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Humans can meaningfully rate their confidence in a perceptual or cognitive decision. It
is widely believed that these reports reflect the estimated probability that the decision is
correct, but, upon closer look, this belief is a hypothesis rather than an established fact. In a
pair of perceptual categorization tasks, we tested whether explicit confidence reports reflect
the Bayesian posterior probability of being correct. This Bayesian hypothesis predicts that
subjects take sensory uncertainty into account in a specific way in the computation of
confidence ratings. We find that confidence reports are probabilistic: subjects take sensory
uncertainty into account on a trial-to-trial basis. However, they do not do so in the way
predicted by the Bayesian hypothesis. Instead, heuristic probabilistic models provide the
best fit to human confidence ratings. This conclusion is robust to changes in the uncertainty
manipulation, task, response modality, additional flexibility in the Bayesian model, and
model comparison metric. To better understand the origins of the heuristic computation,
we trained feedforward neural networks consisting of generic units with error feedback,
mapped the output of the trained networks to confidence ratings, and fitted our behavioral
models to the resulting synthetic datasets. We find that the synthetic confidence ratings
are also best fit by heuristic probabilistic models. This suggests that implementational
constraints cause explicit confidence reports to deviate from being Bayesian.

Introduction

People often have a sense of a level of confidence about their decisions. Such a “feeling of knowing”1 may serve
to improve performance in subsequent decisions2, learning1, and group decision-making3. Much recent work
has focused on identifying brain regions and neural mechanisms responsible for the computation of confidence
in humans4,5,6, non-human primates7,8,9, and rodents10. In the search for the neural correlates of confidence,
the leading premise has been that confidence is Bayesian, i.e., the observer’s estimated probability that a
choice is correct1,11,12,13. In human studies, however, naïve subjects can give a meaningful answer when you
ask them to rate their confidence about a decision14; thus, “confidence” intrinsically means something to
people, and it is not a foregone conclusion that this intrinsic sense corresponds to the Bayesian definition.
Therefore, we regard the above “definition” as a testable hypothesis about the way the brain computes
explicit confidence reports; we use Bayesian decision theory to formalize this hypothesis.

Bayesian decision theory provides a general and often quantitatively accurate account of perceptual decisions
in a wide variety of tasks15,16,17. According to this theory, the decision-maker combines knowledge about
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the statistical structure of the world with the present sensory input to compute a posterior probability
distribution over possible states of the world. In principle, a confidence report might be derived from the
same posterior distribution; this is the hypothesis described above, which we will call the Bayesian Confidence
Hypothesis (BCH). The main goal of this paper is to test that hypothesis. Recent studies have attempted
to test the BCH18,19 but, because of their experimental designs, are unable to meaningfully distinguish the
Bayesian model from any other model of confidence.

We test the quantitative predictions of the BCH as we vary the quality of the sensory evidence and the task
structure within individuals. We compare Bayesian models against a variety of alternative models, something
that is rarely done but very important for the epistemological standing of Bayesian claims20,21. We find that
the BCH qualitatively describes human behavior, but that quantitatively, even the most flexible Bayesian
model is outperformed by non-Bayesian probabilistic models. To better understand why, we trained neural
networks to perform one of our tasks. We found that the same non-Bayesian models provided the best
description of the output of the trained networks, suggesting that neural network architecture constrains the
computation of confidence.

Results

Experiment 1

During each session, each subject completed two orientation categorization tasks, Tasks A and B. On each
trial, the observer categorized a single oriented stimulus as category 1 or 2 and reported their confidence on
a 4-point scale. Category and confidence were reported simultaneously, with a single button press (Fig. 1a).
The categories were defined by normal distributions on orientation, which di�ered by task (Fig. 1b). In Task
A, the distributions had di�erent means (±µ

C

) and the same standard deviation (‡
C

); leftward-tilting stimuli
were more likely to be from category 1. Variants of Task A are common in decision-making studies22. In
Task B, the distributions had the same mean (0¶) and di�erent standard deviations (‡1, ‡2); stimuli around
the horizontal were more likely to be from category 1. Variants of Task B are less common23,24,25 but have
some properties of perceptual organization tasks; for example, a subject may have to detect when a stimulus
belongs to a narrow category (e.g., in which two line segments are collinear) that is embedded in a a broader
category (e.g., in which two line segments are unrelated).

Subjects were highly trained on the categories; during training, we only used highest-reliability stimuli, and
we provided trial-to-trial category correctness feedback. Subjects were then tested with 6 di�erent reliability
levels; during testing, correctness feedback was withheld to avoid the possibility that confidence simply
reflects a learned mapping between stimuli and the probability of being correct, something that no other
confidence studies have done25,26,27.

Because we are interested in subjects’ intrinsic computation of confidence, we did not instruct or incentivize
them to assign probability ranges to each button (e.g., by using a scoring rule). If we had, we would have
essentially been training subjects to use a specific model of confidence.

Some subjects saw oriented drifting Gabors; for these subjects, stimulus reliability was manipulated through
contrast. Other subjects saw oriented ellipses; for these subjects, stimulus reliability was manipulated
through ellipse elongation (Fig. 1c). We found no major di�erences in model rankings between Gabor and
ellipse subjects, therefore we will make no distinctions between the groups (Supplementary Information).

On each trial, a category C was selected randomly (both categories were equally probable), and a stimulus
s was drawn from the corresponding stimulus distribution. We assume that the observer’s internal represen-
tation of the stimulus is a noisy measurement x, drawn from a Gaussian distribution with mean s and s.d.
‡ (Fig. 1d,e). In the model, ‡ is a function of stimulus reliability (Supplementary Information).
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Figure 1: Task design and generative model. (a) Schematic of a test block trial. After stimulus o�set, subjects reported
category and confidence level with a single button press. (b) Stimulus distributions for Tasks A and B. (c) Examples of low
and high reliability stimuli. Six (out of eleven) subjects saw drifting Gabors, and five subjects saw ellipses. (d) Generative
model. (e) Example measurement distributions at di�erent reliability levels. In all models (except Linear Neural), the
measurement is assumed to be drawn from a Gaussian distribution centered on the true stimulus, with s.d. dependent on
reliability.

Bayesian model

A Bayes-optimal observer uses knowledge of the generative model to make a decision that maximizes the
probability of being correct. Here, when the measurement on a given trial is x, this strategy amounts to
choosing the category C for which the posterior probability p(C | x) is highest. This is equivalent to reporting
category 1 when the log posterior ratio, d = log p(C=1|x)

p(C=2|x) , is positive.

In Task A, d is dA = 2xµC

‡

2+‡

2
C

. Therefore, the ideal observer reports category 1 when x is positive; this is the

structure of many psychophysical tasks28. In Task B, however, d is dB = 1
2 log ‡

2+‡

2
2
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1
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2;
the observer needs both x and ‡ in order to make an optimal decision. See Supplementary Informationfor
derivations of dA and dB.

From the point of view of the observer, ‡ is the trial-to-trial level of sensory uncertainty associated with the
measurement29. In a minor variation of the optimal observer, we allow for the possibility that the observer’s
prior belief over category, p(C), is di�erent from the true value of (0.5, 0.5); this adds a constant to dA and
dB.

We introduce the Bayesian Confidence Hypothesis (BCH), stating that confidence reports depend on the
internal representation of the stimuli (here x) only via the posterior probability. The BCH is thus an
extension of the choice model described above, wherein the value of d is used to compute confidence as well
as chosen category. Another way of thinking about this is: Bayesian models assume that subjects compute
d in order to make an optimal choice. Assuming people compute d at all, are they able to use it to report
confidence as well?

We formulate several levels of strength of the BCH, with weaker versions having fewer assumptions and more
sets of mappings between the posterior probability and the confidence report (Supplementary Information,
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Fig. S1). In the ultrastrong BCH, confidence is a function solely of the posterior probability of the chosen
category. In the strong BCH, it is additionally a function of the current task. In the weak BCH, it is
additionally a function of the identity of the chosen category. Most studies cannot distinguish between the
ultrastrong and strong BCH because they test subjects in only one task. Furthermore, the weak BCH is
only justifiable in tasks where the categories have di�erent distributions of the posterior probability of being
correct; the subject may then rescale their mappings between the posterior and their confidence. Here, Task
B has this feature (Fig. S1, bottom row); most experimental tasks do not. We compared Bayesian models
(BayesUltrastrong, BayesStrong, BayesWeak) corresponding to each of these versions of the BCH.

The observer’s decision can be summarized as a mapping from a combination of a measurement and an
uncertainty level (x, ‡) to a response that indicates both category and confidence. We can visualize this
mapping as in Figure 2, first column. It is clear that the pattern of decision boundaries in the BCH is
qualitatively very di�erent between Task A and Task B. In Task A, the decision boundaries are quadratic
functions of uncertainty; confidence decreases monotonically with uncertainty and increases with the distance
of the measurement from 0. In Task B, the decision boundaries are neither linear nor quadratic and can
even be non-monotonic functions of uncertainty.
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Figure 2: Decision rules/mappings in four models. Each model corresponds to a di�erent mapping from a measurement
and uncertainty level to a category and confidence response. Colors correspond to category and confidence response, as in
Figure 1a. Plots were generated from the mean of subject 4’s posterior distribution over parameters.

Alternative models

At first glance, it seems obvious that sensory uncertainty is relevant to the computation of confidence. How-
ever, this is by no means a given; in fact, a prominent proposal is that confidence is based on the distance
between the measurement and the decision boundary, without any role for sensory uncertainty9,10,30. There-
fore, we tested a model (Fixed) in which the response is a function of the measurement alone (equivalent to
a maximum likelihood estimate of the stimulus orientation), and not of the uncertainty of that measurement
(Fig. 2, second column).

We also tested heuristic models in which the subject uses their knowledge of their sensory uncertainty
but does not compute a posterior distribution over category. We have previously classified such models
as probabilistic non-Bayesian31. In the Orientation Estimation model, subjects base their response on a
maximum a posteriori estimate of orientation (rather than category), using the mixture of the two stimulus
distributions as a prior distribution. In the Linear Neural model, subjects base their response on a linear
function of the output of a hypothetical population of neurons. In the Lin and Quad models, subjects base
their response on a linear or a quadratic function of x and ‡, respectively (Supplementary Information).
A comparison of the Lin and Quad columns to the BayesWeak column in Figure 2 demonstrates that Lin
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and Quad can approximate the Bayesian mapping from (x, ‡) to response without actually computing d.
All of the models we tested were variants of the eight models described so far (BayesUltrastrong, BayesStrong,
BayesWeak, Fixed, Orientation Estimation, Linear Neural, Lin, Quad). We will refer to these models, when
fitted jointly to category and confidence data from Tasks A and B, as our core models.

Each trial consists of the experimentally determined orientation and reliability level and the subject’s category
and confidence response (an integer between 1 and 8). This is a very rich data set, which we summarize
in Figure 3. We find the following e�ects: performance and confidence increase as a function of reliability
(Fig. 3a,b,h,i), and high-confidence reports are less frequent than low-confidence reports (Fig. 3e,f). Note
Figure 3c,d especially; this is the projection of the data that we will use to demonstrate model fits for
the rest of this paper. We use this projection because the vertical axis (mean button press) most closely
approximates the form of the raw data. Additionally, because our models are di�erentiated by how they use
uncertainty, it is informative to plot how response changes as a function of reliability, in addition to category
and task.
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Figure 3: Behavioral data and fits from best model (Quad), experiment 1. Error bars represent ±1 s.e.m. across 11
subjects. Shaded regions represent ±1 s.e.m. on model fits. (a,b) Proportion “category 1” reports as a function of
stimulus reliability and true category. (c,d) Mean button press as a function of stimulus reliability and true category. (e,f)
Normalized histogram of confidence reports for both true categories. (g) Proportion correct category reports as a function
of confidence report and task. (h,i) Mean confidence as a function of stimulus reliability and correctness. (j,k) Mean
confidence as a function of stimulus orientation and reliability. (l,m) Proportion “category 1” reports as a function of
stimulus orientation and reliability. (n,o) Mean button press as a function of stimulus orientation and reliability. (c,d,n,o)
Vertical axis label colors correspond to button presses, as in Figure 1a. (j-o) See Visualization of model fits for details
on orientation binning. (l-o) For clarity, only 3 of 6 reliability levels are shown, although models were fit to all reliability
levels.
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Model comparison

We used Markov Chain Monte Carlo (MCMC) sampling to fit models to raw individual-subject data. To
account for overfitting, we compared models using leave-one-out cross-validated log likelihood scores (LOO)
computed with the full posteriors obtained through MCMC32. A model recovery analysis ensured that our
models are meaningfully distinguishable (Supplementary Information, Fig. S2). Unless otherwise noted,
models were fit jointly to Task A and B category and confidence responses.

Use of sensory uncertainty. We first compared the Bayesian models to the Fixed model, in which the
observer does not take trial-to-trial sensory uncertainty into account (Fig. 4). Fixed provides a poor fit
to the data, which indicates that observers use not only a point estimate of their measurement, but also
their uncertainty about that measurement. All three Bayesian models outperform Fixed, by summed LOO
di�erences (median and 95% CI of bootstrapped sums across subjects) of 2265 [498, 4253] (BayesUltrastrong),
3595 [1995, 5323] (BayesStrong), and 4312 [2610, 6151] (BayesWeak). For the rest of this paper, we will report
model comparison results using this format.
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Figure 4: Model fits and model comparison for Fixed and Bayesian models. Left and middle columns: model fits to mean
button press as a function of reliability, true category, and task. Error bars represent ±1 s.e.m. across 11 subjects. Shaded
regions represent ±1 s.e.m. on model fits, with each model on a separate row. Right column: LOO model comparison.
Bars represent individual subject LOO scores for every model, relative to Fixed. Negative values indicate that the model in
the corresponding row had a better (higher) LOO score than Fixed. Blue lines and shaded regions represent, respectively,
medians and 95% CI of bootstrapped mean LOO di�erences across subjects. These values are equal to the summed LOO
di�erences reported in the text divided by the number of subjects.
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Out of the three Bayesian models, BayesWeak provides the best fit, indicating that, if confidence is a function
of the posterior probability, people rescale their mappings from posterior to response depending on task and
category. However, all Bayesian models still show systematic deviations from the data, especially at high
reliabilities.

Noisy log posterior ratio. To see if we could improve the fits of the Bayesian models, we tried a set
of Bayesian models that included decision noise, i.e. noise on the log posterior ratio d. We assumed that
this noise takes the form of additive zero-mean Gaussian noise with s.d. ‡

d

. This is almost equivalent to
the probability of a response being a logistic (softmax) function of d

33. Adding d noise improves the fits of
the Bayesian models by 657 [214, 1217] (BayesUltrastrong), 662 [307, 1150] (BayesStrong), and 804 [510, 1134]
(BayesWeak). However, there are still clear deviations from the data at high reliabilities, and the fits are
qualitatively poor. The ranking of the three models remains the same; BayesWeak with d noise is now the
best-performing Bayesian model (Fig. S5). For the rest of this paper, we will only consider Bayesian models
with d noise.
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Figure 5: Model fits and model comparison for best-fitting Bayesian model and heuristic models, as in Figure 4.
Heuristic models. Orientation Estimation performs worse than our best performing Bayesian model, by
2041 [385, 3623] (Fig. 5, second row). The intuition for one way that this model fails is as follows: at low
levels of reliability, the MAP estimate is heavily influenced by the prior and tends to be very close to the
prior mean (0¶). This explains why, in Task B, there is a bias towards reporting “high confidence, category
1” at low reliability. Linear Neural model performs about as well as our best performing Bayesian model,
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with summed LOO di�erences of 1188 [-588, 2704], and the fits to the summary statistics are qualitatively
poor (Fig. 5, third row).

Finally, Lin and Quad outperform the best-performing Bayesian model by 3545 [2401, 5177] (Lin) and 3799
[2521, 5455] (Quad). Both models provide qualitatively better fits, especially at high reliabilities (compare
Fig. 5, first row, to Fig. 5, fourth and fifth rows), and strongly tilted orientations (compare Fig. S8n,o to
Fig. S12n,o and Fig. 3n,o).
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Figure 6: Comparison of core models, experi-
ment 1. Models were fit jointly to Task A and
B category and confidence responses. Blue
lines and shaded regions represent, respec-
tively, medians and 95% CI of bootstrapped
summed LOO di�erences across subjects.

We summarize the performance of our core models in Fig. 6.
Noting that a LOO di�erence of more than 5 is considered to
be very strong evidence34, the heuristic models Lin and Quad
perform much better than the Bayesian models. Furthermore, we
can decisively rule out Fixed. We will now test variants of our
core models.

Non-parametric relationship between reliability and ‡.
One potential criticism of our fitting procedure is that we assumed
a parameterized relationship between reliability and ‡ (Supple-
mentary Information). To see if our results were dependent on
that assumption, we modified the models such that ‡ was non-
parametric (i.e., there was a free parameter for ‡ at each level of
reliability). With this feature added to our core models, Quad
still fits better than the best-fitting Bayesian model by 1676 [839,
2730], and better than Fixed by 6097 [4323, 7901] (Fig. S13 and
Table S1). This feature improved Quad’s performance by 325
[141, 535]. For the rest of this paper, we will only report the
best-fitting Bayesian model, the best-fitting non-Bayesian model, and Fixed. See supplementary figures and
tables for all other model fits.

Incorrect assumptions about the generative model. Suboptimal behavior can be produced by op-
timal inference using incorrect generative models, a phenomenon known as “model mismatch.”35,36,37 Up
to now, our Bayesian models have assumed that observers have accurate knowledge of the parameters of
the generative model. To test whether this assumption prevents the Bayesian models from fitting the data
well, we tested a series of Bayesian models in which the observer has inaccurate knowledge of the generative
model.

The previously described Bayesian models assumed that, because subjects were well-trained, they knew the
true values of ‡

C

, ‡1, and ‡2, the standard deviations of the stimulus distributions. We tested models in
which these values were free parameters, rather than fixed to the true value. We would expect these free
parameters to improve the fit of the Bayesian model in the case where subjects were not trained enough to
su�ciently learn the stimulus distributions. This feature improves the fit of the best Bayesian model by 908
[318, 1661], but it still underperforms Quad by 768 [399, 1144] (Fig. S13 and Table S1).

Previous models also assumed that subjects had full knowledge of their own measurement noise; the ‡ used
in the computation of d was identical to the ‡ that determined their measurement noise. We tested models
in which we fit ‡measurement and ‡inference as two independent functions of reliability35. This feature improves
the fit of the best Bayesian model by 1310 [580, 2175], but it still underperforms Quad by 362 [162, 602]
(Fig. S13 and Table S1).

Separate fits to Tasks A and B. In order to determine whether model rankings were primarily due to
di�erences in one of the two tasks, we fit our models to each task individually. In Task A, Quad fits better
than the Bayesian model by 581 [278, 938], and better than Fixed by 3534 [2529, 4552] (Fig. S14 and
Table S2). In Task B, Quad fits better than the best-fitting Bayesian model by 978 [406, 1756], and better
than Fixed by 3234 [2099, 4390] (Fig. S15 and Table S3).
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Fits to category choice data only. In order to see whether our results were peculiar to combined
category and confidence responses, we fit our models to the category choices only. Lin fits better than the
only Bayesian model by 595 [311, 927], and better than Fixed by 1690 [976, 2534] (Fig. S16 and Table S4).

Fits to Task B only, with noise parameters fitted from Task A. To confirm that the fitted values
of sensory uncertainty in the probabilistic models are meaningful, we treated Task A as an independent
experiment to measure subjects’ sensory noise. The category choice data from Task A can be used to
determine the four uncertainty parameters. We fitted the Fixed model with a decision boundary of 0¶

(equivalent to a Bayesian choice model with no prior), using maximum likelihood estimation. We fixed these
parameters and used them to fit our models to Task B category and confidence responses. Lin fits better than
the best-fitting Bayesian model by 1773 [451, 2845], and better than Fixed by 5016 [3090, 6727] (Fig. S17
and Table S5).

Experiment 2: Separate category and confidence responses, and testing feedback. There has
been some recent debate as to whether it is more appropriate to collect choice and confidence with a single
motor response (as described above), or separate responses19,38,39,40. Aitchison et al.41 found that confidence
appears more Bayesian when subjects use separate responses. To confirm this, we ran a second experiment
that was like theirs in two ways. First, subjects chose a category by pressing one of two buttons, then
reported confidence by pressing one of four buttons. Second, correctness feedback was given on every trial,
rather than only on training blocks. After fitting our core models, our results did not di�er substantially
from experiment 1: Lin fits better than the best-fitting Bayesian model by 396 [186, 622], and better than
Fixed by 2095 [1344, 2889] (Fig. S18 and Table S6).

Experiment 3: Task B only. It is possible that subjects behave suboptimally when they have to do
multiple tasks in a session; in other words, perhaps one task “corrupts” the other. To explore this possibility,
we ran an an experiment in which subjects completed Task B only. Quad fits better than the best-fitting
Bayesian model by 1361 [777, 2022], and better than Fixed by 7326 [4905, 9955] (Fig. S19 and Table S7).
In experiments 2 and 3, subjects only saw drifting Gabors; we did not use ellipses.

We also fit only the choice data, and found that Lin fits about as well as the Bayesian model, with summed
LOO di�erences of 117 [-76, 436], and better than Fixed by 1084 [619, 1675] (Fig. S20 and Table S8).
This approximately replicates our previously published results25.

Model comparison metric. None of our model comparison results depend on our choice of metric: in all
three experiments, model rankings changed negligibly if we used AIC, BIC, AICc, or WAIC instead of LOO
(Supplementary Information).

Neural network

Taken together, the model comparisons in experiments 1 to 3 convince us that there is no obvious way to ex-
plain human confidence ratings as Bayesian. Does this mean that the normative framework must be entirely
rejected? We should instead consider the possibility that implementational constraints restrict the brain’s
ability to perform fully Bayesian computation20,21. To explore this possibility, we trained biologically plausi-
ble feedforward neural networks (Fig. 7a) to perform Task B42, and fitted their output with the same models
that we used to fit subject data. We found that Lin is the best-fitting model, outperforming BayesStrong
by summed AIC di�erences of 22504 [19898, 25500] (Fig. 7b, blue). Although the training procedure was
di�erent for the networks than for the human subjects (they were trained, using back-propagation, at all 6
noise levels), the networks perform the task in a way that is qualitatively similar to the subjects (Fig. 7c,d).
This suggests that the architecture or the training procedure of the neural networks constrains the type of
behavior that can be produced (Supplementary Information).

One possibility is that the Bayesian model is too inflexible to fit any behavioral dataset based on neural
activity. To rule out this possibility, we decoded optimal posterior probabilities from input unit activity on a
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per-trial basis, mapped these onto button presses using quantiles, and fit the behavioral models. BayesStrong
provides the best fit, fitting these datasets better than Lin by 5845 [4032, 8103] (Fig. 7b, black). Thus, the
fact that Lin wins is not due to general inflexibility of the Bayesian models.
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Figure 7: Neural network architecture, model comparison, and task behavior. (a) Feedforward neural network architecture.
Input units were independent Poisson neurons with Gaussian tuning curves that were evenly spaced and of identical
width. Input units were connected, all-to-all, to hidden rectified linear units. Hidden units were connected to a sigmoidal
output unit. The output was mapped onto a category and confidence response (as in Fig. 1a) using eight quantiles
(Supplementary Information). (b) Model comparison (as in Fig. 6) for data generated by the optimal decoder, and by
trained neural networks. Fixed, Orientation Estimation, Linear Neural, and Quad were also fit to those data (Fig. S4), but
are not shown because they all fit more poorly than Lin. (c) Task behavior of trained neural networks. Mean button press
as a function of neural gain and true category. Compare to Figure 3d. (d) Mean button press as a function of stimulus
orientation and neural gain. Compare to Figure 3o.

Discussion

Although people can report subjective feelings of confidence, the computations that produce this feeling
are not well-understood. Confidence has been defined as the observer’s computed posterior probability that
a decision is correct. However, this hypothesis has not been fully tested. We used model comparison to
investigate the computational underpinnings of human confidence reports. We also trained neural networks
to perform a perceptual task, treating the network output as if it were subject-generated data for the purpose
of model comparison42. We carried out a strong and comprehensive test of a set of cognitive models, varying
task components such as stimulus reliability and stimulus distributions26.

Our first finding is that, like the optimal observer, subjects use knowledge of their sensory uncertainty when
reporting confidence in a categorical decision; models in which the subject ignores their sensory uncertainty
provided a poor fit to the data (Fig. 4). Our second finding is that, unlike the optimal observer, subjects do
not appear to use knowledge of their sensory uncertainty in a Bayesian way. Instead, heuristic models that
approximate Bayesian computation—but do not compute a posterior probability over category—outperform
the Bayesian models in a variety of experimental contexts (Fig. 5). This result continued to hold after we
relaxed assumptions about the relationship between reliability and noise, and about the subject’s knowledge
of the generating model. We accounted for the fact that our models had di�erent amounts of flexibility
by using a wide array of model comparison metrics and by showing that our models were meaningfully
distinguishable (Supplementary Information).

We trained neural networks to perform one of our tasks. Although the training procedure necessarily di�ered
from that of the humans, we found that the trained networks produced confidence responses that, like the
human data, were best fit by heuristic models. This suggests that the structure of the neural network—
and by extension, the structure of the brain—limits its ability to produce accurate posterior estimates in
categorization tasks.

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2016. ; https://doi.org/10.1101/093203doi: bioRxiv preprint 

https://doi.org/10.1101/093203
http://creativecommons.org/licenses/by-nc-nd/4.0/


We do not advocate for the heuristic Lin and Quad models as general descriptions of human confidence; our
main message is that human behavior is best described by models that are non-Bayesian. Some may argue
that non-Bayesian models should be rejected because they are not generalizable. Bayesian models derive their
generalizability from their normative nature: in any task, one can determine the performance-maximizing
strategy. However, it is not clear that this property should override a bad fit.

Moreover, performance maximization is only one of several ecologically relevant organizing principles. The
brain is also limited by the kinds of operations that neurons can perform and the ways by which organisms
learn20,21; our neural network analysis suggests that architectural or learning constraints may cause the
brain to deviate from Bayesian computations. Future work could investigate the possibility that the brain is
near-optimal under implementational constraints; this would connect Marrian levels within a single rational
framework43.

We will now describe how our results relate to recently published experimental findings. Rahnev et al.30

reported that subjective decision criteria are fixed across conditions of uncertainty. However, their study did
not test models in which the criteria was a function of uncertainty, so they cannot make this conclusion very
strongly. Additionally, their study used visibility ratings, which di�er from confidence ratings44. Finally,
their results may be specific to the case where sensory uncertainty is a function of attention rather than
stimulus reliability. We leave this question for future work.

Sanders et al.19 reported that confidence has a “statistical” nature. However, their experiment was unable
to determine whether confidence is probabilistic or Bayesian16, because the stimuli vary along only one
dimension. As noted by Aitchison et al., to distinguish models of confidence, the experimenter must use
stimuli that are characterized by two dimensions (e.g., contrast and orientation)41. This is because, when
fitting models that map from an internal variable to an integer confidence rating, it is impossible to distinguish
between two internal variables that are monotonically related (in the case of Sanders et al., the measurement
and the posterior probability of being correct). Therefore, the only alternative model proposed by Sanders
et al. is based on reaction time, rather than on the presented stimuli.

Like the present study, Aitchison et al.41 found evidence that confidence reports may emerge from heuristic
computations. However, they sampled stimuli from only a small region of their two-dimensional space, where
model predictions may not vary greatly. Therefore, their stimulus set did not allow for the models to be
strongly distinguished. Furthermore, although they tested for Bayesian computation, they did not test for
probabilistic computation (i.e., whether observers take sensory uncertainty into account on a trial-to-trial
basis). Such a test requires that the experimenter vary the reliability of the stimulus feature of interest.

What do our findings tell us about the neural basis of confidence? Previous studies have found that neural
activity in some brain areas (e.g., human medial temporal lobe6 and prefrontal cortex45, monkey lateral
intraparietal cortex7 and pulvinar9, rodent orbitofrontal cortex10) is associated with behavioral indicators
of confidence, and/or with the distance of a stimulus to a decision boundary. However, such studies mostly
used stimuli that vary along a single dimension (e.g., net retinal dot motion energy, mixture of two odors).
Because measurement is indistinguishable from the probability of being correct in these classes of tasks,41

neural activity associated with confidence may represent either the measurement or the probability of being
correct. In addition to the recommendation of Aitchison et al. to distinguish between these possibilities by
varying stimuli along two dimensions, we recommend fitting both Bayesian and non-Bayesian probabilistic
models to behavior. Many physiological studies of decision-making focus on correlating neural activity to
parameters of behavioral models. This approach only makes sense when the behavioral model is a good
description of the behavior. Our results suggest that the Bayesian model is a relatively poor description of
confidence behavior. Therefore, the proposal to do this kind of correlational analysis with parameters of the
Bayesian confidence models11 should be viewed with skepticism.
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