross on white background. Letter (task periods): black

letter on white background. Last 130 seconds (return to baseline): black screen.

2. MATERIAL AND METHODS

2.1. Subjects and protocols

Ten healthy subjects (mean age 35 ± 10, 6 women) participated in this study. The study

was approved by the Ethics Committee of our institution, and all subjects signed an informed

consent form prior to data acquisition. All subjects took part in two fMRI sessions (one RS

and one LT) separated by a 6-minute anatomic scan. In the RS session, they were instructed

to relax, to keep their eyes opened, to not fall asleep, and to think of nothing in particular,

during 6.6 minutes. In contrast, in the LT session (also with a duration of 6.6 minutes)

they were requested to focus their attention on a cross for 30 seconds (baseline condition),

and next to silently think of as many words as possible beginning with the displayed letter,

also for 30 seconds (experimental condition). The cross (’+’) was presented in four blocks

alternating with three different letters (’F’, ’A’, and ’C’), presented in three different blocks

Figure 1. This paradigm was the same as the one used in [32]. Stimuli were presented in a

monitor positioned at the head of the magnet, and were visualized by the subject by means

of a mirror attached to the head coil.

2.2. Acquisition Parameters

FMRI data were acquired with a 3 T Achieva magnetic resonance (MR) scanner (Philips,

The Netherlands), using an EPI sequence with repetition time (TR) = 2000 ms, echo time

(TE) = 30 ms, a voxel size 3 × 3 × 3.5 mm3 and 30 slices for the RS session, and an

isotropic voxel size 3 × 3 × 3 mm3 and 40 slices for the LT session. An anatomic scan,

consisting of a high resolution volumetric T1-weighted image, with voxel size 1× 1× 1 mm3
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FIG. 2. A) Different preprocessing pipelines (PPs) considered for network construction. PP1

consisted in signal regression of motion, ventricles and white matter. PP2 additionally regressed

the mean gray matter signal. B) Scheme for the brain network construction. 1) Preprocessing of

functional images; 2) Anatomical division of the brain; 3) Time series extraction; 4) Connectiv-

ity matrix construction; 5) Threshold definition for adjacency matrix construction; 6) Resulting

undirected brain network.

and TR/TE = 7000/3.24 ms, was also acquired, to be co-registered to the fMRI images.

2.3. Preprocessing

Image preprocessing was conducted using SPM8 (Wellcome Department of Cognitive

Neurology, London, UK) running under MATLAB. The first five volumes of each participant

were automatically discarded in the acquisition sequence. The preprocessing steps were: (1)

correction of within-volume time differences between slices; (2) realignment of the volumes to

the mean volume to correct for inter-volume movements; (3) co-registration of the anatomical

image and the mean functional image; (4) spatial normalization of the functional volumes

to a standard MNI template; (5) spatial smoothing with a Gaussian kernel of FWHM equal
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to double of the voxel size in each direction. A linear regression was used to remove the

influence of head motion and of signals from the cerebrospinal fluid and white matter [9].

In this paper, the term GSR will be used to describe the regression of the gray

matter signal. The impact of this preprocessing step on graph metrics and community

structure was considered in many works [11, 33, 34]. To evaluate this effect, two type of

preprocessing pipelines were considered, one with and other without GSR, identified as PP1

and PP2 respectively (see Figure 2). Finally, the fMRI data were temporally band-pass

filtered in the range [0.01−0.08] Hz.

2.4. Network construction

For this section and the following, we consider a undirected non-weighted network repre-

sented as a graph G(E, V ), where V is a set of nodes, connected by a set of edges E. Figure

2 presents the methodology followed to construct the networks.

The set of nodes V are compose by the anatomical regions. Using the atlas developed by

Tzourio Mazoyer et al., [35] the set of nodes are composed by 90 vertices corresponding to 90

anatomical regions (45 regions for each hemisphere). Subsequently, the mean time series of

each region was extracted. Links were built by first calculating Pearsons correlation between

all possible pairs of nodes (i, j), considering the whole-time series. Note that although the

LT paradigm contained task and rest periods, in this manner, we dealt with the temporal

intervals in the same way for both RS and LT [36, 37]. Two nodes were classified as connected

if the corresponding correlation coefficient was above a defined threshold ρ. The resulting

network was then represented as a matrix A, known as the adjacency matrix, with elements

given by aij = 1, if ri,j > ρ, and aij = 0, if rij ≤ ρ, where rij was the Pearson correlation

coefficient between the time series xi(t), yj(t) corresponding to nodes and i and j, given by

rx(t),y(t) =
E[(x(t)− µx)(y(t)− µy)]

σxσy

. (1)

It is important to stress that we used only the positive values of the correlation coefficients

to build the networks [21].
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2.5. Network metrics

The undirected networks represented by the adjacency matrices A are functions of the

correlation threshold ρ. A set of networks (i.e., adjacency matrices) were generated for

different values of ρ within the interval [0.1 − 0.4], with increments of 0.1. In total, four

networks were generated for each subject in each condition (RS and LT), with all networks

fulfilling the requirement of being totally connected. From the networks four metrics were

extracted, using the toolbox presented in [21]: 1) The degree of the node, which reflects the

number of links each node has for a given threshold ( is the number of nodes, or regions):

ki =
�

j=1

aij. (2)

2) The cluster coefficient ci, which quantifies the density of connections around a node i:

ci =
1

ki(ki − 1)

�

j=1

�

k=1

aijajkaik. (3)

3) The local efficiency of the node i, which characterizes the efficiency of its neighbors in

exchanging information once i is removed [38]

Ei =
1

ki(ki − 1)

�

j,h∈V

�

j �=i

aijajh [dih(Ni)]
−1 , (4)

where [dih(Ni)]
−1 is the shortest path between the nodes j and h, that contains only neighbors

of the node i.

4) Characteristic path length L, that is constructed with the geodesic paths dij between

the nodes (i, j) of the graph:

L =
2

N(N − 1)

�

j,h∈V

�

j �=i

dij. (5)

The first three metrics (degree, cluster coefficient and local efficiency) are local metrics, while

the last (characteristic path length) is a global metric. From the local metrics, global metrics

were computed, by averaging the values over all network nodes. The global metrics were

studied with the intention of detecting global network changes for the different conditions.

Besides, analyzing local and global graph metrics, the correlation histograms were also

computed, to verify possible differences in correlation values distributions resulting from

different conditions (RS and LT) and pipelines.
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2.6. Statistical analysis

To compare correlation histograms from different conditions and resulting from different

preprocessing pipelines, the Kolmogorov-Smirnov test was used. To compare network met-

rics among these conditions and pipelines, a nonparametric statistical test (Wilcoxon test)

was used, with a significance level of p ≤ 0.05. The Wilcoxon test was chosen due to the low

number of samples (N=10). To control for the false discovery rate, the resulting p-values

were corrected with the technique introduced by [39], and detailed in [40].

2.7. Group connectivity matrices and community detection

A group connectivity matrix Rm(i, j) representative for each condition (m = RS,LT )

was generated, using the individual connectivity matrices of the subjects. For this, the

correlation coefficients for each subject, given by equation 1, were transformed to z-values

using:

zij =
1

2
ln

�
1 + rij
1− rij

�
. (6)

In this space (z), one average matrix Zm(i, j) was computed with the z-transformed connec-

tivity matrices of the ten subjects [41]. Finally, the z-values in this matrix were transformed

back into correlation coefficient values, using the inverse transform of equation 6, thus form-

ing one connectivity matrix for each condition. The purpose of this construction was to

make common patterns emerge from the data, because similar behaviors of the matrices will

reinforce each other.

Before studying the community structure of the brain, we asked how different was the

configuration of the temporal correlation in the two states. For this a scatter plot was made

for the z-scored Pearson of the group matrices. In the x-axis was encoded the z-score of

the temporal correlation between temporal series of two regions in the RS condition. In

the y-axis was encoded the same information but for the LT condition. In this way, if a

pair of regions presented high positive temporal correlation in RS and low positive temporal

correlation in the LT, a point with high values (near to one) in the x-axis and low value

(near to zero) in the y-axis would represent this configuration. The intention of this plot

was to present an evidence that the temporal correlation values between the two states did

not suffer extreme changes, indicating the existence of a common functional architecture

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2017. ; https://doi.org/10.1101/094078doi: bioRxiv preprint 

https://doi.org/10.1101/094078
http://creativecommons.org/licenses/by/4.0/


[26, 27].

Relevant information was obtained from the community structure of the group matrices

with the use of the modularity index [42]. The modularity index is a quantity defined under

the assumption that networks can be divided in groups or communities. Then, if a given

network can be divided in c communities, a symmetric matrix eij that represents the fraction

of edges in the network that link vertices in the community i to vertices in the community

j can be constructed. The dimension of the matrix is c × c. For an optimal community

partition of the network, the trace of the matrix Tr(e) =
�

i eii should possess a high value.

The trace alone is not a good indicator of the quality of the partition. So another quantity

ai is defined as the row sum of the matrix ai =
�

j eij , and it represents the fraction of

edges with at least one end in community i. In a network without a community structure

we would have eij = aiaj. The modularity index is defined as next the difference

Q =
�

i

(eii − a2i ). (7)

Values near to Q = 0 reflect networks with weak community structure, and values near to

Q = 1 reflect networks with a strong community structure. Typical values of the modularity

index for real networks, particularly brain networks, fall in the range of 0.3 to 0.7 [42, 43].

To explore the community structure information of the matrices, we used the adjacency

matrices, for a correlation threshold ρ = 0. Many algorithms have been developed to detect

the comunities [44, 45]. The partition of the nodes in communities was developed by the

algorithm presented in [46], which maximizes the modularity index.

Finally, to visualize the performance of the community detection algorithm, the connec-

tivity matrices were rearranged using the partition generated, and they were plotted in color

scale like in [29, 43]. A distribution of the linear correlations, for the sets of nodes that be-

long to each community, was plotted in a boxplot for the LT and RS conditions and for each

preprocessing pipeline.

3. RESULTS

3.1. Comparison between correlation histograms

According to the methodology described, representative BOLD time series for each

anatomical region were computed using the mean of the voxel series inside each region.
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FIG. 3. Histograms of correlations for the RS and LT conditions, for the different preprocessing

steps studied, and for a representative volunteer. The figure A) present the histograms of corre-

lations of the two preprocessing pipelines for the RS condition; B) Histograms of correlations for

the LT, for the two preprocessing pipelines considered; C) Histograms of correlations for the LT

and RS condition, for the PP1; D) Histograms for the RS and LT condition for the PP2. The

Kolmogorov-Smirnov test shows no evidence, of statistical difference between them p > 0.05.

Pearsons correlation was computed for all pairs of time series. Figure 3 shows correlation

histograms, for the two conditions and the two preprocessing pipelines, for one representative

subject. Histograms generated using the same pipeline but for different conditions (Figures

3C and 3D) showed no statistical difference for any subject (p > 0.05, Kolmogorov-Smirnov

test). Similarly, histograms generated with different pipelines for the same condition (Fig-

ures 3A and 3B) showed, as expected, an increase in negative correlations [2–4] for the GSR

pipeline (PP2), these differences were not significant for any subject (p > 0.05, Kolmogorov-

Smirnov test) with the use of the AAL.
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FIG. 4. Average global metrics obtained over the 10 subjects for PP1 (top) and PP2 (bottom) in the

two conditions: RS (black) and LT (gray). Error bars represent standard deviation over subjects.

The horizontal axis shows the different positive thresholds used to construct the adjacency matrix:

T1 = 0.1, T2 = 0.2, T3 = 0.3, T4 = 0.4. The figures A) and E) present the characteristic path

length; The figures B) and F) present the clustering coefficient; The figures C) and G) present the

mean network degree; The figures D) and H) present the mean value of the local efficiency of the

network. Thresholds indicated with ’*’ presented FDR corrected p− values < 0.05.
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3.2. Global metrics

Figure 4 (top) shows plots for the global metrics averaged over the 10 subjects in the two

conditions, using PP1 (without GSR, top part of the figure) and PP2 (with GSR, bottom

part of the figure). Error bars indicate standard deviations over subjects. Four different

thresholds indicated as T1, T2, T3 and T4 represent ρ = 0.1, ρ = 0.2, ρ = 0.3 and ρ = 0.4

respectively. Thresholds marked with a ’∗’ indicate statistical significance. The RS condition

is represented in black and LT in gray. From the top of this figure, we see that there were

no significant differences between conditions for any global metric (or threshold) with this

preprocessing pipeline (p > 0.05, Wilcoxon test, FDR corrected). Differently than for the

pipeline without GSR, we see from the bottom of Figure 4 that by applying GSR three of

the global metrics (clustering coefficient, mean network degree and global efficiency) were

significantly different among conditions, for at least three of the applied thresholds (p < 0.05,

Wilcoxon test, FDR corrected). These metrics were all higher for the RS compared to the

LT condition.

3.3. Local metrics

Given that PP2 showed significant differences between conditions for the global metrics,

the corresponding local metrics were analyzed with the objective of identifying the set of

regions that caused the observed global changes with this preprocessing pipeline. The metrics

analyzed were thus the degree, the clustering coefficient and the local efficiency of the nodes.

We chose to look only at threshold ρ = 0.4, given that this threshold presented significant

changes between the conditions for all the metrics mentioned. For every metric, p-values

were obtained using the Wilcoxon test, for each region. Subsequently, the FDR controlling

statistics was applied, for controlling rates of q = 0.05, q = 0.1, and q = 0.2, as described

and suggested in [40]. For the first two controlling rates, no significant changes for the local

metrics between the different conditions were found. For the controlling rate q = 0.2 (Figure

S1), we obtained sets of regions that presented significant changes of the metrics between

the conditions.

The Table I presents the list of regions that showed significant changes (p < 0.2, Wilcoxon

test, FDR corrected) for the local metrics: node degree, node clustering coefficient and local

13
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Degree Clustering coefficient Local efficiency

Frontal-Mid-L Frontal-Mid-Orb-R Frontal-Mid-Orb-R

Rolandic-Oper-R Rolandic-Oper-L Frontal-Inf-Orb-L

Olfactory-L Insula-L Rolandic-Oper-L

Olfactory-L ParaHippocampal-L Hippocampus-L

Frontal-Sup-Medial-R Cuneus-R Occipital-Mid-L

Frontal-Mid-Orb-L Occipital-Sup-R Occipital-Inf-L

Frontal-Mid-Orb-R Occipital-Mid-L Fusiform-L

Rectus-L Occipital-Mid-R

Rectus-R Occipital-Inf-L

ParaHippocampal-L Fusiform-L

ParaHippocampal-R

Amygdala-R

Lingual-L

Occipital-Sup-L

Occipital-Sup-R

Fusiform-L

Fusiform-R

Caudate-R

Heschl-L

Temporal-Sup-L

Temporal-Pole-Mid-L

Temporal-Inf-R

TABLE I. List of regions with significant changes (p < 0.2, Wilcoxon test, FDR corrected) of local

metrics between the RS and LT conditions. Bold font indicates regions that presented significant

changes in all three local metrics.

efficiency. All regions in this table, with exception of the Frontal-Mid-L region for the degree,

presented higher values of the metrics (averaged over subjects) for the RS compared to the

LT condition. This result supports the findings of the global metrics presented in Figure 4,

where the global values of the metrics were higher in the RS condition than in the LT. With

the intention to test if the results presented by the local metrics agreed with functional areas

relevant for the task, the Online Brain Atlas Reconciliation [47] was used to identify areas in

the AAL atlas that map the Broca (Brodmann’s areas 44L and 45L) and Wernicke’s areas

(Brodmann 22L). Table II presents that list of regions; it also contains the local metrics that
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BA 44L- BA45L (Broca’s area) - Local metric BA 22L (Wernicke’s area)-Local metric

Frontal-Inf-Oper-L - (LE) Temporal-Mid-L

Front-Inf-Trian-L Temporal-Sup-L - (DEG)

Insula-L - (CLU) Temporal-Pole-Sup-L

Rolandic-Oper-L - (LE) Helschl-L - (DEG)

Precentral-L Angular-L

Frontal-Inf-Orb-L - (LE) Rolandic-Oper-L - (LE)

Supramarginal-L

TABLE II. List of regions in the AAL atlas that compose the Broca and Wernieck’s areas. The list

of regions were taken from the Online Brain Atlas Reconciliation [47]. Regions in the AAL that

presented differences for the local metrics, between the two states are indicated by: 1) DEG, for

degree of the node; 2) CLU, for cluster coefficient; 3) LE, for local efficiency.

FIG. 5. Scatter plot of the z-scored Pearson correlations in the two conditions presents linear

dependency between them. A) Scatter plot for the z-scored Pearson correlations for the PP1; B)

Scatter plot for the z-scored Pearson correlations for the PP2

presented differences between the two states studied.

3.4. Group connectivity matrices and community detection

In Figures 5A and 5B, as explained in Section 2.7, we present the scatter plot of the z-

scored temporal correlations in RS and in LT. As expected, temporal correlations in the two
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FIG. 6. Group connectivity matrices for: A) RS condition with PP1; B) RS condition with PP2;

C) LT condition with PP1; D) LT condition with PP2. The matrices were rearranged using the

detected communities, ordered from the smallest to the largest.

states remained with similar values, that is low (positive or negative) temporal correlations

in RS were obtained also in LT, and high temporal correlations (positive or negative) in

RS were also obtained in LT. This fact supports the claim that the brain works with a

basic functional architecture present in the two states [26, 27]. The model was fitted using

the least squares method, showing statistical evidence (p < 0.05, t-test) that supports the

existence of linear dependency between pairwise correlations in the two conditions [26].

3.5. Group connectivity matrices and community detection

The community detection for each of the group matrices was performed with the method-

ology presented in Section 2.7, and each connectivity matrix was reordered according to the

communities found. Four communities were found for each matrix. Figure 6 shows the
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reordered group matrices for the RS and LT conditions, for each preprocessing pipeline,

PP1 and PP2. The tables S1 to S8, in the Supplemental Materials present the communities

found for each group matrix for the RS and LT condition respectively. To give an idea of the

communities structure, Figures 7 and 8 show the communities in the RS and LT condition,

respectively, for PP2. In these figures, the left side shows an axial representation of the

brain, while the right side shows a sagittal view.

Figure 9 presents a plot of the mean value of the modularity index across subjects in each

condition and preprocessing pipeline, with error bars representing the standard deviation

over subjects. The preprocessing steps of the images alters significantly the modularity value.

Higher modularity indexes were found for PP2 compared to PP1, and the RS condition

presented higher modularity values compared to the LT condition.

Network modules are defined as a set of brain regions that are strongly connected to

each other and weakly connected to the rest of the brain [29]. Then, with the intention

of providing a statistical assessment for each community, the correlation distribution for

each community in each condition and preprocessing pipeline is presented in Supplementary

Figure S2. We obtained correlation distributions significantly different from a Gaussian

distribution with zero mean for each community.

4. Discussion and conclusions

The work presented by us reinforce the evidence that the GSR introduces global and local

changes in the group comparison the metrics, and also suggest that the gray matter signal

regression may be a suitable preprocessing step for the fMRI images. The main goal of this

work was to assess how GSR affects brain networks derived from fMRI data; particularly, how

it affects the comparison between networks corresponding to different brain states, namely,

the resting state and a task state, in this case consisting of a language task. Networks for

these two states (or conditions) were therefore built following two preprocessing pipelines,

one without (PP1) and another with (PP2) application of GSR. From these networks, we

analyzed the correlation histograms, global and local network metrics, and communities.

The correlation histograms showed a visible, however non-significant, increase in negative

correlations (shift to the left) when GSR was applied, which is in accordance to [8].

It was found that without applying GSR, it was not possible to distinguish between the
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FIG. 7. Communities detected for the RS condition with PP2 (see Tables S1-S4 right). Left: axial

view, with right hemisphere indicated by the letter R and posterior regions with the letter P. Right:

sagittal view.

FIG. 8. Communities detected for the LT condition with PP2 (see Tables S5-S8 right). Left: axial

view, with right hemisphere indicated by the letter R and posterior regions with the letter P. Right:

sagittal view.
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FIG. 9. Modularity index equation (7) for the different conditions, and preprocessing pipelines,

the error bars represent the mean and standard deviation for the 10 volunteers. The modularity

index is modified by the different kind of preprocessing steps of the images. The PP2 produces

an increase of this index when compare to the images that suffer the preprocessing PP1. For the

same preprocessing pipeline, the RS condition shows higher values of the modularity than in the

LT, this means that the community structure is strongest in RS.

RS and LT conditions using global network metrics. Interestingly, when introducing GSR,

significant differences among global network metrics (mean degree, mean clustering coeffi-

cient and mean local efficiency) between RS and LT conditions were found. RS presented

higher values of these metrics compared to LT, as expected. The mean degree represents

the average number of connections of a region, i.e., to how many other regions it is function-

ally synchronized. Therefore, this result means that more regions are connected (or work

together) in the resting state, when the brain is not focused in any specific task, than when

the brain is actually performing a very specific task such as language, that requires that a

smaller set of specific regions work together. The network clustering coefficient measures

something somehow similar to the mean degree, which is how connected (in average) are

the neighbors of a node. We see again that the decrease of the clustering coefficient for a

specific task compared to the resting state makes sense, given that fewer regions are used in

the former case. Finally, the mean local efficiency gives a measure of how well, information

can travel across the network. Again, since for the language task only a few regions are

recruited, other regions are ”shut down” and the information does not reach them anymore,

which would explain the decrease in efficiency.
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In the work by Fox and colleagues [8], it was pointed out that the global signal of the

whole head was present in a significant way in every voxel of gray matter. By the evidences

provided in the present study, it seems that this signal obscures significant differences of the

global network metrics between the two states. Nevertheless, it is possible that the obtained

global differences could be spurious. In that case the study of the local metrics can help to

provide evidence of the nature of the differences. If the local metrics reveal differences in

areas that agree with the current task, this may suggest a certain degree of reliability for

the global differences obtained.

The analysis with local metrics for PP2 allowed identification of the regions responsible for

the global changes seen previously. In spite of the fact that only a relatively loose significance

level allowed identification of these regions (p < 0.2, Wilcoxon test, FDR corrected), the

regions found (Table I) make sense when considering that a language task was involved.

In particular, 22 regions were found that changed their degree value from one condition to

the other, 10 regions that changed their clustering coefficient, and seven that changed their

local efficiency (Table I). The first region of the degree list Left frontal middle gyrus, is

the only region that has, in average, higher degree value in the LT condition than in the

RS condition. This indicates that this region increases its temporal correlation with other

regions in the language task compared to the resting state. The other regions presented, in

average, higher degree in the RS condition. The frontal medial left area is, indeed, involved

with a passive intention of the subjects to move the mouth and say the words that they

think. There were only two regions that presented changes in all three local metrics, namely,

Left frontal middle gyrus orbital portion and left fusiform gyrus. The left frontal middle

gyrus orbital portion area is involved with the intention to move the mouth to say the words

of the task. The left fusiform gyrus is involved with word recognition [48].

As mentioned in the introduction, the present work shares a similarity with the work

presented in [31], because there, a language task was compared with the resting state of

the brain. In the mentioned work, it was found an increase in the correlation between the

Broca and Wernicke’s areas in the language task condition, when compared to the resting

state condition. In the present work, it was found that 7 of 13 regions that compose the

Broca and Wernicke’s areas in the atlas AAL presented local changes of some of the studied

metrics (node degree, clustering coefficient or local efficiency) between the conditions (Table

II).
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The Broca’s area (BA 44L- BA45L) is composed in the AAL by the: 1) left inferior

frontal gyrus, opercular portion; 2) left inferior frontal gyrus, triangular portion; 3) left

insula; 4) left Rolandic operculum; 5) left precentral gyrus, 6) left inferior frontal gyrus,

orbital portion. Wernicke’s area (BA 22L) is composed by: 1) left middle temporal gyrus;

2) superior temporal gyrus; 3) temporal pole; 4) left Heschl gyrus; 5) left angular gyrus; 6)

left Rolandic operculum; 7) left supramarginal gyrus [47].The findings suggest that GSR of

the gray matter signal helps to reveal local differences of the metrics between the two states.

The differences appear in regions that agree with the language task in course.

In summary, we found that the network metrics studied were affected by GSR. When

GSR was applied, some global and local metrics presented significant changes between the

two conditions studied. Despite the low sample size (10 subjects), it was possible to identify

regions with significant metric changes between the conditions.

Considering the distribution of the temporal correlations, we found that the scatter plot

of the correlations between the two conditions presented evidence of a linear dependency

between them, for the two preprocessing pipelines considered (Figure 5). In other words, in

most cases, if two brain areas possess a low temporal correlation in the RS condition, they

also possess a low temporal correlations in the LT condition. The same fact was confirmed

for high positive and high negative temporal correlations. This agrees with the claim that

there exist small changes in the functional architecture of the brain between different states

[26, 27].

The spatial distribution in the brain of the connectivity architecture can be studied

looking at the community structure of the data. For the same condition but with different

preprocessing steps, each condition presented small changes in its community structure (see

Tables S1 to S8). In the RS, four regions changed their community labels after GSR. For

the LT condition, three regions changed their community labels after GSR.

The results may not be accurate because the use of the AAL atlas blurs the boundaries

between functional areas and leads to poor network estimation [49, 50]. The group connec-

tivity matrices were constructed with the objective of reinforcing coherent activities across

the subjects and in this way overcome the potential signal blur between regions.

The first community of the RS condition may reflect the default mode network because

this community includes the angular gyrus (left and right) and medial frontal cortex (left

and right). The first community in the LT seems to reflect the underlying language task,
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because it involves connections between visual areas and areas that belong to the Broca

and Wernickes areas such as the opercular and triangular portions of the left inferior frontal

gyrus, , and the temporal pole (see Tables S1 and S1).

The second community is similar for both RS and LT and includes the visual network (V1

and V2) and its connections with the inferior temporal and parietal regions. The primary

visual network is known for its high level of connectivity, what explains its prominence in

both conditions [51].

Other prominent network, the sensoriomotor network, was detected in third community

of RS condition. The third community of LT and fourth community of RS conditions

share similarities, and they include areas involved in executive and memory process, such as

bilateral dorsolateral prefrontal cortex, hippocampus, parahippocampal gyrus and bilateral

temporal lobes [30]. Finally, the fourth community of the LT condition involves both primary

language areas and regions associated with the motor process of language and it can be also

related to the task performed [52].

Considering the modularity index in the same condition (RS or LT), but for different

preprocessing pipelines, it was shown an increase on its value when GSR was applied. Con-

sidering the same preprocessing pipelines but in different conditions, in RS the modularity

index was higher than in LT. This means that the community structure is stronger in the RS

condition. The values of modularity found in this work fall in the range of typical modularity

values for brain networks, reported in previous works [43].

It is important to mention that in this work, only positive correlations were considered to

construct the brain networks. This could be problematic, considering that GSR introduces

negative correlations. In this way, the obtained metrics may not reflect the whole network

change after GSR. One characteristic that remained unchanged with and without GSR

was that the structure of the connectivity matrices (Figure 6) revealed that the interaction

between the different network modules was primarily via negative correlations.

The findings provided in the present work support the claim that the global signal re-

gression of the gray matter signal is a suitable preprocessing step for fMRI images, since

this preprocessing step does not alter the community structure of the data, and reveals

differences in the global and local metrics that involve areas engaged in the underlying task.
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