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Abstract

The evolution of antibiotic resistance presents a practical and theoretical challenge: the
design of strategies that limit the risk of evolved resistance while effectively treating current
patients. Sequentially cycling antibiotics has been proposed as a way to slow the evolution of
resistance by reducing the extent of adaptation to a given drug, and clinical trials have demon-
strated its effectiveness in some settings. Empirical fitness landscapes in theory allow the
sequence of drugs to be refined to maximize tradeoffs between drugs and thereby slow adapta-
tion even further. Using the measured growth rates of 16 genotypes of Escherichia coli in the
presence of 15 S-lactam antibiotics, we test an adaptive strategy, based on a Markov chain tran-
sition matrix, to select drug sequences that continuously minimize resistance. Cycling is never
selected over the long term. Instead, monotherapy with the antibiotic that permits the least
growth in its landscape’s absorbing state is rapidly selected from different starting conditions.
Analysis of a synthetic fitness landscape shows that cycling drugs that induce sensitivity to one
other could, in theory, outperform monotherapy. These results underscore the importance of
considering the specific topologies of fitness landscape in determining whether to cycle drugs
and suggest a general computational approach to identify high-performing, practical strategies
to manage resistance.

Introduction

Individual treatment decisions collectively impose strong selection for antibiotic resistance in many
microbial populations. Various strategies have been suggested to slow this evolution. For in-
stance, many patients receive high-dose antibiotic prescriptions that they are advised to complete
regardless of symptoms. But the intended impacts of such policies can be far from theoretical
expectations [1,2] and observed outcomes. Simple models suggest many conditions under which
aggressive antibiotic treatment accelerates the emergence of resistant populations, for instance, if
antibiotics release resistant strains from competition with sensitive strains [2] or create temporal
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or spatial gradients in drug concentration to ease adaptation [3,4]. Effective strategies to man-
age resistance thus hinge on accurate assumptions about microbes’ ecological and evolutionary
dynamics [5].

One proposed method to limit the evolution of resistance, especially in healthcare settings, is an-
tibiotic cycling [6-12]. The idea is to treat all patients in a hospital ward with the same antibiotic
for a given period, and then with a second antibiotic, and so on, eventually cycling back to the
first. Sequential monotherapy might reduce the probability that microbes become resistant to more
than one antibiotic at a time, especially if drugs are switched before or soon after resistance is
detected. When multidrug resistance is not already common and microbial populations are well
mixed [13, 14], this approach is expected to work [8, 15], and a recent meta-analysis showed that
cycling has been effective in reducing resistance and disease burden in several pathogens in hospi-
tals [8].

Cycling could be even more effective if the sequence of drugs were chosen to minimize the prob-
ability of accumulating resistance to sequential drugs [9-11, 16, 17]. In evolutionary terms, these
sequences would exploit known tradeoffs: given emergent resistance to drug A, choose drug B so
that resistance to drug B is difficult (or impossible) to attain. Tradeoffs may be weak to nonex-
istent. For instance, resistance to drug A might involve the acquisition of an efflux pump, which
could be effective against drug B. In this case, known as cross-resistance [18-20], there is no ad-
vantage to cycling. In a phenomenon known as negative cross-resistance or collateral sensitivity,
resistance to drug A requires sensitivity to drug B [21,22]. One of the best examples of such adap-
tive tradeoffs is the evolution of resistance to a class of antibiotics, the S-lactams, in Escherichia
coli [23-29]. Resistance to S-lactams is chiefly determined by the S-lactamase gene, and different
alleles are associated with different degrees of resistance to specific drugs. No single allele confers
maximal resistance to all S-lactams. Thus, drugs might be ordered in such a way to increase the
number of mutations required to gain resistance to one drug, assuming adaptation to the previous
one. If required intermediate mutations decrease fitness, they might not be selected, effectively
blocking the evolution of resistance to the next drug. Adaptation can thus be prevented or greatly
slowed [12,16,17,21].

In pursuit of this goal, the fitnesses of different E. coli genotypes were previously enumerated for
each of 15 §-lactam antibiotics and used to identify optimal sequences for antibiotic cycling [9,25].
These fitnesses, measured by growth rates in the presence of each antibiotic, were obtained for the
wild-type, “sensitive” genotype (known as TEM-1) and a more broadly resistant genotype (known
as TEM-50) and all permutations (TEM-1 or TEM-50) at each of the four loci that differ between
the genotypes, i.e., for 16 genotypes in total. These data describe a small subset [23, 30] of an
evolutionary fitness landscape: genotypes differing by one amino acid mutation form a connected
network in genotype space, and each genotype has a fitness (growth rate) in each environment
(antibiotic). Fitness landscapes allow potential evolutionary trajectories to be modeled explicitly
[31]. From any starting genotype, the probability of transitioning to a neighboring genotype can be
calculated from neighbors’ relative growth rates. When antibiotics are switched, more fit genotypes
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might suddenly become less fit, decreasing resistance.

Enumeration of fitness landscapes is a well-known challenge to the development of effective strate-
gies to manage antibiotic resistance [22, 24, 26,27,29,32-36]. It is undoubtedly useful to know
which sequences of antibiotics facilitate or hinder the acquisition of resistance, especially if current
practice unknowingly promotes the former. We show here that the way in which these landscapes
are analyzed is equally important. Using the S-lactam landscapes of E. coli as a proof of con-
cept, we first compare current approaches to select optimal antibiotic sequences for cycling. We
show that the extent of adaptation allowed under each antibiotic and the number of times a cycle is
repeated have large impacts on which antibiotic sequence is recommended and on the efficacy of
antibiotic cycling in general. We next consider a practical challenge of cycling: under some criteria,
“optimal” antibiotic sequences can involve periods of high resistance. We investigate what would
happen if antibiotics were chosen adaptively, with the aim of using the antibiotic that minimizes
bacterial growth given the current distribution of bacterial genotypes. One particular antibiotic
consistently arises in these cases: cycling never helps. We show why, partly by demonstrating with
a synthetic fitness landscape how cycling sequential drugs could maximize collateral sensitivity.
Taken together, our results demonstrate that modeling evolution on fitness landscapes can inform
policies to minimize resistance.

Methods

Empirical fitness landscapes

Empirical fitness landscapes were used to model the possible paths of evolution in multiple envi-
ronments, each defined by the administration of a single antibiotic. The landscape is a topology of
all possible permutations of mutations in a set of genetic loci, and genotypes are connected if they
are a single amino acid mutation apart.

In E. coli, the wild-type blatgm.; gene coding for S-lactamase needs four amino acid substitutions
to become blatgm.so, Which is resistant to cephalosporins and inhibitor combined therapies. Mira
et al. [9] created all 16 possible genotypes and measured their growth rates as proxies of fitness
under 15 different S-lactam antibiotics, creating 15 different fitness landscapes. Each genotype
has a range of growth rates depending on the antibiotic, suggesting the potential for successful
reversion of resistance given the right antibiotic sequence (Table S1).

Markov model for evolution

For each antibiotic treatment, the growth rates were organized into directed fitness graphs, where
genotypes u and v are directionally connected (v — v) if and only if they differ by a single
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Figure 1: Fitness graph for amoxicillin-clavulanic acid (AMC). Node colors show genotype growth
rates. Edge weights show the relative transition probabilities p,, , from each source node u. Edges
are not shown for transitions with zero probability. Self-loops (py ,, = 1) are omitted for clarity.

mutation and v has a higher fitness than u (Fig. 1) [9]. Each fitness graph under an antibiotic,
A, was mapped to a 16 x 16 transition matrix M (A) with rows and columns corresponding to all
possible genotypes. For genotypes u and v, the entry at row u, column v of M (A) is the probability
of transitioning from genotype u to v after treatment with antibiotic A. It is given by

f v f u

uw — = 7 1
bu. quj_fu ()

where f, and f, are the growth rates of genotypes v and u and wj are adjacent genotypes to u with
higher growth rates. If genotype u is not adjacent to v in the fitness graph or v has lower fitness
than u, p,, = 0. Equation 1 indicates that as f, increases with respect to the fitness of other
adjacent genotypes of u, p,, increases, so transitions to higher fitness genotypes are more likely.
A genotype u with no fitter neighbors has p,, ., = 1.

We use these transition probabilities to approximate evolution under successive antibiotic treat-
ments. Let M(A;) be the transition matrix for antibiotic 7 given by the fitness graph A;. If
Ay, Ao, ..., A, is asequence of antibiotics, the entry in row u, column v of the matrix obtained by
matrix multiplication of the transition matrices

Mseq = M(Al) ’ M(AQ) T M(An) (2)

4
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gives the net probability of transitioning from genotype u to genotype v at the end of the antibiotic
cycle.

Assuming an initially sensitive genotype 0000, the vector of initial genotype densities is given
by
po = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

and the equation

P1 = poMeq 3)
gives the frequency distribution p; for being in each genotype after one application of the antibiotic
sequence Ay, As, ..., A,. Implicitly, this approach assumes the microbial population has little time

to adapt to each drug before it is switched: genotypes mutate to all possible first-degree neighbors
but no further, and these new mutants coexist in proportion to their relative fitnesses. We refer to
antibiotic treatment in this scenario as having a “short period.”

Effects of long-term cycling, treatment length, and immigration

One optimization strategy is to calculate the probability of returning to the initial sensitive genotype
after every possible sequence of k unique antibiotics and then select the sequence that maximizes
the frequency of the sensitive genotype [9]. If M., is the transition matrix for a single cycle of
an antibiotic sequence, then (M,)" is the matrix giving the transition probabilities after n cycles,
and

P = poML )

gives the genotype frequency distribution p,, after n cycles of the sequence. Taking n — oo,
we can find the long-term equilibrium frequencies of each genotype, including the sensitive geno-

type.

Another approach is to assume that pathogen strains fully adapt before antibiotics are switched.
Nichol et al. [10] assume that the microbial population reaches evolutionary equilibrium under
each antibiotic and finds M., by multiplying the equilibrium distributions for each individual
antibiotic in the sequence:

M = ( lim M(AQ)’f> ( lim M(Al)’“> o ( lim M(An)k> : (5)
k—o00 k—o00 k—o00

Because treatment with each antibiotic implicitly lasts infinitely long (i.e., allows maximal adapta-

tion), we call this the “long period” scenario. Note that since matrix multiplication is not commu-

tative, M., given by equation 5 is not equivalent to the limy, o0 M, . where M:éq is the transition

matrix from equation 4. In other words, the set of long-term, equilibrium transition probabilities

after infinite cycles does not equal the set of transition probabilities obtained from a single cycle,

allowing maximum adaptation to each antibiotic.
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These approaches so far assume that mutations occur incrementally, or that the only accessible
genotypes are one amino acid mutation away. The approaches also only allow transitions that in-
crease fitness. We can instead optimize drug selection while assuming that multiple simultaneous
mutations (or immigration of genetically distant strains) and transitions to less fit genotypes some-
times occur. In these scenarios, rather than assuming that the probability of transitioning to a less
fit or non-adjacent genotype is 0, we allow any genotype to arise. Specifically, we let g, ,, be the
probability of transitioning from u to v with an immigration probability p.  given by

Pimm Puw =0 (6a)
QU,U - m p
pu,v — = pu,v 7é 0 (6b)

n

where m is the number of neighbors v such that p, , = 0 (normally inaccessible genotypes) and n
is the number of v such that p,, , # 0 (normally accessible genotypes).

An adaptive optimization strategy

Previous models have selected optimal sequences of drugs to cycle by maximizing the probability
of returning to the sensitive genotype after a sequence of £ antibiotics [9,10]. In healthcare settings,
it is impractical to optimize long-term outcomes (the probability of returning to a sensitive genotype
at the end of the cycle) if the short-term effects include high infection rates or resistance. If the
aim is to minimize the incidence of bacterial infection constantly over time, a logical approach is
to identify at every time step the antibiotic that minimizes the expected growth rate of the bacterial
population. This is similar to the proposed “informed switching” policy [37] or the adjustable
cycling approaches [8] proposed for individuals. We apply this motivation to steer evolution on
fitness landscapes. We assume that switching to a new antibiotic occurs whenever the mean growth
rate exceeds a threshold and can be lowered, given the current distribution of genotypes. Some
antibiotics may thus have short periods and others long periods under this strategy, depending on
the number of times they are applied before switching. There is no guarantee that cycles will
arise.

Results

Long-term cycling and treatment length, but not immigration, affect strategy

We first investigated whether existing cycling strategies converge on similar results, especially
when their assumptions are relaxed. Previously, antibiotic sequences were identified that give the
highest probabilities of selecting sensitive strains after a single cycle [9] (Table S2). We considered
the frequency of the sensitive genotype after infinite cycles, the theoretical limit if cycling were
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Figure 2: Correlations between cycle rankings in different scenarios. All sequences of lengths k =
2,3,4,5 were ordered by the final frequency of the sensitive genotype, from highest to smallest.
Ranks of the top 50 sequences in one scenario were compared to the same sequences’ ranks in
another scenario. (a) Rankings with single [9] and infinite cycles. (b) Rankings with infinite cycles
and short durations compared to single cycles and infinite treatment duration [10]. (c) Single-cycle
rankings for short and infinite treatment durations.

common. Instead of optimizing drug sequences for just one cycle, we optimized for an infinite
number of cycles using the long-term equilibrium transition matrix (equation 4). The frequency
of the sensitivity genotype tends to decline rapidly as cycles repeat (Fig. S1). Notably, rather
than a 70% frequency of the sensitive genotype after one cycle with two drugs (k = 2), the best
two-antibiotic sequence after infinite cycles yields only an 8% frequency of this genotype and
involves different antibiotics (Table S2). With infinite cycles, longer sequences involving more
unique antibiotics are required to maintain the frequency of the sensitive genotype, which peaks at
60% at the longest sequence tested (k = 5; Table S2). To determine if generally the same drug
sequences would be selected independent of assumptions, for each scenario we ranked sequences of
all lengths by the final frequency of the sensitive genotype. There is a negative correlation between
sequences’ rankings after one cycle versus infinite cycles (Spearman’s p = —0.45, p < 0.001; Fig.
2a), demonstrating that the duration of cycling affects which sequence is recommended. Overall,
compared to a single sequence of treatments, minimizing resistance with repeated cycles appears
to require more drugs and to yield poorer outcomes (Table S2).

The effective duration of treatment might also influence the optimal strategy because longer treat-
ment periods allow more adaptation to each antibiotic. Several studies have suggested that cycling
becomes less effective with longer periods, as a long cycling period effectively becomes single-
drug treatment [8, 13]. In our model, long periods allow genotypes to converge to a stationary
distribution under each drug before switching (equation 5). Considering the sequence of amoxi-
cillin and pipercillin + tazobactam as an example, applying long periods leads to faster evolution
away from the sensitive type than single applications of each drug (“short periods”) (Fig. S2). As
expected, long periods select for different sequences of drugs. For tested sequence lengths k > 1,
in no case is the optimal sequence the same for short and long periods (Table S2). A sequence’s
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Figure 3: The final fraction of the sensitive genotype under different optimization strategies. Se-
quences of lengths £ = 2,3,4,5 were pooled for each of the four strategies with and without
immigration.

rank with long periods and a single cycle and its rank with short periods and infinite cycles are
negatively correlated (Spearman’s p = —0.43, p < 0.002; Fig. 2b). Considering single cycles
alone, however, there is a positive correlation between sequences chosen for short and long periods
(Spearman’s p = 0.60, p < 10~°; Fig. 2c). Thus, the optimal antibiotic sequence is sensitive to
the extent of adaptation allowed under each drug and the number of cycles.

All of these approaches assume that mutations occur incrementally, or equivalently, that genotypes
can only transition to adjacent states with higher fitness. Genotypes that are distant or less fit
might arise from mutation or immigration and could also influence evolution. Allowing small (1%)
total probabilities of transitioning to less fit and nonadjacent states often leads to different optimal
strategies (Tables S2 and S3). Overall, however, these assumptions do not affect the predicted
genotype frequency nearly as much as the choice of cycle number and period length (Fig. 3).
Starting from the sensitive genotype, sensitivity is easiest to maintain when periods are short and
cycles do not repeat. These results suggest a need to identify the optimal duration for each treatment
and strategies that are more robust over time.

An adaptive strategy to minimize resistance

Strategies that minimize resistance in the long run may be impractical if they involve short-term
costs: hospitals cannot sacrifice patients in May to improve outcomes in December (e.g., [38]). A
more defensible approach is to select the antibiotic that minimizes the expected growth rate given
the current population. Since finely monitoring genotype distributions is infeasible, we assume
that the drug is reevaluated only when the mean growth rate exceeds a threshold, for which the
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frequency of failed treatments might be a proxy. The so-called sensitive genotype in fact has
high growth rates with some drugs (Table S1), and thus optimal strategies might favor different
genotypes. Under an adaptive approach, the optimal treatment duration of each antibiotic and any
cycles arise endogenously.

We chose drugs adaptively, selecting the antibiotic that minimized the expected growth rate at each
step, or continuing the current antibiotic if the growth rate remained below a threshold (here, 0.001).
To facilitate comparison with the previous approach, we first assumed the sensitive genotype starts
at 100% frequency. The adaptive strategy immediately selects for a dual-regimen monotherapy,
amoxicillin + clavulanic acid (AMC) (Fig. 4a). This drug is also selected as long-term monother-
apy when starting from other genotypes, although other drugs are sometimes chosen in an initial
transient phase (Fig. 4b,c). Random initial conditions also eventually select for AMC (Table S4).
Notably, the equilibrium genotype frequencies and thus equilibrium growth rates under long-term
AMC therapy vary with the starting condition, ranging from 1.67 x 1073 to 1.88 x 10~3. The for-
mer case arises when the population starts at genotype 0100, a local fitness peak under AMC (Fig.
1), and the latter when the equilibrium population is dominated by the other fitness peak, genotype
1101 (Table S5). Genotype 1101 has a higher growth rate than 0100 (1.91 x 1072 v. 1.67 x 1073)
and a larger “basin of attraction,” in that it serves as the absorbing state for more genotypes (Fig.
S3). Mean growth rates under the adaptive strategy are approximately 15% to 30% lower than the
lowest growth rates under traditional antibiotic cycling (Table S2).

We investigated whether AMC monotherapy would suffice as a fixed regimen to apply regardless
of starting conditions. Under the adaptive strategy, AMC monotherapy arises only after treatment
with at least one other drug when starting from 10 of 16 individual genotypes. Applying AMC
immediately in these cases leads to two types of cost. First, there is the potential cost of higher
growth in the transient phase before equilibrium (e.g., during the non-AMC periods depicted in Fig.
4b,c and until the long-term growth rates have been attained). We defined the cumulative initial
cost of the fixed AMC strategy as the cumulative difference in growth rates between the fixed and
adaptive strategies until both are at equilibrium. Second, there may be persistent differences in
growth rates due to shifts in genotypes’ limiting distributions as a result of the fixed therapy. We
define the long-term cost as the expected difference in growth rates between the fixed and adaptive
strategies at equilibrium.

As expected, both types of cost are present (Table S4). The cumulative transient cost is up to 128%
of the mean equilibrium growth rate for single genotype initial conditions. From random starting
conditions, the transient cost is low (0.12% of the mean equilibrium growth rate). Notably, fixed
AMC therapy from single-genotype populations often leads to higher long-term frequencies of the
most resistant genotype, 1101, than would appear had drugs been adaptively chosen (Tables S5
and S6). The higher frequencies increase the long-term growth rate as much as 3.89% over the
adaptive strategy, although the average difference in growth rates between the two strategies for
random initial populations is only 0.02%. Thus, when starting from heterogeneous populations,
there is little cost to immediate AMC therapy. These results show that the effectiveness of a non-
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Figure 4: Sample time series starting from the (a) 0000, (b) 1101, and (c) 1111 genotypes under
the adaptive strategy. The top row shows population growth rates corresponding to the genotype
distributions below, with the selected drug shown for each step.
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adaptive approach is sensitive to the initial genetic diversity.

Cycling could be selected, in theory

Cycling should be advantageous if the fitness landscapes of different drugs are negatively corre-
lated: relatively high-fitness genotypes in one environment have relatively low fitness in another.
In other words, for neighboring genotypes u and v, we expect © — v under drug A and u < v
under drug B (equivalently, pﬁv, pVB’u > (). The two genotypes comprising the absorbing states
under AMC, 0100 and 1101, in fact have lower fitness than their respective neighbors 0110 and
0101 under cefprozil (CPR), and the population thus transitions toward these genotypes when CPR
is applied (Fig. S4). However, the growth rates of 0110 and 0101 under CPR are high enough
that cycling leads to higher mean population growth rates (during the CPR phase) than if AMC
alone were applied. This example reiterates that selection for antibiotic cycling requires not only
that local fitnesses be negatively correlated but also that neighboring genotypes’ fitnesses be lower
under the new drug. More precisely, the mean population growth rate must be less under the new
drug than the previous drug after taking Markov transition densities into account.

To test this principle, we constructed a synthetic fitness landscape by reversing the direction of
flow along the AMC fitness landscape (Figs. 1 and S3). Specifically, we ranked genotypes by their
growth rates under AMC and then swapped the highest and lowest growth rates, the next highest
and next lowest, and so on. We then added the synthetic drug, rAMC, to the original list of 15
drugs and reran the adaptive selection routine. Long-term adaptive cycling of AMC and rAMC
always arises and leads to dramatically lower growth than monotherapy: mean growth rates cycle
between 1.61 x 1073 to 1.66 x 1073, a 12% improvement (Fig. 5). Although the two landscapes
are perfectly negatively correlated and have equally high peaks, these peaks are surrounded by
lower-fitness genotypes that are repeatedly selected during cycling.

Discussion

Antibiotic cycling belongs to a group of theoretical approaches that attempt to exploit the topolo-
gies of fitness landscapes to constrain the evolution of resistance [9,10,24,32]. We tested a simple,
adaptive strategy that uses a Markov chain transition matrix to select drug sequences that minimize
the expected growth rate of the pathogen population. When applied to the empirical fitness land-
scapes of E. coli, the adaptive strategy rapidly converges to therapy with a single drug. This result
does not invalidate cycling as a potentially optimal strategy, which we demonstrate with a synthetic
landscape, but it underscores the importance of quantitative assessments of empirical landscapes.
We also posit that previous approaches to selecting antibiotic sequences for cycling are impractical
in healthcare settings. Such strategies implicitly treat patients unequally over the course of the
cycle, and they can thus lead to more resistance over time. Overall, our results suggest a simple
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Figure 5: Fitness graphs during alternating (a) AMC and (b) rAMC treatments for the two-drug
cycle at equilibrium. Node colors show genotype growth rates in each drug, node sizes indicate
relative frequencies, and edge weights show the relative transition probabilities from each source
node. Genotypes with near-zero frequencies are given visible mass to reveal color.
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approach for determining optimal treatments, which might include (but is not limited to) cycling
antibiotics. We find that the long-term drug sequence that emerges under the adaptive approach
can be applied as a fixed strategy with modest cost, suggesting that general recommendations may
be possible.

The effects of AMC-rAMC cycling are similar to those of combined drug regimens that induce col-
lateral sensitivity or cross-resistance [12,34], but here the tradeoffs are realized over time [17,39],
and the selected strategy should in theory remain effective indefinitely. Collateral sensitivity oc-
curs when the evolution of resistance to drug A simultaneously selects for sensitivity to drug B.
In experiments, cycling drugs that induce collateral sensitivity slowed the evolution of resistance
in E. coli [17] and Staphylococcus aureus [16]. Genotypes 1101 and 0101 demonstrate collateral
sensitivity with AMC and CPR (Fig. S4), and more dramatic instances of collateral sensitivity
can be found for other drug pairs (e.g., ampicillin-cefpodoxime with genotypes 1001-1011 and
amoxicillin-cefaclor with 0101-1101) and for other genotype pairs with AMC-CPR (e.g., 0110-
1110) (Table S1). In contrast to AMC and rAMC, which promote pervasive collateral sensitivity,
cycling with between these other drug pairs is not selected over the long term. Only some treat-
ments featuring collateral sensitivity also accommodate the need to minimize short-term pathogen
growth rates. This result underscores the utility of studying the topology of fitness landscapes, not
simply the rates of resistance to different drugs or correlations in drug sensitivities, in determining
effective treatments to minimize the evolution of resistance.

The robustness of the AMC strategy to different starting conditions is a property of the fitness land-
scape. Notably, the genotype frequencies do not converge to an identical stationary distribution
regardless of starting conditions. However, the genotype frequencies reach a small set of limiting
distributions because the Markov chain, defined by M (Aawmc), contains two absorbing states (Fig.
S3). These states correspond to relatively low fitness peaks at genotypes 0100 and 1101. Because
the graph forms a single component (all nodes are connected by at least one edge), at least one ab-
sorbing state is reachable from any starting condition. If the graph contained multiple components,
the final genotype distribution could be especially sensitive to initial conditions, and it is possible
that different long-term drug sequences would be optimal for some of them. General strategies may
not exist in these cases (or even in cases involving a single component), but they raise opportunities
for highly effective control if one drug selects for a subset of genotypes that cannot adapt to the
second drug. A practical consideration is whether the persistence of less fit genotypes or multi-
ple simultaneous mutations in nature might effectively connect otherwise unconnected subgraphs,
allowing resistance to evolve.

The performance of the adaptive approach might be improved by considering biological “details”
that the model omits, and such investigations are important before extending the results to clinical
practice. The Markov chain is a radically simplified approach to evolving competing populations
on an already simplified adaptive landscape. A strong assumption is that a single treatment lasts as
long as it takes genotypes to mutate to all neighbors (and no further), and that mutants’ abundances
scale linearly with their normalized growth rates (equation 1). In practice, possible mutations
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might not be realized, realized mutations will not be synchronous, and competition often leads to
nonlinear growth. The model effectively assumes weak competition for resistance in a given envi-
ronment and instantaneous transitions (with strong selection) between environments; both assump-
tions have dynamical consequences [9,40,41]. The model also omits host population structure.
Others have shown that resistance can evolve more slowly if antibiotic use is heterogeneous among
hosts [13, 14]. Departures from sequential monotherapy will be required if the selected antibiotics
cannot be tolerated by everyone. If entire subpopulations (e.g., children, immunocompromised
patients, etc.) are exempted from some drugs, and these populations make unique contributions
to transmission, then multiple fitness landscapes and a dynamical transmission model may be re-
quired to predict evolution accurately [8,37]. Finally, the landscapes themselves might change
from the appearance of compensatory mutations, linked resistance elements, and previously un-
detected epistasis and pleiotropy [23, 28, 34,40, 42]. It has been suggested that the -lactamase
mutations observed in nature most resemble those under fluctuating selective pressures in vitro,
and mutations that appear in monotherapy in vitro are rarely observed outside the lab [43]. The
distribution of mutations in nature might thus make an unstable basis for inferring the true breadth
of viable mutations, and new strategies could expose new parts of the fitness landscape.

The effectiveness of antibiotic cycling in managing resistance to different pathogens in different
settings is still in early stages of investigation, but the approach shows promise [8, 16, 17]. We
have proposed a new and general strategy to select antibiotic sequences that takes advantage of
data on empirical fitness landscapes, and we identify a specific treatment that may be effective
for managing [-lactam resistance in E. coli. Considering heterogeneity in the host population
and complexity in mutational and competitive dynamics is an important prerequisite for applying
these recommendations. Although a strength of the adaptive strategy is that it prioritizes resistance
reduction equally across patients in time, it does not solve one conflict inherent to almost all an-
tibiotic use [1,21]: the most effective treatment for an individual patient is not always the one that
minimizes resistance in the population. For instance, the most inhibitory drug for a patient infected
with the 1101 genotype is cefotaxime. If the original drug works well enough, however, then this
conflict might be avoided.
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Figure S2: Evolution after multiple AM-TZP cycles with short (left) and long (right) periods. AM-
TZP is the optimal cycle identified with a single cycle and short period [9].

k  antibiotic sequence frequency  growth rate (x10~7)
single cycle, short period
2  AM-TZP 0.70 2.72
3 AM-TZP-FEP 0.70 2.81
4  CEC-AMC-AM-FEP 0.62 2.34
5 CEC-AMC-CPD-TZP-AM  0.62 2.32
infinite cycle, short period
2  CXM-AM 0.08 2.37
3 CPR-CRO-AM 0.47 2.20
4  AMC-TZP-CRO-AM 0.58 2.38
5 CTX-CXM-TZP-CRO-AM  0.60 2.50
single cycle, long period
2 CTT-FEP 0.15 3.11
3 CEC-AMC-FEP 0.15 2.44
4  CEC-AMC-CRO-FEP 0.15 2.61
5 CEC-AMC-CRO-CTT-FEP  0.15 2.68
infinite cycle, long period
2 CTT-FEP 0.02 3.11
3 TZP-CRO-FEP 0.13 2.83
4  AMC-TZP-CRO-FEP 0.14 2.60
5 CPR-CRO-AMC-CEC-FEP 0.14 2.32

Table S2: Optimal sequences selected by maximizing the frequency of the sensitive genotype
(0000) after one cycle for multiple sequence lengths k£ under different scenarios without immi-
gration. The growth rate refers to the long-term average growth rate after repeated cycles.


https://doi.org/10.1101/093153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/093153; this version posted December 11, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

22

=]

02 04 06 08 1 12 14 16 18

Growth rate ( X 10 -3 )

Figure S3: Fitness graph AMC. This figure shows the same information as Fig. 1, but the absorbing
states 1101 and 0100 are more clearly depicted. Node colors show genotype growth rates. Edge
weights show the relative transition probabilities p,,, from each source node u. Edges are not
shown for transitions with zero probability. Self-loops (p,,,, = 1) are omitted for clarity.
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Figure S4: Fitness graphs during alternating (a) AMC and (b) CPR treatments for the two-drug
cycle at equilibrium. Node sizes show the relative frequencies of each genotype under each drug.
(Genotypes with near-zero frequencies are given visible mass to reveal color.) As in Fig. 1, node
colors show genotype growth rates in each drug, and edge weights show the relative transition
probabilities from each source node. The major transition between the 1101 and 0101 genotypes is
highlighted in red.
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k  antibiotic sequence frequency  growth rate (x 10~ °)
single cycle, short period
2  AM-TZP 0.70 2.70
3 AM-TZP-FEP 0.69 2.78
4 CEC-CXM-CRO-AM 0.60 248
5 CEC-CPD-TZP-CRO-AM 0.60 2.55
infinite cycle, short period
2  CXM-AM 0.09 2.37
3 CPR-CRO-AM 0.46 2.20
4  AMC-TZP-CRO-AM 0.55 2.37
5 CTX-CXM-TZP-CRO-AM  0.57 2.49
single cycle, long period
2 CTT-FEP 0.10 3.10
3 CRO-CTT-FEP 0.10 3.03
4  CEC-CRO-CTT-FEP 0.10 2.92
5 CEC-AMC-CRO-CTT-FEP  0.15 2.67
infinite cycle, long period
2 CTT-FEP 0.10 3.10
3 CEC-CTT-FEP 0.10 2.97
4  CEC-CRO-CTT-FEP 0.10 2.92
5 CPR-CRO-AMC-CEC-FEP 0.14 2.32

Table S3: Optimal sequences selected by maximizing the frequency of the sensitive genotype
(0000) for different values of k£ under different scenarios with immigration. The growth rate refers
to the long-term average growth rate over the cycle, which was calculated by evolving the popula-
tion for 300 steps under each cycle and averaging the growth rates of the last 100 steps.
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Table S4: Features of AMC monotherapy, the long-term outcome of the adaptive strategy, from
different starting conditions. The adaptive strategy was simulated for 300 steps starting from 1000
random initial genotype distributions and each of the genotypes individually. The onset step shows
when the AMC cycles began. The mean equilibrium growth rate was calculated from the last
100 steps. The long-term cost equals the difference between the equilibrium growth rates of fixed
AMC therapy and AMC therapy under the adaptive strategy. The transient cost is the cumulative
sum of the differences between the growth rates under the two strategies until they converge to their
stationary values. The costs (and standard deviations of costs) are reported as a percentage of the
equilibrium growth rate under the corresponding initial state.

initial state | onset step mean eq. gr{owth long-term cost of | transient cost of
‘ rate (x1073) fixed cycle (%) fixed cycle (%)

random 1.042 (0.500) | 1.86 (0.00241) 0.018 (0.216) 0.122 (1.45)

0000 1 1.75 0 0

1000 10 1.85 2.31 40.11

0100 1 1.67 0 0

0010 1 1.86 0 0

0001 1 1.88 0 0

1100 2 1.76 3.98 45.74

1010 7 1.85 352 53.73

1001 11 1.85 3.12 127.84

0110 1 1.80 0 0

0101 1 1.88 0 0

0011 5 1.85 2.70 16.92

1110 8 1.84 345 49.18

1101 2 1.86 2.88 20.70

1011 6 1.85 3.52 53.73

0111 6 1.85 2.70 16.76

1111 9 1.84 3.89 84.08
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Table S5: Mean equilibrium genotype frequencies with adaptive cycling starting from 1000 random
initial genotype distributions and each individual genotype. The standard deviation is 0 if not given.

initial state mean equilibrium frequencies (standard deviation)
0000 1000 0100 0010 0001 1100 1010 1001
random 0 0 0.209 (0.041) 0 0 0 0 0
0000 0 0 0.682 0 0 0 0 0
1000 0 0 0.266 0 0 0 0 0
0100 0 0 1 0 0 0 0 0
0010 0 0 0.225 0 0 0 0 0
0001 0 0 0.139 0 0 0 0 0
1100 0 0 0.631 0 0 0 0 0
1010 0 0 0.268 0 0 0 0 0
1001 0 0 0.272 0 0 0 0 0
0110 0 0 0.487 0 0 0 0 0
0101 0 0 0.139 0 0 0 0 0
0011 0 0 0.271 0 0 0 0 0
1110 0 0 0.295 0 0 0 0 0
1101 0 0 0.221 0 0 0 0 0
1011 0 0 0.268 0 0 0 0 0
0111 0 0 0.273 0 0 0 0 0
1111 0 0 0.295 0 0 0 0 0
0110 0101 0011 1110 1101 1011 o111 1111

random 0 0 0 0 0.791 (0.041) 0 0 0
0000 0 0 0 0 0.318 0 0 0
1000 0 0 0 0 0.734 0 0 0
0100 0 0 0 0 0 0 0 0
0010 0 0 0 0 0.775 0 0 0
0001 0 0 0 0 0.861 0 0 0
1100 0 0 0 0 0.369 0 0 0
1010 0 0 0 0 0.732 0 0 0
1001 0 0 0 0 0.728 0 0 0
0110 0 0 0 0 0.513 0 0 0
0101 0 0 0 0 0.861 0 0 0
0011 0 0 0 0 0.729 0 0 0
1110 0 0 0 0 0.705 0 0 0
1101 0 0 0 0 0.779 0 0 0
1011 0 0 0 0 0.732 0 0 0
0111 0 0 0 0 0.727 0 0 0
1111 0 0 0 0 0.705 0 0 0
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Table S6: Mean equilibrium genotype frequencies with fixed AMC monotherapy starting from
1000 random initial genotype distributions and each individual genotype. The standard deviation
is 0 if not given.

initial state mean equilibrium frequencies (standard deviation)
0000 1000 0100 0010 0001 1100 1010 1001
random 0 0 0.207 (0.041) 0 0 0 0 0
0000 0 0 0.682 0 0 0 0 0
1000 0 0 0.090 0 0 0 0 0
0100 0 0 1 0 0 0 0 0
0010 0 0 0.225 0 0 0 0 0
0001 0 0 0.139 0 0 0 0 0
1100 0 0 0.342 0 0 0 0 0
1010 0 0 0 0 0 0 0 0
1001 0 0 0.034 0 0 0 0 0
0110 0 0 0.487 0 0 0 0 0
0101 0 0 0.139 0 0 0 0 0
0011 0 0 0.065 0 0 0 0 0
1110 0 0 0.033 0 0 0 0 0
1101 0 0 0 0 0 0 0 0
1011 0 0 0 0 0 0 0 0
0111 0 0 0.067 0 0 0 0 0
1111 0 0 0 0 0 0 0 0
0110 0101 0011 1110 1101 1011 O111 1111

random 0 0 0 0 0.793 (0.041) 0 0 0
0000 0 0 0 0 0.318 0 0 0
1000 0 0 0 0 0.910 0 0 0
0100 0 0 0 0 0 0 0 0
0010 0 0 0 0 0.775 0 0 0
0001 0 0 0 0 0.861 0 0 0
1100 0 0 0 0 0.658 0 0 0
1010 0 0 0 0 1 0 0 0
1001 0 0 0 0 0.966 0 0 0
0110 0 0 0 0 0.513 0 0 0
0101 0 0 0 0 0.861 0 0 0
0011 0 0 0 0 0.935 0 0 0
1110 0 0 0 0 0.967 0 0 0
1101 0 0 0 0 1 0 0 0
1011 0 0 0 0 1 0 0 0
0111 0 0 0 0 0.933 0 0 0
1111 0 0 0 0 1 0 0 0
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