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Humans can meaningfully report their confidence in a perceptual or cognitive decision.
It is widely believed that these reports reflect the estimated probability that the decision is
correct, but this belief is a hypothesis rather than an established fact. In a pair of percep-
tual categorization tasks, we tested whether explicit confidence reports reflect the Bayesian
posterior probability of being correct, which would require subjects to take sensory uncer-
tainty into account in a specific way. We find that subjects do take sensory uncertainty
into account, but that they do so in a way that is inconsistent with the Bayesian hypothe-
sis. Instead, heuristic models provide the best fit to confidence reports. This conclusion is
robust to changes in the uncertainty manipulation, task, response modality, additional flex-
ibility in the Bayesian model, and model comparison metric. Finally, we find that generic
neural networks trained with error feedback produce confidence reports that are best fit
by the same heuristic probabilistic models, suggesting that implementational constraints
cause explicit confidence reports to deviate from being Bayesian.

Introduction

People often have a sense of a level of confidence about their decisions. Such a “feeling of knowing”1,2
may serve to improve performance in subsequent decisions3, learning1, and group decision-making4. Much
recent work has focused on identifying brain regions and neural mechanisms responsible for the computation
of confidence in humans5–7, non-human primates8–10, and rodents11. In the search for the neural correlates of
confidence, the leading premise has been that confidence is Bayesian, i.e., the observer’s estimated probability
that a choice is correct1,12–14. In human studies, however, naïve subjects can give a meaningful answer when
you ask them to rate their confidence about a decision15; thus, “confidence” intrinsically means something
to people, and it is not a foregone conclusion that this intrinsic sense corresponds to the Bayesian definition.
Therefore, we regard the above “definition” as a testable hypothesis about the way the brain computes
explicit confidence reports; we use Bayesian decision theory to formalize this hypothesis.

Bayesian decision theory provides a general and often quantitatively accurate account of perceptual decisions
in a wide variety of tasks16–18. According to this theory, the decision-maker combines knowledge about
the statistical structure of the world with the present sensory input to compute a posterior probability
distribution over possible states of the world. In principle, a confidence report might be derived from the
same posterior distribution; this is the hypothesis described above, which we will call the Bayesian Confidence
Hypothesis (BCH). The main goal of this paper is to test that hypothesis. Recent studies have attempted
to test the BCH19,20 but, because of their experimental designs, are unable to meaningfully distinguish the
Bayesian model from any other model of confidence.
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We test the quantitative predictions of the BCH as we vary the quality of the sensory evidence and the task
structure within individuals. We compare Bayesian models against a variety of alternative models, something
that is rarely done but very important for the epistemological standing of Bayesian claims21,22. We find that
the BCH qualitatively describes human behavior, but that quantitatively, even the most flexible Bayesian
model is outperformed by non-Bayesian probabilistic models. To better understand why, we trained neural
networks to perform one of our tasks. We found that the same non-Bayesian models provided the best
description of the output of the trained networks, suggesting that neural network architecture constrains the
computation of confidence.

Results

Experiment 1

During each session, each subject completed two orientation categorization tasks, Tasks A and B. On each
trial, a category C was selected randomly (both categories were equally probable), and a stimulus s was
drawn from the corresponding stimulus distribution and displayed. The subject categorized the stimulus
and simultaneously reported their confidence on a 4-point scale, with a single button press (Fig. 1a). The
categories were defined by normal distributions on orientation, which differed by task (Fig. 1b). In Task A,
the distributions had different means (±µC) and the same standard deviation (σC); leftward-tilting stimuli
were more likely to be from category 1. Variants of Task A are common in decision-making studies23. In
Task B, the distributions had the same mean (0◦) and different standard deviations (σ1, σ2); stimuli around
the horizontal were more likely to be from category 1. Variants of Task B are less common24–26 but have
some properties of perceptual organization tasks; for example, a subject may have to detect when a stimulus
belongs to a narrow category (e.g., in which two line segments are collinear) that is embedded in a a broader
category (e.g., in which two line segments are unrelated).

Subjects were highly trained on the categories; during training, we only used highest-reliability stimuli, and
we provided trial-to-trial category correctness feedback. Subjects were then tested with 6 different reliability
levels, which were chosen randomly on each trial. During testing, correctness feedback was withheld to avoid
the possibility that confidence simply reflects a learned mapping between stimuli and the probability of being
correct, something that no other confidence studies have done26–28.

Because we are interested in subjects’ intrinsic computation of confidence, we did not instruct or incentivize
them to assign probability ranges to each button (e.g., by using a scoring rule). If we had, we would have
essentially been training subjects to use a specific model of confidence.

To ensure that our results were independent of stimulus type, we used two kinds of stimuli. Some subjects
saw oriented drifting Gabors; for these subjects, stimulus reliability was manipulated through contrast.
Other subjects saw oriented ellipses; for these subjects, stimulus reliability was manipulated through ellipse
elongation (Fig. 1c). We found no major differences in model rankings between Gabor and ellipse subjects,
therefore we will make no distinctions between the groups (Supplementary Information).

For modeling purposes, we assume that the observer’s internal representation of the stimulus is a noisy
measurement x, drawn from a Gaussian distribution with mean s and s.d. σ (Fig. 1d,e). In the model, σ
is a function of stimulus reliability (Supplementary Information).

Bayesian model

A Bayes-optimal observer uses knowledge of the generative model to make a decision that maximizes the
probability of being correct. Here, when the measurement on a given trial is x, this strategy amounts to
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Figure 1: Task design and generative model. (a) Schematic of a test block trial. After stimulus offset, subjects reported
category and confidence level with a single button press. (b) Stimulus distributions for Tasks A and B. (c) Examples of low
and high reliability stimuli. Six (out of eleven) subjects saw drifting Gabors, and five subjects saw ellipses. (d) Generative
model. (e) Example measurement distributions at different reliability levels. In all models (except Linear Neural), the
measurement is assumed to be drawn from a Gaussian distribution centered on the true stimulus, with s.d. dependent on
reliability.

choosing the category C for which the posterior probability p(C | x) is highest. This is equivalent to reporting
category 1 when the log posterior ratio, d = log p(C=1|x)

p(C=2|x) , is positive.

In Task A, d is dA = 2xµC
σ2+σ2

C

. Therefore, the ideal observer reports category 1 when x is positive; this is the

structure of many psychophysical tasks29. In Task B, however, d is dB = 1
2 log σ2+σ2

2
σ2+σ2

1
− σ2

2−σ
2
1

2(σ2+σ2
1)(σ2+σ2

2)x
2;

the observer needs both x and σ in order to make an optimal decision. See Supplementary Information for
derivations of dA and dB.

From the point of view of the observer, σ is the trial-to-trial level of sensory uncertainty associated with the
measurement30. In a minor variation of the optimal observer, we allow for the possibility that the observer’s
prior belief over category, p(C), is different from the true value of (0.5, 0.5); this adds a constant to dA and
dB.

We introduce the Bayesian Confidence Hypothesis (BCH), stating that confidence reports depend on the
internal representation of the stimulus (here x) only via d. In the BCH, the observer chooses a response by
comparing d to a set of category and confidence boundaries. For example, whenever d falls within a certain
range, the observer presses the “medium-low confidence, category 2” button. The BCH is thus an extension
of the choice model described above, wherein the value of d is used to compute confidence as well as chosen
category. Another way of thinking about this is: Bayesian models assume that subjects compute d in order
to make an optimal choice. Assuming people compute d at all, are they able to use it to report confidence as
well? We refer to the Bayesian model here as simply “Bayes.” (We tested several more constrained versions
of this model, which are described in Supplementary Information.)

The observer’s decision can be summarized as a mapping from a combination of a measurement and an
uncertainty level (x, σ) to a response that indicates both category and confidence. We can visualize this
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mapping as in Figure 2, first column. It is clear that the pattern of decision boundaries in the BCH is
qualitatively very different between Task A and Task B. In Task A, the decision boundaries are quadratic
functions of uncertainty; confidence decreases monotonically with uncertainty and increases with the distance
of the measurement from 0. In Task B, the decision boundaries are neither linear nor quadratic and can
even be non-monotonic functions of uncertainty.
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Figure 2: Decision rules/mappings in four models. Each model corresponds to a different mapping from a measurement
and uncertainty level to a category and confidence response. Colors correspond to category and confidence response, as in
Figure 1a. Plots were generated from the mean of subject 4’s posterior distribution over parameters.

Alternative models

At first glance, it seems obvious that sensory uncertainty is relevant to the computation of confidence. How-
ever, this is by no means a given; in fact, a prominent proposal is that confidence is based on the distance
between the measurement and the decision boundary, without any role for sensory uncertainty10,11,31. There-
fore, we tested a model (Fixed) in which the response is a function of the measurement alone (equivalent to
a maximum likelihood estimate of the stimulus orientation), and not of the uncertainty of that measurement
(Fig. 2, second column).

We also tested heuristic models in which the subject uses their knowledge of their sensory uncertainty
but does not compute a posterior distribution over category. We have previously classified such models
as probabilistic non-Bayesian32. In the Orientation Estimation model, subjects base their response on a
maximum a posteriori estimate of orientation (rather than category), using the mixture of the two stimulus
distributions as a prior distribution. In the Linear Neural model, subjects base their response on a linear
function of the output of a hypothetical population of neurons.

We derived two additional probabilistic non-Bayesian models, Lin and Quad, from the observation that
the Bayesian decision criteria are an approximately linear function of uncertainty in some measurement
regimes and approximately quadratic in others. These models are able to produce approximately Bayesian
behavior without actually performing any computation of the posterior. In Lin and Quad, subjects base
their response on a linear or a quadratic function of x and σ, respectively (Supplementary Information). A
comparison of the Lin and Quad columns to the Bayes column in Figure 2 demonstrates that Lin and Quad
can approximate the Bayesian mapping from (x, σ) to response despite not being based on the Bayesian
decision variable. All of the models we tested were variants of the six models described so far (Bayes, Fixed,
Orientation Estimation, Linear Neural, Lin, Quad).

Each trial consists of the experimentally determined orientation and reliability level and the subject’s category
and confidence response (an integer between 1 and 8). This is a very rich data set, which we summarize
in Figure 3. We find the following effects: performance and confidence increase as a function of reliability
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(Fig. 3a,b,h,i), and high-confidence reports are less frequent than low-confidence reports (Fig. 3e,f). Note
Figure 3c,d especially; this is the projection of the data that we will use to demonstrate model fits for
the rest of this paper. We use this projection because the vertical axis (mean button press) most closely
approximates the form of the raw data. Additionally, because our models are differentiated by how they use
uncertainty, it is informative to plot how response changes as a function of reliability, in addition to category
and task.
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Figure 3: Behavioral data and fits from best model (Quad), experiment 1. Error bars represent ±1 s.e.m. across 11
subjects. Shaded regions represent ±1 s.e.m. on model fits (Supplementary Information). (a,b) Proportion “category 1”
reports as a function of stimulus reliability and true category. (c,d) Mean button press as a function of stimulus reliability
and true category. (e,f) Normalized histogram of confidence reports for both true categories. (g) Proportion correct
category reports as a function of confidence report and task. (h,i) Mean confidence as a function of stimulus reliability
and correctness. (j,k) Mean confidence as a function of stimulus orientation and reliability. (l,m) Proportion “category 1”
reports as a function of stimulus orientation and reliability. (n,o) Mean button press as a function of stimulus orientation
and reliability. (c,d,n,o) Vertical axis label colors correspond to button presses, as in Figure 1a. (l–o) For clarity, only 3
of 6 reliability levels are shown, although models were fit to all reliability levels.
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Model comparison

We used Markov Chain Monte Carlo (MCMC) sampling to fit models to raw individual-subject data. To
account for overfitting, we compared models using leave-one-out cross-validated log likelihood scores (LOO)
computed with the full posteriors obtained through MCMC33. A model recovery analysis ensured that our
models are meaningfully distinguishable (Supplementary Information, Fig. S3). Unless otherwise noted,
models were fit jointly to Task A and B category and confidence responses. Models are described in more
detail in Supplementary Information.

Use of sensory uncertainty. We first compared Bayes to the Fixed model, in which the observer does not
take trial-to-trial sensory uncertainty into account (Fig. 4). Fixed provides a poor fit to the data, indicating
that observers use not only a point estimate of their measurement, but also their uncertainty about that
measurement. Bayes outperforms Fixed by a summed LOO difference (median and 95% CI of bootstrapped
sums across subjects) of 2265 [498, 4253]. For the rest of this paper, we will report model comparison results
using this format.
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Figure 4: Model fits and model comparison for models Fixed and Bayes. Left and middle columns: model fits to mean
button press as a function of reliability, true category, and task. Error bars represent ±1 s.e.m. across 11 subjects. Shaded
regions represent ±1 s.e.m. on model fits, with each model on a separate row. Right column: LOO model comparison.
Bars represent individual subject LOO scores for Bayes, relative to Fixed. Negative (leftward) values indicate that, for
that subject, Bayes had a higher (better) LOO score than Fixed. Blue lines and shaded regions represent, respectively,
medians and 95% CI of bootstrapped mean LOO differences across subjects. These values are equal to the summed LOO
differences reported in the text divided by the number of subjects.
Although Bayes fits better than Fixed, it still shows systematic deviations from the data, especially at high
reliabilities. (Because we fit our models to all of the raw data and because boundary parameters are shared
across all reliability levels, the fit to high-reliability trials is constrained by the fit to low-reliability trials.)

Noisy log posterior ratio. To see if we could improve Bayes’s fit, we tried a version that included decision
noise, i.e. noise on the log posterior ratio d. We assumed that this noise takes the form of additive zero-
mean Gaussian noise with s.d. σd. This is almost equivalent to the probability of a response being a logistic
(softmax) function of d34. Adding d noise improves the Bayesian model fit by 804 [510, 1134] (Table S1).

For the rest of the reported fits to human behavior, we will only consider this version of Bayes with d noise,
and will refer to this model as Bayes-dN. We will refer to Bayes-dN, Fixed, Orientation Estimation, Linear
Neural, Lin, and Quad, when fitted jointly to category and confidence data from Tasks A and B, as our core
models.
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Heuristic models. Orientation Estimation performs worse than Bayes-dN by 2041 [385, 3623] (Fig. 5,
second row). The intuition for one way that this model fails is as follows: at low levels of reliability, the
MAP estimate is heavily influenced by the prior and tends to be very close to the prior mean (0◦). This
explains why, in Task B, there is a bias towards reporting “high confidence, category 1” at low reliability.
Linear Neural performs about as well as Bayes-dN, with summed LOO differences of 1188 [-588, 2704], and
the fits to the summary statistics are qualitatively poor (Fig. 5, third row).
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Figure 5: Model fits and model comparison for Bayes-dN and heuristic models. Left and middle columns: as in Figure 4.
Right column: bars represent individual subject LOO scores for each model, relative to Bayes-dN. Negative (leftward)
values indicate that, for that subject, the model in the corresponding row had a higher (better) LOO score than Bayes-dN.
Blue lines and shaded regions: as in Figure 4.
Finally, Lin and Quad outperform Bayes-dN by 1398 [571, 2644] and 1667 [858, 2698], respectively. Both
models provide qualitatively better fits, especially at high reliabilities (compare Fig. 5, first row, to Fig. 5,
fourth and fifth rows), and strongly tilted orientations (compare Fig. S7n,o to Fig. S11n,o and Fig. 3n,o).
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Figure 6: Comparison of core models, ex-
periment 1. Models were fit jointly to Task
A and B category and confidence responses.
Blue lines and shaded regions represent, re-
spectively, medians and 95% CI of boot-
strapped summed LOO differences across sub-
jects. LOO differences for these and other
models are shown in Figure S12a.

We summarize the performance of our core models in Fig. 6.
Noting that a LOO difference of more than 5 is considered to be
very strong evidence35, the heuristic models Lin and Quad per-
form much better than Bayes-dN. Furthermore, we can decisively
rule out Fixed. We will now test variants of our core models.

Non-parametric relationship between reliability and σ.
One potential criticism of our fitting procedure is that we assumed
a parameterized relationship between reliability and σ (Supple-
mentary Information). To see if our results were dependent on
that assumption, we modified the models such that σ was non-
parametric (i.e., there was a free parameter for σ at each level of
reliability). With this feature added to our core models, Quad
still fits better than Bayes-dN by 1676 [839, 2730], and better
than Fixed by 6097 [4323, 7901] (Table S1). This feature im-
proved Quad’s performance by 325 [141, 535]. For the rest of this
paper, we will only report the fits of Bayes-dN, the best-fitting
non-Bayesian model, and Fixed. See supplementary figures and
tables for all other model fits.

Incorrect assumptions about the generative model. Suboptimal behavior can be produced by optimal
inference using incorrect generative models, a phenomenon known as “model mismatch.”36–38 Up to now,
Bayes-dN has assumed that observers have accurate knowledge of the parameters of the generative model.
To test whether this assumption prevents Bayes-dN from fitting the data well, we tested a series of Bayesian
models in which the observer has inaccurate knowledge of the generative model.

Bayes-dN assumed that, because subjects were well-trained, they knew the true values of σC , σ1, and σ2,
the standard deviations of the stimulus distributions. We tested a model in which these values were free
parameters, rather than fixed to the true value. We would expect these free parameters to improve the fit of
Bayes-dN in the case where subjects were not trained enough to sufficiently learn the stimulus distributions.
This feature improves Bayes-dN’s fit by 908 [318, 1661], but it still underperforms Quad by 768 [399, 1144]
(Table S1).

Previous models also assumed that subjects had full knowledge of their own measurement noise; the σ used
in the computation of d was identical to the σ that determined their measurement noise. We tested models
in which we fit σmeasurement and σinference as two independent functions of reliability36. This feature improves
Bayes-dN’s fit by 1310 [580, 2175], but it still underperforms Quad by 362 [162, 602] (Table S1).

Weighted mixture of precision and the probability of being correct. A recent paper39 assumed
that confidence is a weighted mixture of the probability of being correct and sensory precision 1

σ2 . We tested
one such model, which fit better than Fixed by 3059 [758, 5528] but still underperforms Lin by 3478 [2211,
5020] (Table S1).

Separate fits to Tasks A and B. In order to determine whether model rankings were primarily due to
differences in one of the two tasks, we fit our models to each task individually. In Task A, Quad fits better
than Bayes-dN by 581 [278, 938], and better than Fixed by 3534 [2529, 4552] (Fig. S13 and Table S2).
In Task B, Quad fits better than Bayes-dN by 978 [406, 1756], and better than Fixed by 3234 [2099, 4390]
(Fig. S14 and Table S3).

Fits to category choice data only. In order to see whether our results were peculiar to combined category
and confidence responses, we fit our models to the category choices only. Lin fits better than Bayes-dN by
595 [311, 927], and better than Fixed by 1690 [976, 2534] (Fig. S15 and Table S4).
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Fits to Task B only, with noise parameters fitted from Task A. To confirm that the fitted values
of sensory uncertainty in the probabilistic models are meaningful, we treated Task A as an independent
experiment to measure subjects’ sensory noise. The category choice data from Task A can be used to
determine the four uncertainty parameters. We fitted Fixed with a decision boundary of 0◦ (equivalent to a
Bayesian choice model with no prior), using maximum likelihood estimation. We fixed these parameters and
used them to fit our models to Task B category and confidence responses. Lin fits better than Bayes-dN by
1773 [451, 2845], and better than Fixed by 5016 [3090, 6727] (Fig. S16 and Table S5).

Experiment 2: Separate category and confidence responses. There has been some recent debate as
to whether it is more appropriate to collect choice and confidence with a single motor response (as described
above), or separate responses20,40–42. Aitchison et al.19 found that confidence appears more Bayesian when
subjects use separate responses. To confirm this, we ran a second experiment in which subjects chose a
category by pressing one of two buttons, then reported confidence by pressing one of four buttons. Aitchison
et al. also provided correctness feedback on every trial; in order to ensure that we could compare our results
to theirs, we also provided correctness feedback in this experiment, even though this manipulation was not
of primary interest. After fitting our core models, our results did not differ substantially from experiment 1:
Lin fits better than Bayes-dN by 396 [186, 622], and better than Fixed by 2095 [1344, 2889] (Fig. S17 and
Table S6).

Experiment 3: Task B only. It is possible that subjects behave suboptimally when they have to do
multiple tasks in a session; in other words, perhaps one task “corrupts” the other. To explore this possibility,
we ran an an experiment in which subjects completed Task B only. Quad fits better than Bayes-dN by 1361
[777, 2022], and better than Fixed by 7326 [4905, 9955] (Fig. S18 and Table S7). In experiments 2 and 3,
subjects only saw drifting Gabors; we did not use ellipses.

We also fit only the choice data, and found that Lin fits about as well as Bayes-dN, with summed LOO
differences of 117 [-76, 436], and better than Fixed by 1084 [619, 1675] (Fig. S19 and Table S8). This
approximately replicates our previously published results26.

Model comparison metric. None of our model comparison results depend on our choice of metric: in all
three experiments, model rankings changed negligibly if we used AIC, BIC, AICc, or WAIC instead of LOO
(Supplementary Information).

Neural network

Taken together, the model comparisons in experiments 1 to 3 convince us that there is no obvious way
to explain human confidence ratings as Bayesian. Does this mean that the normative framework must be
entirely rejected? We should instead consider that implementational constraints may restrict the brain’s
ability to perform fully Bayesian computation21,22. To explore this possibility, we adopted an approach
related to work by Yamins et al. (2014), who maximize a network’s categorization performance without
constraining it to neural data; the resulting model was highly predictive of cortical response43. Here, we
trained networks as if they were naïve human subjects, without constraining them to human behavioral
data; the output from the networks have behavioral model rankings that are similar to those of the human
subjects.

We trained biologically plausible feedforward neural networks (Fig. 7a) to perform Task B with online
category correctness feedback44. The trained networks perform the task in a way that is qualitatively
similar to the subjects (Fig. 7b,c). We then fit their output with the same models that we used to fit
subject data, and found that Lin is the best-fitting model, outperforming Bayes by summed AIC differences
of 11662 [10011, 13522] (Fig. 7d, blue). The overall rankings of all models fit to the trained networks
(Fig. S5, blue) was very similar to that of the human models (Fig. S14a), with a Spearman’s rank correlation
coefficient of 0.85. This convergence of neural network and human behavior suggests that neural architecture
may impose constraints on the type of behavior that can be produced (Supplementary Information).
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An alternative explanation of this result is that Bayes is too inflexible to fit any behavioral dataset based
on neural activity. To rule out this possibility, we decoded optimal posterior probabilities from input unit
activity on a per-trial basis, mapped these onto button presses using quantiles, and fit the behavioral models.
Bayes provides the best fit, fitting these datasets better than Lin by 5739 [3935, 8045] and better than Quad
by 800 [479, 1412] (Fig. 7d, black). Thus, the fact that Lin wins is not due to Bayes being generally
inflexible.
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Figure 7: Neural network architecture, model comparison, and task behavior. (a) Feedforward neural network architecture.
Input units were independent Poisson neurons with Gaussian tuning curves that were evenly spaced and of identical
width. Input units were connected, all-to-all, to hidden rectified linear units. Hidden units were connected to a sigmoidal
output unit. The output was mapped onto a category and confidence response (as in Fig. 1a) using eight quantiles
(Supplementary Information). (b) Task behavior of trained neural networks. Mean button press as a function of neural
gain and true category. Compare to Figure 3d. (c) Mean button press as a function of stimulus orientation and neural
gain. Compare to Figure 3o. (d) Model comparison (as in Fig. 6) for data generated by the optimal decoder, and by
trained neural networks. Fixed, Orientation Estimation, and Linear Neural were also fit to those data, but are not shown
because they all fit more poorly than Bayes (Fig. S5).

Discussion

Although people can report subjective feelings of confidence, the computations that produce this feeling
are not well-understood. Confidence has been defined as the observer’s computed posterior probability that
a decision is correct. However, this hypothesis has not been fully tested. We used model comparison to
investigate the computational underpinnings of human confidence reports, fitting a total of 75 models from 6
distinct model families. We also trained neural networks to perform a perceptual task, treating the network
output as if it were subject-generated data for the purpose of model comparison44. We carried out a strong
and comprehensive test of a set of cognitive models, varying task components such as stimulus reliability
and stimulus distributions27.

Our first finding is that, like the optimal observer, subjects use knowledge of their sensory uncertainty when
reporting confidence in a categorical decision; models in which the subject ignores their sensory uncertainty
provided a poor fit to the data (Fig. 4). Our second finding is that, unlike the optimal observer, subjects do
not appear to use knowledge of their sensory uncertainty in a Bayesian way. Instead, heuristic models that
approximate Bayesian computation—but do not compute a posterior probability over category—outperform
the Bayesian models in a variety of experimental contexts (Fig. 5, compare top row to bottom two rows).
This result continued to hold after we relaxed assumptions about the relationship between reliability and
noise, and about the subject’s knowledge of the generating model. We accounted for the fact that our models
had different amounts of flexibility by using a wide array of model comparison metrics and by showing that
our models were meaningfully distinguishable (Supplementary Information).

We trained neural networks to perform one of our tasks. Although the training procedure necessarily differed
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from that of the humans, we found that the trained networks produced confidence responses that, like the
human data, were best fit by heuristic models. This convergent result suggests that the structure of the
neural network—and by extension, the structure of the brain—limits its ability to produce accurate posterior
estimates in categorization tasks.

While we believe that we have tested a large proportion of the models that could reasonably be considered
“Bayesian” for these tasks, there are many other heuristic models that we did not test that may describe the
data better. So our main message is not that Lin and Quad are general descriptions of human confidence, but
that human behavior is best described by models that are non-Bayesian. Some may argue that non-Bayesian
models should be rejected because they are not generalizable. Bayesian models derive their generalizability
from their normative nature: in any task, one can determine the performance-maximizing strategy. Although
this property makes Bayesian models attractive and powerful, it is not clear that this property should override
a bad fit in all cases.

Moreover, performance maximization is only one of several ecologically relevant organizing principles. The
brain is also limited by the kinds of operations that neurons can perform and the ways by which organisms
learn21,22; our neural network analysis suggests that architectural or learning constraints may cause the
brain to deviate from Bayesian computations. Future work could investigate the possibility that the brain is
near-optimal under implementational constraints; this would connect Marrian levels within a single rational
framework45.

We will now describe how our results relate to recently published experimental findings. Rahnev et al.31
reported that subjective decision criteria are fixed across conditions of uncertainty. However, their study did
not test models in which the criteria were a function of uncertainty, so they cannot make this conclusion very
strongly. Additionally, their study used visibility ratings, which differ from confidence ratings46. Finally,
their results may be specific to the case where sensory uncertainty is a function of attention rather than
stimulus reliability. We leave this question for future work.

Sanders et al.20 reported that confidence has a “statistical” nature. However, their experiment was unable
to determine whether confidence is probabilistic or Bayesian17, because the stimuli vary along only one
dimension. As noted by Aitchison et al., to distinguish models of confidence, the experimenter must use
stimuli that are characterized by two dimensions (e.g., contrast and orientation)19. This is because, when
fitting models that map from an internal variable to an integer confidence rating, it is impossible to distinguish
between two internal variables that are monotonically related (in the case of Sanders et al., the measurement
and the posterior probability of being correct). Therefore, the only alternative model proposed by Sanders
et al. is based on reaction time, rather than on the presented stimuli.

Like the present study, Aitchison et al.19 found evidence that confidence reports may emerge from heuristic
computations. However, they sampled stimuli from only a small region of their two-dimensional space, where
model predictions may not vary greatly. Therefore, their stimulus set did not allow for the models to be
strongly distinguished. Furthermore, although they tested for Bayesian computation, they did not test for
probabilistic computation (i.e., whether observers take sensory uncertainty into account on a trial-to-trial
basis). Such a test requires that the experimenter vary the reliability of the stimulus feature of interest.

In this study, we only consider explicit confidence ratings, which differ from the implicit confidence that can
be gathered from non-human animals13 (e.g., by measuring how frequently they decline to make a difficult
choice8, or how long they will wait for a reward11). It is possible that implicit confidence might be more
Bayesian47. However, to our knowledge, there are no studies that both measure implicit confidence and
allow for comparison of the models presented here; this is an opportunity for future research.

What do our findings tell us about the neural basis of confidence? Previous studies have found that neural
activity in some brain areas (e.g., human medial temporal lobe7 and prefrontal cortex48, monkey lateral
intraparietal cortex8 and pulvinar10, rodent orbitofrontal cortex11) is associated with behavioral indicators
of confidence, and/or with the distance of a stimulus to a decision boundary. However, such studies mostly
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used stimuli that vary along a single dimension (e.g., net retinal dot motion energy, mixture of two odors).
Because measurement is indistinguishable from the probability of being correct in these classes of tasks,19
neural activity associated with confidence may represent either the measurement or the probability of being
correct. In addition to the recommendation of Aitchison et al. to distinguish between these possibilities by
varying stimuli along two dimensions, we recommend fitting both Bayesian and non-Bayesian probabilistic
models to behavior. Many physiological studies of decision-making focus on correlating neural activity to
parameters of behavioral models. This approach only makes sense when the behavioral model is a good
description of the behavior. Our results suggest that the Bayesian model is a relatively poor description of
confidence behavior. Therefore, the proposal to do this kind of correlational analysis with parameters of the
Bayesian confidence models12 should be viewed with skepticism.
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Supplementary Information

1 Experiment 1

1.1 Apparatus and stimuli

Apparatus. Subjects were seated in a dark room, at a viewing distance of 32 cm from the screen, with their
chin in a chinrest. Stimuli were presented on a gamma-corrected 60 Hz 9.7-inch 2048-by-1536 display. The
display (LG LP097QX1-SPA2) was the same as that used in the 2013 iPad Air (Apple); we chose it for
its high pixel density (264 pixels/inch). The display was connected to a Windows desktop PC using the
Psychophysics Toolbox extensions49,50 for MATLAB (Mathworks).

Stimuli. The background was mid-level gray (199 cd/m2). The stimulus was either a drifting Gabor (Subjects
3, 6, 8, 9, 10, and 11) or an (Subjects 1, 2, 4, 5, and 7). The Gabor had a peak luminance of 398 cd/m2

at 100% contrast, a spatial frequency of 0.5 cycles per degrees of visual angle (dva), a speed of 6 cycles per
second, a Gaussian envelope with a standard deviation of 1.2 dva, and a randomized starting phase. Each
ellipse had a total area of 2.4 dva2, and was black (0.01 cd/m2). We varied the contrast of the Gabor and
the elongation (eccentricity) of the ellipse (Section 1.2).

Categories. In Task A, stimulus orientations were drawn from Gaussian distributions with means µ1 = −4◦
(category 1) and µ2 = 4◦ (category 2) and standard deviations σ1 = σ2 = 5◦. In Task B, stimulus orientations
were drawn from Gaussian distributions with means µ1 = µ2 = 0◦, and standard deviations σ1 = 3◦ (category
1) and σ2 = 12◦ (category 2) (Fig. 1b). We chose these category means and standard deviations such that
the accuracy of an optimal observer would be around 80%.

1.2 Procedure

Each subject completed 5 sessions. Each session consisted of two parts; the subject did Task A in the first
part, followed by Task B in the second part, or vice versa (chosen randomly each session). Each part started
with instruction and was followed by alternating blocks of 96 category training trials and 144 testing trials,
for a total of three blocks of each type, with a block of 24 confidence training trials immediately after the
first category training block. Combining all sessions and both tasks, each subject completed 2880 category
training trials, 240 confidence training trials, and 4320 testing trials; we did not analyze category training
or confidence training trials.

Instruction. At the start of each part of a session, subjects were shown 30 (72 in the first session) exemplar
stimuli from each category. Additionally, we provided them with a printed graphic similar to Figure 1b,
and explained how the stimuli were generated from distributions. We answered any questions.

Category training. To ensure that subjects knew the stimulus distributions well, we gave them extensive
category training. Each trial proceeded as follows (Fig. 1a): Subjects fixated on a central cross for 1 s.
category 1 or category 2 was selected with equal probability. The stimulus orientation was drawn from the
corresponding stimulus distribution (Fig. 1b). Gabors had 100% contrast, and ellipses had 0.95 eccentricity
(elongation). The stimulus appeared at fixation for 300 ms, replacing the fixation cross. Subjects were asked
to report category 1 or category 2 by pressing a button with their left or right index finger, respectively.
Subjects were able to respond immediately after the offset of the stimulus, at which point verbal correctness
feedback was displayed for 1.1 s. The fixation cross then reappeared.

Confidence training. To familiarize subjects with the button mappings, they completed a short confidence
training black at the start of every task. We told subjects that in this block, it would be harder to tell
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what the stimulus orientation was, there would be no correctness feedback, and they would be reporting
their confidence on each trial in addition to their category choice. We provided them with a printed graphic
similar to the buttons pictured in Figure 1a, indicating that they had to press one of eight buttons to
indicate both category choice and confidence level, the latter on a 4-point scale. The confidence levels
were labeled as “very high,” “somewhat high,” “somewhat low,” and “very low.” Gabors had 0.4%, 0.8%,
1.7%, 3.3%, 6.7%, or 13.5% contrast, and ellipses had 0.15, 0.28, 0.41, 0.54, 0.67, or 0.8 eccentricity, chosen
randomly with equal probability on each trial (Fig. 1c). Stimuli were only displayed for 50 ms. Trial-to-trial
feedback consisted only of a message telling them which category and confidence level they had reported.
Other than these changes, the trial procedure was the same as in category training.

Subjects were not instructed to use the full range of confidence reports, as that might have biased them
away from reporting what felt most natural. Instead, they were simply asked to be “as accurate as possible
in reporting their confidence” on each trial.

Testing. The trial procedure in testing blocks was the same as in confidence training blocks, except that
trial-to-trial feedback was completely withheld. At the end of each block, subjects were required to take at
least a 30 sec break. During the break, they were shown the percentage of trials that they had correctly
categorized. Subjects were also shown a list of the top 10 block scores (across all subjects, indicated by
initials) for the task they had just done. This was intended to motivate subjects to score highly, and to
reassure them that their scores were normal, since it is rare to score above 80% on a block.

1.3 Subjects

11 subjects (2 male), aged 20-42, participated in the experiment. Subjects received $10 per 40-60 minute
session, plus a completion bonus of $15. The experiments were approved by the University Committee on
Activities Involving Human Subjects of New York University. Informed consent was given by each subject
before the experiment. All subjects were naïve to the purpose of the experiment. No subjects were fellow
scientists.

1.4 Descriptive statistics

The following statistical differences were assessed using repeated-measures ANOVA.

In Task A, there was a significant effect of true category on category choice (F1,10 = 285, P < 10−7).
There was no main effect of reliability, which took 6 levels of contrast or ellipse elongation, on category
choice (F5,50 = 0.27, P = 0.88). In other words, subjects were not significantly biased to respond with a par-
ticular category at low reliabilities. There was a significant interaction between reliability and true category,
which is to be expected (F5,50 = 59.6, P < 10−15) (Fig. 3a).

In Task B, there was again a significant effect of true category on category choice (F1,10 = 78.3, P < 10−5).
There was no main effect of reliability (F5,50 = 2.93, P = 0.051). There was again a significant interaction
between reliability and true category (F5,50 = 28, P < 10−12) (Fig. 3b).

In Task A, there was a significant effect of true category on response (F1,10 = 136, P < 10−6). There was
no main effect of reliability (F5,50 = 0.61, P = 0.642). There was a significant interaction between reliability
and true category (F5,50 = 58.7, P < 10−13) (Fig. 3c).

In Task B, there was a significant effect of true category on response (F1,10 = 54.2, P < 10−6). There was
a significant effect of reliability (F5,50 = 4.84, P = 0.0128). There was a significant interaction between
reliability and true category (F5,50 = 29.2, P < 10−8) (Fig. 3d).

In Task A, there was a main effect of confidence on the proportion of reports (F3,30 = 7.75, P < 10−3); low-
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confidence reports were more frequent than high-confidence reports. There was no significant effect of true
category (F1,10 = 0.784, P = 0.397) and no interaction between confidence and category on proportion of
responses (F3,30 = 1.45, P = 0.25) (Fig. 3e).

In Task B, there was a main effect of confidence on the proportion of reports (F3,30 = 4.36, P = 0.012). There
was no significant effect of category (F1,10 = 0.22, P = 0.64), although there was an interaction between
confidence and category (F3,30 = 8.37, P = 0.003). This is likely because for task B, category 2 has a higher
proportion of “easy” stimuli (Fig. 3f).

In both tasks, reported confidence had a significant effect on performance (F3,30 = 36.9, P < 10−3). Task also
had a significant effect on performance (F1,10 = 20.1, P = 0.001); although we chose the category parameters
such that the performance of the optimal observer is matched, subjects were significantly better at Task A.
There was no interaction between task and confidence (F3,30 = 0.878, P = 0.436) (Fig. 3g).

Fig. 3l-m shows psychometric choice curves for both tasks, at all 6 levels of reliability. Each point represents
roughly the same number of trials.

Fig. 3n-o shows a similar set of psychometric curves. These curves differ from Fig. 3l-m in that they
represent the mean button press rather than mean category choice.

In Task A (Fig. 3l,n), mean category choice and mean button press depend monotonically on orientation,
with a slope that increases with reliability. In Task B (Fig. 3m,o), the mean category choice and mean
button press tends towards category 1 when stimulus orientation is near horizontal, and tends towards
category 2 when orientation is strongly tilted; this reflects the stimulus distributions.

Since our models do not include any learning effects, we wanted to ensure that task performance was stable.
For all tasks and experiments, we found no evidence that performance changed significantly as a function of
the number of trials. For each experiment and task (the 5 lines in Fig. S1), we fit a logistic regression to
the binary correctness data for each subject, obtaining a set of slope coefficients. We then used a t-test to
determine whether these sets of coefficients differed significantly from zero. In no group did the slopes differ
significantly from zero; across all 5 groupings the minimum p-value was 0.077 (Task A, experiment 2), which
would not be significant even before correcting for multiple comparisons.

Figure S1: Performance as a function of number of trials, for both tasks and for all experiments. Performance was computed
as a moving average over test trials (200 trials wide). Shaded regions represent ±1 s.e.m. over subjects. Performance did
not change significantly over the course of each experiment.

1.5 Effect of stimulus type on results: Gabor vs. ellipse

Since some subjects only saw Gabors and some only saw ellipses, we used Spearman’s rank correlation coef-
ficient to measure the similarity of the two groups’ model rankings. Spearman’s rank correlation coefficient
between Gabor and ellipse subjects for the summed LOO scores of the model groupings in Figure 6 and
Figure S12 was 0.952 and 0.944, respectively (a value of 1 would indicate identical rankings). In both
model groupings, the identities of the lowest- and highest-ranked models was the same for both Gabor and
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ellipse subjects. This indicates that the choice of stimulus type did not have a systematic effect on model
rankings.

2 Experiment 2: Separate category and confidence responses and
testing feedback

This control experiment was identical to experiment 1 except for the following modifications:

• Subjects first reported choice by pressing one of two buttons with their left hand, and then reported
confidence by pressing one of four buttons with their right hand.
• Subjects reported confidence in category training blocks, and received correctness feedback after re-
porting confidence.
• There were no confidence training blocks.
• In testing blocks, subjects received correctness feedback after each trial.
• Subjects completed a total of 3240 testing trials.
• 8 subjects (0 male), aged 19–23, participated. None were participants in experiment 1, and again, none
were fellow scientists.
• Drifting Gabors were used; no subjects saw ellipses.

3 Experiment 3: Task B only

This experiment was identical to experiment 1 except for the following modifications:

• Subjects completed blocks of Task B only.
• Subjects completed a total of 3240 testing trials.
• 15 subjects (7 female), aged 19–30, participated. None were participants in experiments 1 or 2.
• Drifting Gabors were used; no subjects saw ellipses.

4 Modeling

4.1 Measurement noise

For models (such as our core models) where the relationship between reliability (i.e., contrast or ellipse
eccentricity) and noise was parametric, we assumed a power law relationship between reliability c and
measurement noise variance σ2: σ2(c) = γ + αc−β . We have previously26 used this power law relationship
because it encompasses a large family of monotonically decreasing relationships using only three parameters.
The relationship is also consistent with a form of the Naka-Rushton function51,52 commonly used to describe
the mapping from reliability to neural gain g: g = γcβ

cβ+α . The power law relationship then holds under the
assumption that measurement noise variance is inversely proportional to gain53.

For all models except the Bayesian model with additive precision, we assumed additive orientation-dependent
noise in the form of a rectified 2-cycle sinusoid, accounting for the finding that measurement noise is higher
at non-cardinal orientations54. The measurement noise s.d. comes out to

σ(c) =
√
γ + αc−β + ψ

∣∣∣sin πs90

∣∣∣. (1)
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4.2 Response probability

We coded all responses as r ∈ {1, 2, . . . , 8}, with each value indicating category and confidence. For all
models except the Linear Neural model, the probability of a single trial i is equal to the probability mass of
the measurement distribution p(x | si) = N (x; si, σ2

i ) in a range corresponding to the subject’s response ri.
Because we only use a small range of orientations, we can safely approximate measurement noise as a normal
distribution, rather than a Von Mises. We find the boundaries (bri−1(σi), bri(σi)) in measurement space, as
defined by the fitting model and parameters θ, and then compute the probability mass of the measurement
distribution between the boundaries:

pm,θ(ri | si, σi) =
∫ bri

bri−1

N (x; si, σ2
i ) dx. (2)

For Task A, b0 = −∞◦ and b8 =∞◦. For Task B, b0 = 0◦ and b8 =∞◦; since the task is symmetric around
0◦, we only use |s| in our computation of the log likelihood.

To obtain the log likelihood of the dataset, given a model with parameters θ, we compute the sum of the log
probability for every trial i, where t is the total number of trials:

log p(data | θ) =
t∑
i=1

log p(ri | θ) =
t∑
i=1

log pθ(ri | si, σi). (3)

4.3 Model specification

4.3.1 Bayesian

Derivation of dA and dB. The log posterior ratio d is equivalent to the log likelihood ratio plus the log prior
ratio:

d = log p(C = 1 | x)
p(C = 2 | x) = log p(x | C = 1)

p(x | C = 2) + log p(C = 1)
p(C = 2) . (4)

To get dA and dB, we need to find the task-specific expressions for p(x | C). The observer knows that the
measurement x is caused by the stimulus s, but has no knowledge of s. Therefore, the optimal observer
marginalizes over s:

p(x | C) =
∫
p(x | s)p(s | C) ds.

We substitute the expressions for the noise distribution and the stimulus distribution, and evaluate the
integral:

p(x | C) =
∫
N (s;x, σ2)N (s;µC , σ2

C) ds = N (x;µC , σ2 + σ2
C).

Plugging in the task- and category-specific µC and σC , and substituting these expressions back into equa-
tion (4), we get:
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dA = 2xµ1

σ2 + σ2
1

+ log p(C = 1)
p(C = 2) (5)

dB = 1
2 log σ

2 + σ2
2

σ2 + σ2
1
− σ2 − σ2

1
2(σ2 + σ2

1)(σ2 + σ2
2)x

2 + log p(C = 1)
p(C = 2) . (6)

The 8 possible category and confidence responses are determined by comparing the log posterior ratio d to a
set of decision boundaries k = (k0, k1, . . . , k8). k4 is equal to the log prior ratio log p(C=1)

p(C=2) , which functions
as the boundary on d between the 4 category 1 responses and the 4 category 2 responses; k4 is the only
boundary parameter in models of category choice (and not confidence). k0 is fixed at −∞ and k8 is fixed at
∞. In all models, the observer chooses category 1 when d is positive.

Because the decision boundaries are free parameters, our models effectively include a large family of possible
cost functions. A different cost function would be equivalent to a rescaling of the confidence boundaries
k. To see this, it is probably easiest to consider category choice alone; there, asymmetric costs for getting
either category wrong would translate into a different value of k4, the category decision boundary (i.e., the
observer’s prior over category). For us, this boundary (and all other boundaries) are free parameters.

The posterior probability of category 1 can be written as as p(C = 1 | x) = 1
1+exp(−d) .

Levels of strength. The Bayesian model is unique in that it is possible to formulate a principled version with
relatively few boundary parameters. In principle, it is possible that such a model could perform better than
more flexible models, if those models are overfitting. We formulated several levels of strength of the BCH,
with weaker versions having fewer assumptions and more sets of mappings between the posterior probability
of being correct and the confidence report (Fig. S2). In the ultrastrong BCH, confidence is a function solely
of the posterior probability of the chosen category. In the strong BCH, it is additionally a function of the
current task. In the weak BCH, it is additionally a function of the identity of the chosen category.

Most studies cannot distinguish between the ultrastrong and strong BCH because they test subjects in
only one task. Furthermore, the weak BCH is only justifiable in tasks where the categories have different
distributions of the posterior probability of being correct; the subject may then rescale their mappings
between the posterior and their confidence. Here, one can see that Task B has this feature by observing
that, in the bottom row of Figure S2, the distributions of posterior probabilities are different for the two
categories). Most experimental tasks are like Task A, where the distributions are identical. We compared
Bayesian models (BayesUltrastrong, BayesStrong) corresponding to each of these versions of the BCH.

In BayesUltrastrong, k is symmetric across k4: k4+j − k4 = k4 − k4−j for j ∈ {1, 2, 3}. Furthermore, in
BayesUltrastrong, kA = kB. So BayesUltrastrong has a total of 4 free boundary parameters: k1, k2, k3, k4.
BayesUltrastrong consists of the observer determining the response by comparing dA and dB to a single sym-
metric set of boundaries (Fig. S2, left column).

BayesStrong is identical to BayesUltrastrong except that kA is allowed to differ from kB. So BayesStrong has a
total of 8 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B. BayesStrong consists of the observer
determining the response by comparing dA to a symmetric set of boundaries, and dB to a different symmetric
set of boundaries (Fig. S2, middle column).

BayesWeak is identical to BayesStrong except that symmetry is not enforced for kB. So BayesWeak has a
total of 11 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B, k5B, k6B, k7B. BayesWeak consists
of the observer comparing dA to a symmetric set of boundaries, and dB to a different non-symmetric set of
boundaries (Fig. S2, right column).

We did not include BayesStrong and BayesUltrastrong in the core models reported in the main text, because
BayesWeak provided a much better fit to the data. Because it was not necessary in the main text to distinguish
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the three strengths of Bayesian models, we refer to BayesWeak there simply as Bayes. The model comparison
results for all models are available in the supplemental tables. Furthermore, we included these models in our
model recovery analysis (Section 4.9).

pr
ob
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y
BayesUltrastrong

Task A

"cat. 1"
"cat. 2"

BayesStrong BayesWeak

0.5 0.6 0.7 0.8 0.9 1
p(choice is correct j measurement)
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ab
ilit

y

Task B

0.5 0.6 0.7 0.8 0.9 1
p(choice is correct j measurement)

0.5 0.6 0.7 0.8 0.9 1
p(choice is correct j measurement)

Figure S2: Distributions of posterior probabilities of being correct, with confidence criteria for Bayesian models with three
different levels of strength. Solid lines represent the distributions of posterior probabilities for each category and task in the
absence of measurement noise. Dashed lines represent confidence criteria, generated from the mean of subject 4’s posterior
distribution over parameters. Each model has a different number of sets of mappings between posterior probability and
confidence report. In BayesUltrastrong, there is one set of mappings. In BayesStrong, there is one set for Task A, and another
for Task B. In BayesWeak, as in the non-Bayesian models, there is one set for Task A, and one set for each reported category
in Task B. Plots were generated from the mean of subject 4’s posterior distribution over parameters as in Figure 2.
Decision boundaries. In the Bayesian models without d noise, we translate boundary parameters k from log
posterior ratio boundaries b to measurement boundaries corresponding to fitted noise levels σ. To do this,
we use the parameters k as the left-hand side of equations (5) and (6) and solve for x at the fitted levels of
σ. These values were used as the measurement boundaries b(σ).

In the Bayesian models with d noise, we assume that, for each trial, there is an added Gaussian noise term
on d, ηd ∼ p(ηd), where p(ηd) = N (0, σ2

d), and σd is a free parameter. We pre-computed 101 evenly spaced
draws of ηd and their corresponding probability densities p(ηd). We used equations (5) and (6) to compute
a lookup table containing the values of d as a function of x, σ, and ηd. We then used linear interpolation
to find sets of measurement boundaries b(σ) corresponding to each draw of ηd 55. We then computed 101
response probabilities for each trial (Section 4.2), one for each draw of ηd, and computed the weighted
average according to p(ηd).

4.3.2 Probability correct with additive precision

We tested a model where the decision variable was a weighted mixture of precision (equivalent in this case to
the Fisher information of the measurement variable x) and the probability of being correct39. In this model,
the decision variable is ω

σ2 + 1
1+exp(−|d|) , where ω is a free parameter. To find the measurement boundaries

b(σ), we substituted equations (5) or (6) for d, and set the whole value equal to parameters k, solving for x at
the fitted levels of σ. This model can be considered a hybrid Bayesian-heuristic model. Like BayesUltrastrong,
it has 4 free boundary parameters. Although the model is a hybrid Bayesian-heuristic model, not a strictly
Bayesian one, we refer to it as BayesUltrastrong + precision in Figure S12 and Table S1.
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4.3.3 Fixed

In Fixed, the observer compares the measurement to a set of boundaries that are not dependent on σ. We
fit free parameters k, and use measurement boundaries br = kr.

4.3.4 Lin and Quad

In Lin and Quad, the observer compares the measurement to a set of boundaries that are linear or quadratic
functions of σ. We fit free parameters k and m, and use measurement boundaries br(σ) = kr + mrσ (Lin)
or br(σ) = kr +mrσ

2 (Quad).

4.3.5 Orientation Estimation

In Orientation Estimation, the observer uses their knowledge of the stimulus distributions to compute a
maximum a posteriori estimate of the stimulus:

ŝ = argmax
s

p(s | x)

= argmax
s

p(x | s)p(s)

= argmax
s

[
N (s;x, σ2)(p(s | C = 1) + p(s | C = 2))

]
. (7)

The observer then compares ŝ to a set of boundaries k to determine category and confidence response.

Decision boundaries. To find the decision boundaries in measurement space, we used gmm1max_n2_fast
from Luigi Acerbi’s gmm1 Gaussian mixture model toolbox to solve equation (7), computing a lookup table
containing the value of ŝ as a function of x and σ 36. We then found, using linear interpolation, the values
of x corresponding to σ and the free parameters k. These values were used as the measurement boundaries
b(σ).

4.3.6 Linear Neural

In this section, r refers to neural activity, not button responses.

This model is different from all other models in that the generative model does not include measurement x.
The model can be derived as follows.

All neurons have Gaussian tuning curves with variance σ2
TC and gain g = 1

σ2 . Tuning curve means
are contained in the vector of preferred stimuli s̃. The number of spikes in the population is r ∼
Poisson(gN (s; s̃, σ2

TC)). Neural weights are a linear function of the preferred stimuli: w = as̃.

On each trial, we get some quantity that is a weighted sum of each neuron’s activity, z = w · r.
E [z | s] = w · E [r | s] = ag

∑
j s̃j exp

(
− (s−s̃j)2

2σ2
TC

)
.

Rather than sum over all neurons, we assume an infinite number of neurons uniformly span-
ning all possible preferred stimuli s̃. This allows us to replace the sum with an integral.
The expected value of z is ag

∫
s̃ exp

(
− (s−s̃j)2

2σ2
TC

)
ds̃ = ags

√
2πσ2

TC. The variance of z is
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∑
j w

2
jfj(s) = ag

∫
s̃2 exp

(
− (s−s̃)2

2σ2
TC

)
ds̃ = ag

√
2πσ2

TC(σ2
TC + s2).

Now that we have the mean and variance of z, we are going to assume that z is normally distributed. This is
equivalent to assuming that there are a high number of spikes, because the Poisson distribution approximates
the normal distribution as the rate parameter becomes high. To compute response probability, we fit neural
activity boundaries k, and replace equation (2) with

pθ(ri | si, σi) =
∫ kri

kri−1

N (z; agsi
√

2πσ2
TC, ag

√
2πσ2

TC(σ2
TC + s2

i )) dz.

4.4 Lapse rates

In confidence and category models, we fit three different types of lapse rate. On each trial, there is some
fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen from a distri-
bution over the four levels defined by λ1, the probability of a “very low confidence” response, and λ4,
the probability of a “very high confidence” response, with linear interpolation for the two intermediate
levels.
• A “confidence lapse” λconfidence in which the category report is chosen normally, but the confidence
report is chosen from a uniform distribution over the four levels.
• A “repeat lapse” λrepeat in which the category and confidence response is simply repeated from the

previous trial.

In category choice models, we fit a standard category lapse rate λ, as well the above “repeat lapse” λrepeat.

4.5 Parameterization

Because of tradeoffs when directly fitting parameters γ, α, β, we re-parameterized equation (1) as

σ(c) =

√
σ2
L + (σ2

L − σ2
H)(c−β − c−βL )

c−βL − c−βH
+ ψ

∣∣∣sin πs90

∣∣∣,
where cL and cH were the values of the lowest and highest reliabilities used. This way, σL and σH were free
parameters that determined the s.d. of the measurement distributions for the lowest and highest reliabilities,
and β was a free parameter determining the curvature of the function between the two reliabilities. For models
where the relationship between reliability and noise was non-parametric, the first term in equation (1) was
replaced with free s.d. parameters (σrel. 1, . . . , σrel. 6) corresponding to each of the six reliability levels.

For models where subjects had incorrect knowledge about their measurement noise, we fitted two sets of
uncertainty-related parameters. One set was for the generative noise (used in equation (2)), and the other
set was for the subject’s believed noise (used in equations (5), (6), and (7)).

All parameters that defined the width of a distribution (σL, σH, σd, σ1, . . . ) were sampled in log-space and
exponentiated during the computation of the log likelihood. See model_parameters.xls for a complete list of
each model’s parameters.
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4.6 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the posterior distribu-
tion over parameters, p(θ | data); this has the advantage of maintaining a measure of uncertainty about the
parameters, which can be used for both model comparison and for plotting model fits. To sample from the
posterior, we use an expression for the unnormalized log posterior

log p(θ | data) = log p(data | θ) + log p(θ) + constant, (8)

where log p(data | θ) is given in equation (3). We assumed a factorized prior over each parameter j:

log p(θ) =
n∑
j=1

log p(θj),

where j is the parameter index and n is the number of parameters. We took uniform (or, for parameters
that were standard deviations, log-uniform) priors over reasonable, sufficiently large ranges36, which we
chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC) method, slice
sampling56. For each model and dataset combination, we ran between 4 and 7 parallel chains with random
starting points. For each chain, we took 40,000 to 600,000 total samples (depending on model computational
time), discarded the first third of the samples, and kept 10,000 of the remaining samples, randomly selected.
All samples with log posteriors less than 40 below the log posterior of the sample with the highest log posterior
were discarded. Marginal probability distributions of the sample log likelihoods were visually checked for
convergence across chains. In total we had 842 model and dataset combinations, with a median of 26,668
kept samples (IQR = 13,334).

4.7 Model comparison

4.7.1 Model groupings

We used 8 groupings of model-subject combinations where it made sense to consider the models as be-
ing on equal footing for the purpose of model comparison. The model-subject combinations were grouped
by: experiment (which corresponded to subject population), data type (category response only vs. cate-
gory and confidence response), task type (Task A, B, or both fit jointly). The 8 groupings correspond to
Figures S12–S19 and Tables S1–S8.

4.7.2 Metric choice

A more complex model is likely to fit a dataset better than a simpler model, even if only by chance. Since we
are interested in our models’ predictive accuracy for unobserved data, it is important to choose a metric for
model comparison that takes the complexity of the model into account, avoiding the problem of overfitting.
Roughly speaking, there are two ways to compare models: information criteria and cross-validation.

Most information criteria (such as AIC, BIC, and AICc) are based on a point estimate for θ, typically θMLE,
the θ that maximizes the log likelihood of the dataset (equation (3)). For instance, AIC adds a correction
for the number of parameters n to the log likelihood of the dataset: AIC = −2

∑t
i=1 log p(ri | θMLE) + 2n.
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WAIC is a more Bayesian approach to information criteria that adds a correction for the effective number
of parameters57. Because WAIC is based on samples from the full posterior of θ (equation (8), typically
sampled via MCMC), it takes into account the model’s uncertainty landscape.

Although information criteria are computationally convenient, they are based on asymptotic results and
assumptions about the data that may not always hold57. An alternative way to estimate predictive accuracy
for unobserved data is to cross-validate, fitting the model to training data and evaluating the fit on held out
data. Leave-one-out cross-validation is the most thorough way to cross-validate, but is very computationally
intensive; it requires that you fit your model t times, where t is the number of trials. Here we use a method
(PSIS-LOO, referred to here simply as LOO) proposed by Vehtari et al.33 for approximating leave-one-out
cross-validation that, like WAIC, uses samples from the full posterior of θ:

LOO =
t∑
i=1

log
∑
u wi,up(ri | θu)∑

u wi,u
,

where θu is the u-th sampled set of parameters, and wi,u is the importance weight of trial i for sample u.
Pareto smoothed importance sampling provides an accurate and reliable estimate of the weights. LOO is
currently the most accurate approximation of leave-one-out cross-validation58. Conveniently, it has a natural
diagnostic that allows the user to know when the metric may be inaccurate33.

We tried to determine whether our results were dependent on our choice of metric. We computed AIC, BIC,
AICc, WAIC, and LOO for all models in the 8 model groupings, multiplying the information criteria by
− 1

2 to match the scale of LOO. For AIC, BIC, and AICc, we used the parameter sample with the highest
log likelihood as our estimate of θMLE. Then we computed Spearman’s rank correlation coefficient for every
possible pairwise comparison of model comparison metrics for all model and dataset combinations, producing
80 total values (8 model groupings × 10 possible pairwise comparisons of model comparison metrics). All
values were greater than 0.998, indicating that, had we used an information criterion instead of LOO, we
would not have changed our conclusions. Furthermore, there are no model groupings in which the identities
of the lowest- and highest-ranked models are dependent on the choice of metric. The agreement of these
metrics strengthens our confidence in our conclusions.

4.7.3 Metric aggregation

Summed LOO differences. In all figures where we present model comparison results (e.g., Fig. 5, right
column), we aggregate LOO scores by the following procedure. Choose a reference model (usually the one
with the lowest mean LOO score across subjects). Subtract all LOO scores from the corresponding subject’s
score for the reference model; this converts all scores to a LOO “difference from best” score, with higher
scores being worse. Repeat the following standard bootstrap procedure 10,000 times: Choose randomly,
with replacement, a group of datasets equal to the total number of unique datasets, and take the sum over
subjects of their “difference from best” scores for each model. Plots indicate the median and 95% CI of
these bootstrapped summed “difference from best” scores. This approach implicitly assumes that all data
was generated from the same model.

Group level Bayesian model selection. We also used LOO scores to compute two metrics that allow for
model heterogeneity across the group. The first metric was “protected exceedance probability,” the posterior
probability that one model occurs more frequently than any other model in the set59, above and beyond
chance (e.g., Fig. S12b). The second was the expected posterior probability that a model generated the
data of a randomly chosen dataset60 (e.g., Fig. S4d, Fig. S12c). The latter metric assumes a uniform prior
over models, which is a function of the total number of datasets. We used the SPM12 software package to
compute these metrics.
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In all but one of the 8 model groupings, all three methods of metric aggregation identify the same overall
best model. For example, in Fig. S12, one model (Quad + non-param. σ) has the lowest summed LOO
differences, the highest protected exceedance probability, and the highest expected posterior probability.

4.8 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure: For each
task, model, and subject, we generated 20 synthetic datasets, each using a different set of parameters
sampled, without replacement, from the posterior distribution of parameters. Each synthetic dataset was
generated using the same stimuli as the ones presented to the real subject. We randomly selected a number
of synthetic datasets equal to the number of subjects to create a synthetic group dataset. For each synthetic
group dataset, we computed the mean output (e.g., button press, confidence, performance) per bin. We then
repeated this 1,000 times and computed the mean and standard deviation of the mean output per bin across
all 1,000 synthetic group datasets, which we then plotted as the shaded regions. Therefore, shaded regions
represent the mean ±1 s.e.m. of synthetic group datasets.

For plots with orientation on the horizontal axis (e.g., Figure 3j–o), stimulus orientation was binned
according to quantiles of the task-dependent stimulus distributions so that each point consisted of
roughly the same number of trials. For each task, we took the overall stimulus distribution p(s) =
1
2 (p(s | C = 1) + p(s | C = 2)) and found bin edges such that the probability mass of p(s) was the same
in each bin. We then plotted the binned data with linear spacing on the horizontal axis.

4.9 Model recovery

We performed a model recovery analysis61 to test our ability to distinguish our 6 core models, as well
as the 2 stronger versions of the Bayesian model (Section 4.3.1). We generated synthetic datasets from
each of the 8 models for both Tasks A and B, using the same sets of stimuli that were originally randomly
generated for each of the 11 subjects. To ensure that the statistics of the generated responses were similar
to those of the subjects, we generated responses to these stimuli from 4 of the randomly chosen parameter
estimates obtained via MCMC sampling (as described in Section 4.6) for each subject and model. In total,
we generated 352 datasets (8 generating models × 11 subjects × 4 datasets). We then fit all 8 models to
every dataset, using maximum likelihood estimation (MLE) of parameters by an interior-point constrained
optimization (MATLAB’s fmincon), and computed AIC scores from the resulting fits.

We found that the true generating model was the best-fitting model, on average, in all cases (Fig. S3).
Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the model that generated the
data) for 86.6% of the datasets, indicating that our models are distinguishable.

Ideally, we would have evaluated our model recovery fits using LOO, as we evaluated the fits to human data.
However, LOO can only be obtained when fitting with MCMC sampling, which takes orders of magnitudes
longer than fitting with MLE. It would be impossible to fit all 352 synthetic datasets in a short amount
of time using the same procedure and sampling quality standards described in Section 4.6 (i.e., a large
number of samples, across multiple converged chains). Furthermore, we do not believe that our results are
dependent on how the models are fit and the fits are evaluated; we found that AIC and LOO scores gave us
near-identical model rankings for data from real subjects (Section 4.7.2).

Supplementary Information 12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/093203doi: bioRxiv preprint 

https://doi.org/10.1101/093203
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayes U
 + d noise

Bayes S
 + d noise

Bayes W
 + d noise

Ori. E
st.

Lin. Neur. Lin
Quad

Fixed

model used to generate synthetic data

BayesU + d noise

BayesS + d noise

BayesW + d noise

Ori. Est.

Lin. Neur.

Lin

Quad

Fixed
fit

te
d 

m
od

el

0

25

50

75

6100

"
 AIC

Figure S3: Model recovery analysis. Shade represents the difference between the mean AIC score (across datasets) for each
fitted model and for the one with the lowest mean AIC score. White squares indicate the model that had the lowest mean
AIC score when fitted to data generated from each model. The squares on the diagonal indicate that the true generating
model was the best-fitting model, on average, in all cases.

5 Neural networks

5.1 Architecture

In this section, r and r refer to neural activity, not button responses.

We trained 3-layer feedforward neural networks to perform Task B44. The architecture, described below, is
pictured in Figure 7a. The input units were 50 independent Poisson neurons. The mean number of spikes
per trial was determined by Gaussian tuning curves with baselines, such that the neurons had spike count

rinput ∼ Poisson
(
gN (s, s̃, σ2

TC) + ζ
)
.

s̃ is the vector of preferred stimuli, which were linearly spaced from −40◦ to 40◦. All neurons had tuning
curve width σ2

TC = 100 and baseline ζ = 0.025 (to limit the number of trials with zero spikes). Gain g varied
from trial-to-trial, and was derived from fits to subject data. Input units were connected, all-to-all, to 200
hidden rectified linear units with responses

rhidden = max(0,Winputrinput),

where Winput was the weight matrix applied to the input units. Both input and hidden layers included a
bias unit with a constant response of 1, which, when multiplied by the fitted weights, effectively adds a fitted
bias to the hidden units and output unit. Hidden units were connected to a sigmoidal output unit with
response

routput = 1
1 + exp(−whidden · rhidden) ,

where whidden was the weight vector applied to the hidden units.
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Figure S4: Neural network optimality, task per-
formance, and model comparison. (a) Posterior
probabilities decoded optimally from input unit
activity, scattered against network output. Each
point is a test trial from a neural network that
was trained on the maximum number of training
trials. For clarity, a randomly selected subset of
test trials is plotted. (b) Fractional information
loss as a function of the number of training trials.
Error bars represent ±1 s.e.m. across the means
of datasets generated with the gains derived from
each subject. (c) Black line indicates network test
performance as a function of the number of train-
ing trials. Gray error bar indicates ±1 s.e.m. for
the Task B performance of subjects in experiment
1; all subjects completed 1440 training trials. (d)
Expected posterior probability that a model gen-
erated a randomly chosen dataset 60, as a function
of the number of training trials.

5.2 Training networks and generating
datasets

Stimuli s were drawn from the same distributions used for the
human experiments in Task B. Gains differed from trial-to-
trial; to ensure that the reliability of the information available
to the networks was similar to the reliability of the subjects’
sensory information, the gains were derived from the fits to
the Task A choice data in experiment 153. Indeed, the per-
formance of the networks roughly matched the performance of
the subjects (Fig. S4c). We used 15 different values for the
number of training trials, ranging from 10 to 4.6× 105, log-
arithmically spaced (Figure 7b–d only depicts results from
the most highly trained networks).

We used standard back-propagation62 to minimize cross-
entropy between network output and category labels; as with
the human subjects, the networks did not receive probabilis-
tic feedback during training. Weights were initialized to small
random values drawn from a zero-mean Gaussian distribution
with s.d. 0.05. We used mini-batch gradient descent with a
batch size of 10, over a single epoch. We used L2 regulariza-
tion with regularization term α = 10−4.

We decoded the optimal posterior p(C = 1 | rinput), which al-
lowed us to compute fractional information loss. Fractional
information loss was defined as the KL-divergence between
p(C = 1 | rinput) and routput, normalized by the mutual in-
formation between the category labels and rinput 44,63.

Learning rate η decreased as a function of the batch number
j:

ηj = η0

1 + τj
.

We used a constrained pattern search optimization (MAT-
LAB’s patternsearch) to find, for the gains associated with
each subject, the η0 and τ that minimized fractional informa-
tion loss on a validation set. We used patternsearch because,
unlike fmincon, it is well-suited for optimizing stochastic ob-
jective functions.

From each trained network, we generated a test set consisting
of 2160 trials, the same number of Task B trials completed by
subjects in experiment 1. routput was mapped onto the 8 cat-
egory and confidence responses using quantiles. We produced
datasets from 4 separately trained networks for gains associ-
ated with each subject, generating 660 datasets in total (15
numbers of training trials × 11 subject-derived sets of gains ×
4 datasets).
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We found that routput was a fairly good approximation of the optimal posterior p(C = 1 | rinput), with some
positive bias when the posterior was low (Fig. S4a). We also found that information loss and performance
went down as the number of training trials increased (Fig. S4b–c). Both information loss and performance
appear to reach asymptote around 2× 104 trials; therefore, it is unlikely that our results are due to insufficient
training.

5.3 Behavioral models

We fit the 660 network-generated datasets, obtaining AIC scores for each dataset and model. The fitted
models were identical to the Task B models described in the text (and shown in Figure S14 and Table S3),
except that we removed

the following mechanisms that we knew not to be present in the neural network generative process:

• All lapse rates except for a uniform lapse rate over all 8 responses
• Orientation-dependent noise
• d noise (applicable to Bayesian models only)

As with model recovery (Section 4.9), we used MLE and AIC (rather than MCMC and LOO) for compu-
tational efficiency, due to the large number of datasets being fitted.

After fitting, we computed the expected posterior probability distribution over models at each number of
training trials (Section 4.7.3). We found that Lin and Quad fit the data best, with Quad fitting best for
data generated from less well-trained networks, and Lin fitting best for data generated from highly trained
networks (Fig. S4d). This transition is consistent with previous results44. We plotted the summed AIC
differences for data generated from the most highly trained networks in Figure S5, blue bars.

Fixed
Ori. Est.

Lin
Lin. Neur.

Quad

BayesW

BayesS

-2 0 2 4 6
'(AIC – AICBayesS

) #104

optimal decoder data
neural network data

Figure S5: Model comparison for data generated from an optimal decoder of spikes, and from neural networks trained with
4.6 × 105 training trials. Models are ordered by quality of fit to optimal decoder data. As in Figure 7d, but for all models.

5.4 Control

To ensure that our results were not due to overfitting, we performed a model recovery analysis. This was
similar to the previously described model recovery, except that we used input layer activity rinput rather
than x and σ. For the rinput used in the test set of the 44 most highly trained networks (11 subject-derived
sets of gains × 4 datasets), we decoded the per-trial optimal posteriors p(C = 1 | rinput). We then mapped
the posterior onto the 8 category and confidence responses using quantiles (this is also how we mapped
the trained networks’ routput onto responses, see above). We then fit these datasets with the same models
used to fit the datasets produced by the trained networks. We found that BayesStrong was the best-fitting
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model (Fig. S5, black). This suggests that the architecture or the training procedure of the neural networks
constrains the type of behavior that can be produced.

6 Data and code availability

All data and code used for running experiments, model fitting, and plotting is available on GitHub.
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Figure S8: Fixed fits, as in Figure 3.
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Figure S10: Linear Neural fits, as in Figure 3.
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Figure S11: Lin fits, as in Figure 3.
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Figure S12: Model comparison, experiment 1. Models were fit jointly to Task A and B category and confidence responses. (a) Medians and 95% CI of bootstrapped
sums of LOO differences, relative to the best model. Higher values indicate worse fits. (b) The protected exceedance probability, i.e., the posterior probability that
a model occurs more frequently than the others 59. (c) The expected posterior probability that a model generated the data of a randomly chosen subject 60.
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Table S1: Cross comparison of all models in Figure S12. Cells indicate medians and 95% CI of bootstrapped summed LOO score differences. A negative
median indicates that the model in the corresponding row had a higher score (better fit) than the model in the corresponding column. For readability, see instead
table_S1.xls. For the parameters of each model, see model_parameters.xls.
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Figure S13: Model comparison, experiment 1. Models were fit to Task A category and confidence responses. See Figure S12 caption.
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Table S2: Cross comparison of all models in Figure S13. See Table S12 caption.
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Figure S14: Model comparison, experiment 1. Models were fit to Task B category and confidence responses. See Figure S12 caption.
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Table S3: Cross comparison of all models in Figure S14. See Table S12 caption.
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Figure S15: Model comparison, experiment 1. Models were fit jointly to Task A and B category choices. See Figure S12 caption.

8 pars. 9 pars. 8 pars. 9 pars. 10 pars.
Fixed Bayes-dN Ori. Est. Lin. Neur. Lin

9 pars.
8 pars.
9 pars.
10 pars.
10 pars.

Bayes-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−1095 [−1657,−629]
−1190 [−2614,−144]
−591 [−2068, 460]

−1690 [−2534,−976]
−1319 [−2541,−611]

−114 [−1026, 579]
486 [−504, 1211]

−595 [−927,−311]
−236 [−1072, 358]

591 [406, 789]
−492 [−1023, 238]
−154 [−772, 613]

−1087 [−1690,−245]
−729 [−1365,−38] 323 [−423, 1127]

Table S4: Cross comparison of all models in Figure S15. See Table S12 caption.
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Figure S16: Model comparison, experiment 1. Noise parameters were fit to Task A category choices and then fixed during the fitting of Task B category and
confidence responses. See Figure S12 caption.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−2704 [−3351,−2027]
−3257 [−3965,−2494]
−1498 [−2877,−420]
−1837 [−3566,−378]
−5016 [−6727,−3090]
−4367 [−6304,−2391]

−533 [−920,−283]
1184 [23, 2129]

846 [−609, 2092]
−2303 [−3578,−921]
−1670 [−3268,−39]

1724 [575, 2808]
1386 [−13, 2732]

−1773 [−2845,−451]
−1135 [−2501, 333]

−345 [−933, 262]
−3497 [−4860,−1817]
−2836 [−4544,−1122]

−3127 [−4549,−1575]
−2449 [−4200,−969] 606 [6, 1269]

Table S5: Cross comparison of all models in Figure S16. See Table S12 caption.
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Figure S17: Model comparison, experiment 2. Models were fit jointly to Task A and B category and confidence responses. See Figure S12 caption.

19 pars. 13 pars. 17 pars. 20 pars. 19 pars. 20 pars. 30 pars.
Fixed BayesU-dN BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
17 pars.
20 pars.
19 pars.
20 pars.
30 pars.
30 pars.

BayesU-dN
BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−907 [−1572,−365]
−1490 [−2210,−886]
−1678 [−2542,−1007]
−872 [−1297,−487]
−876 [−1401,−395]
−2095 [−2889,−1344]
−2014 [−3036,−1186]

−565 [−1032,−266]
−767 [−1262,−386]

56 [−561, 574]
55 [−711, 693]

−1160 [−1780,−694]
−1096 [−1807,−530]

−190 [−363,−82]
620 [218, 1089]
623 [99, 1184]

−589 [−841,−375]
−523 [−893,−220]

813 [356, 1394]
801 [253, 1491]

−396 [−622,−186]
−331 [−562,−109]

−7 [−219, 216]
−1218 [−1680,−791]
−1136 [−1815,−638]

−1205 [−1757,−785]
−1124 [−1922,−613] 74 [−195, 252]

Table S6: Cross comparison of all models in Figure S17. See Table S12 caption.
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Figure S18: Model comparison, experiment 3. Models were fit to Task B category and confidence responses. See Figure S12 caption.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−4505 [−7282,−1816]
−5967 [−8702,−3369]

−256 [−841, 423]
−450 [−1535, 1290]

−5759 [−7866,−3694]
−7326 [−9955,−4905]

−1454 [−2179,−835]
4311 [1432, 7134]
4114 [733, 7796]

−1240 [−2567, 65]
−2833 [−3807,−1926]

5727 [3067, 8527]
5552 [2338, 9135]
226 [−812, 1246]

−1361 [−2022,−777]

−214 [−1176, 1256]
−5530 [−7707,−3539]
−7120 [−9838,−4636]

−5337 [−8191,−2846]
−6902 [−10376,−3981] −1577 [−2562,−750]

Table S7: Cross comparison of all models in Figure S18. See Table S12 caption.
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Figure S19: Model comparison, experiment 3. Models were fit to Task B category choices. See Figure S12 caption.

7 pars. 8 pars. 7 pars. 8 pars. 8 pars.
Fixed Bayes-dN Ori. Est. Lin. Neur. Lin

8 pars.
7 pars.
8 pars.
8 pars.
8 pars.

Bayes-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−964 [−1290,−663]
−255 [−987, 369]

215 [−566, 827]
−1084 [−1675,−619]
−777 [−1361,−359]

707 [119, 1259]
1174 [535, 1772]
−117 [−436, 76]
162 [−290, 670]

457 [254, 685]
−830 [−1317,−334]
−531 [−1059,−23]

−1294 [−1825,−778]
−988 [−1526,−549] 290 [−138, 793]

Table S8: Cross comparison of all models in Figure S19. See Table S12 caption.
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