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Abstract 

 

Individual differences in brain organization exist at many spatial and temporal scales, 

contributing to the substantial heterogeneity underlying human thought and 

behavior. Oscillatory neural activity is crucial for these behaviors, but how such 

rhythms are expressed across the cortex within and across individuals has not been 

thoroughly characterized. Combining electroencephalography (EEG) with 

representational similarity and multivariate classification techniques, we provide a 

systematic characterization of brain-wide activity across frequency bands and 

oscillatory features during rest and task performance. Results indicate that 

oscillatory profiles exhibit sizable group-level correspondences, indicating the 

presence of common templates of oscillatory organization. At the same time, we 

observed well-defined subject-specific network profiles that were discernible above 

and beyond the structure shared across individuals. These individualized patterns 

were sufficiently stable over time to allow successful classification of individuals 

several months later. Finally, our findings indicate that the network structure of 

rhythmic activity varies considerably across distinct oscillatory frequencies and 

features, suggesting the existence of multiple, parallel information processing 

streams embedded in distributed electrophysiological activity. Together, these 

findings affirm the richness of spatiotemporal EEG signals and emphasize the utility 

of multivariate network analyses for understanding the role of brain oscillations in 

physiology and behavior.  
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Introduction 

 

While human brains are very similar, every brain is also distinct. Differences in 

synaptic strengths and network wiring provide a biological substrate for every 

individual's unique constellation of memories, beliefs, and personality traits. 

Magnetic resonance imaging (MRI) techniques have demonstrated not only 

individual variability of anatomical white matter connectivity (Bürgel et al. 2006), but 

also marked differences in patterns of correlated hemodynamic activity across 

distributed brain regions that relate to cognitive functioning (Mueller et al. 2013; 

Finn et al. 2015; Gordon et al. 2015). In recent years, network approaches applied to 

MRI data have yielded important insights concerning the brain's macroscopic 

connectivity pattern, or connectome, and its relation to behavior (Craddock et al. 

2013; Sporns 2014). However, a major drawback of MRI is its inherently poor time 

resolution. In contrast, electroencephalographic (EEG) techniques are sensitive to 

rapid, millisecond fluctuations in the electromagnetic fields generated by neuronal 

populations, and are therefore more suitable to examine the highly dynamic nature 

of rhythmic brain activity. Moreover, high-density EEG combined with spatial 

filtering techniques offers a reasonable degree of topographical precision, thereby 

allowing investigation of the "oscillatory connectome" - the pattern of oscillatory 

interactions across every pair of electrodes. Yet, little is known about the detailed 

properties of such networks, their variability from person to person, or their long-

term stability. 

 

Brain oscillations play a critical role in neural computation and information transfer 

(Buzsaki 2004), and are causally related to behavioral performance across numerous 

cognitive domains (Lopes da Silva 2013). Distinct brain rhythms are expressed 

differently across the brain (Keitel and Gross 2016), and particular frequencies are 

consistently related to specific functions, such as memory, attention, or decision 

making (Siegel et al. 2012). Moreover, different aspects of rhythmic activity capture 

distinct aspects of brain organization. Whereas oscillatory power reflects the degree 

of local rhythmic activity in a particular frequency band, functional connectivity 

assesses temporally coordinated activity between brain areas in a band-specific 

manner. In particular, consistent phase relations between brain circuits are thought 

to mediate efficient neural transmission on a fast, millisecond timescale (Fries 2005; 

Fell and Axmacher 2011), while coordinated fluctuations of signal amplitude capture 

slower aspects of neural communication (Bruns et al. 2000) and relate to the 

correlation structure observed with functional MRI (Hipp and Siegel 2015). These 

findings, along with phenomena of cross-frequency coupling (Aru et al. 2014), have 

instilled the notion that macroscopic electrophysiological signals reflect multiplexed 

activity, comprising a mixture of multiple parallel communication lines operating in 

different spectral bands and/or using different coding schemes (Watrous et al. 

2015). Importantly, such concurrently present signals can serve functionally distinct 

behavioral roles and could constitute a fundamental computational principle to 

increase coding capacity (Schyns et al. 2011; Watrous et al. 2013). 

 

Several studies have begun to investigate rhythmic activity and connectivity from a 

network perspective. Such investigations have highlighted both rapid changes 
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(Betzel et al. 2012) and the consistency (Chu et al. 2012) of spatially organized 

oscillatory activity. Moreover, large-scale oscillatory patterns, in line with the 

multiplexing hypothesis, vary with frequency band, cortical region, and the precise 

oscillatory characteristic under consideration (Hipp et al. 2012; Brookes et al. 2014; 

Arnulfo et al. 2015; Siems et al. 2016), as well as cognitive state (Palva et al. 2010; 

Honkanen et al. 2015). Combined with the possibility of individual differences in 

oscillatory organization, these findings underscore the brain's enormous complexity. 

However, how these different sets of observations interrelate is presently not well 

understood. 

 

Using high-density EEG, we set out to comprehensively characterize the brain-wide 

structure of multivariate oscillatory networks across all aforementioned dimensions. 

Adopting representational similarity (Kriegeskorte 2008) and machine learning 

techniques, we compared individuals' oscillatory networks based on power, phase-, 

and amplitude-connectivity, in multiple frequency bands, and during periods of both 

rest and memory encoding. Our results indicate the existence of highly distinct 

oscillatory profiles operating in parallel, both within and across individuals. 

Nevertheless, by assessing network similarity across test sessions spaced hours to 

months apart, we found oscillatory patterns to be sufficiently stable and unique to 

allow for successful long-term identification of individual subjects, demonstrating 

that oscillatory profiles may serve as neural fingerprints. 

 

Materials and Methods 

 

Participants 

 

Twenty-one healthy volunteers from the Boston area (8 male, 13 female, mean age ± 

SD: 22.0 ± 3.0 years, range: 18-31) completed the first visit of this study. Of these, 

fourteen returned for a follow-up visit several months later (mean: 154 days, range: 

109-231). All reported no history of neurological, psychiatric or sleep disorders. 

Participants were instructed to refrain from consuming recreational drugs or alcohol 

in the 48 h prior to the study, and to not consume more than one caffeinated 

beverage on the day of the study. Subjects were compensated monetarily for their 

participation. All subjects provided informed consent, and this study was approved 

by the institutional review board of Beth Israel Deaconess Medical Center. 

 

Protocol 

 

See Figure 1 for an overview of the protocol. The first visit lasted approximately 5.5 

h. Subjects reported to the lab at 1 PM, provided informed consent, and were 

prepared for EEG monitoring. Seated approximately 60 cm from a 27 inch computer 

display, they underwent a series of rest, memory encoding, and memory retrieval 

blocks, lasting from 2 to 3 PM. We refer to this first series of rest and task activities 

as Session A. Next, subjects stayed in the lab and watched a 2 h documentary. Then, 

from approximately 5.30 to 6 PM, subjects underwent a second series of recordings 

(Session B), during which they engaged in several additional blocks of rest activity 

and performed delayed memory tests for the material encoded during Session A. 
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After filling out an exit questionnaire, subjects left the lab around 6.30 PM. 

Participants returning for the follow-up visit several months later (Session C) arrived 

at the lab at variable times. Following the informed consent procedure and EEG 

setup, they underwent a series of rest, encoding, retrieval and control blocks for 

about 45 min. In addition, subjects carried out a 30 min protocol unrelated to the 

current study. Total duration of the second visit was about 2.5 h. 

 

We use the term "block" to refer to a demarcated period of time associated with a 

particular behavioral state (i.e., resting, encoding, retrieving, and viewing control 

blocks; see Rest and Task Details). Importantly, while EEG was recorded during all 

blocks, retrieval EEG was of very poor quality due to the subjects' constant 

movements when operating the mouse. Therefore, and because these data 

segments were of much shorter duration (~1 min) than the other blocks, we decided 

not to analyze the retrieval EEG. We adopt the term "data segment" (or just 

"segment") to refer to the EEG of rest, encoding, and control (but not retrieval) 

blocks. Finally, "task" segments refer to data segments from both encoding and 

control blocks. Note, however, that a control block was only included in Session C, 

and therefore Session A task segments are equivalent to encoding segments. 

 

For Sessions A and B, each subject's sequence of blocks was organized around the 

encoding and retrieval of visuospatial associations of two distinct stimulus sets. One 

set consisted of pictures of animals, the other of vehicles. During Session A, the first 

five blocks were organized as rest-encoding-rest-retrieval-rest, and pertained to the 

first stimulus category. Then, this sequence of blocks was repeated for the second 

stimulus set. The order of stimulus categories was counterbalanced across subjects 

(animals first: 11; vehicles first: 10). For reasons unrelated to the present report, on-

screen instructions then informed participants that later, during Session B, they 

would be retested only on the first category they were trained on (see below). Then, 

a final Session A resting state recording was obtained. Thus, a total of 11 behavioral 

blocks took place, which, after removal of retrieval blocks, resulted in 7 rest 

segments (restA1-restA7) and two encoding task segments (taskA1 and taskA2) for EEG 

analyses. 

 

After a 2 h interval, Session B began with a reminder that a retest would only be 

administered for the first encoding category. Then, three blocks were presented in 

the order rest-retrieval-rest, where the retrieval block reflected the first (and 

expected) stimulus category. This sequence was followed by a surprise notification 

that subjects would now also be tested on the second category, and a sequence of 

rest-retrieval-rest for that category ensued. Thus, for EEG analyses, Session B yielded 

4 rest segments (restB1-restB4). An exit questionnaire probed subjects for their 

learning and retrieval strategies, the amount of time they spent thinking about the 

stimuli in different phases of the protocol, and their memory and beliefs concerning 

the expectancy manipulation. 

 

The test expectancy manipulation was originally included to examine whether retest 

expectation would affect memory consolidation and, consequently, memory 

performance during Session B, and whether this might be reflected in the EEG. 
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However, behavioral results did not provide any evidence for this hypothesis and we 

did not pursue this notion further. Importantly, this state of affairs does not provide 

a confounding influence hampering interpretation of our results. Beside the fact that 

memory was not affected by test expectation and we therefore think it unlikely a 

neural effect would be present, all our EEG analyses were performed across data 

segments irrespective of expectation category. Moreover, any effect of expectancy 

would presumably arise after the manipulation is introduced, and could therefore 

only affect segments restA7 and restB1-restB4. Taken together, we do not believe this 

manipulation influences the interpretation of the presented analyses. 

 

Session C consisted of one sequence of blocks organized as rest-encoding-rest-

retrieval-rest, similar to Session A, and a sequence rest-control-rest. The order of 

these sequences was counterbalanced across subjects (7 memory first, 7 control 

first). The stimulus set for memory included 18 animals and 18 vehicles, some of 

which had been presented during session A. However, all subjects indicated they did 

not remember any picture-location pairs from their previous visit 4 to 8 months 

earlier. In the control condition, the same stimulus was repeatedly presented on all 

locations such that no unique visuospatial memories could be formed. After removal 

of the retrieval block, Session C resulted in rest segments restC1-restC5 and task 

segments taskC1 and taskC2, one of which was an encoding segment and the other a 

control segment. 

 

All blocks were presented using custom software written in Java. Instruction screens 

occurred throughout the protocol during all sessions. Subjects advanced to the next 

screen by pressing a keyboard button. During rest segments, subjects were 

instructed to quietly rest and relax for 5 min with their eyes closed, while remaining 

awake. An auditory tone at the end of each rest segment indicated subjects could 

open their eyes again. 

 

For memory encoding, subjects were instructed to memorize the location of pictures 

on a 6 by 6 grid. During the task, a square grid of 36 grey squares, subtending 

approximately 5° of visual angle per tile, and 31° in total, was continually present on 

the screen. Thirty-six pictures were then shown, one at a time on a unique grid tile, 

for 2,000 ms with an interstimulus interval of 1,000 ms. This procedure was repeated 

for a total of three learning rounds. Picture-location combinations and presentation 

order were randomized for each subject and were determined at run-time. An 

encoding block lasted 5 min and 20 s. The control task employed in Session C used 

the same basic setup as the encoding protocol. Here, however, the same stimulus 

was placed on each tile, resulting in a perceptually similar experience without the 

memory demands. 

 

During cued memory tests each picture was presented on the right side of the 

screen while the grid was visible. The participant was instructed to use the mouse to 

point the cursor to the tile associated with that picture, at which point the selected 

tile turned blue for 400 ms. Then, the next trial began. Subjects did not receive 

feedback on how they did. Retrieval was self-paced and lasted between 1-2 min.  

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/093005doi: bioRxiv preprint 

https://doi.org/10.1101/093005
http://creativecommons.org/licenses/by/4.0/


 

 

7

Data acquisition and preprocessing 

 

EEG was collected using 62-channel caps with channel positions in accordance with 

the 10-20 system. Two individual Ag/AgCl cup electrodes were attached to the 

mastoid processes, two were placed around the eyes for electrooculography, and a 

reference was positioned on the forehead. Channel Afz was used as the ground. An 

AURA-LTM64 amplifier and TWin software were used for data acquisition (Grass 

Technologies). Impedances were kept below 25 kΩ and data were sampled at 400 Hz 

with hardware high-pass and low-pass filters at 0.1 and 133 Hz, respectively. 

 

All subsequent data processing and analyses were performed in Matlab (the 

Mathworks, Natick, MA) using custom routines and a combination of several freely 

available toolboxes, including EEGlab (Delorme and Makeig 2004) and Fieldtrip 

(Oostenveld et al. 2011). EEG recordings were cut into data segments based on 

triggers derived from the stimulus software. Following the removal of eye channels, 

data segments were re-referenced to average mastoids, high-pass filtered at 0.5 Hz 

and notch filtered around 60 Hz to suppress line noise. Noisy channels were 

interpolated using a spherical spline algorithm (EEGlab: pop_interp) and excessively 

noisy time fragments were removed, resulting in an average segment length across 

all 364 segments of all subjects of 291 ± 22 s (typical range: 209-325 s; one outlier of 

48 s). Independent component analysis (EEGlab: runica) was performed and 

components reflecting eye movements, eye blinks, muscle activity and other obvious 

artifacts were removed. Next, we applied a spatial Laplacian filter (Perrin et al. 1989) 

using the CSD toolbox (Kayser and Tenke 2006). The Laplacian reduces the effects of 

volume conduction by estimating radial current flow, thereby highlighting local 

aspects of neural processing and allowing for superior estimates of phase coupling 

and reduced probabilities of observing artificial coupling between electrodes (Cohen 

2015; Tenke and Kayser 2015). By decorrelating activity levels across the scalp this 

approach thus "sharpens" network profiles, thereby improving chances of 

uncovering subtle network differences. 

 

Power and connectivity 

 

For each spatially filtered data segment (rest and task) and electrode we estimated 

power spectral density using Welch's method with 5 s windows and 50% overlap. 

Power values were dB transformed according to dB power = 10 x log10(power) and 

averaged across bins for the theta (3-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and 

gamma (32-60 Hz) bands. This yielded, for every subject, data segment and 

frequency band, a vector V of length 60 reflecting all electrodes' power values. Thus, 

these vectors reflect the network organization of oscillatory power across the scalp. 

Of note, the dB transformation yielded vectors containing approximately normally 

distributed values, which is an important assumption for their later use in Pearson 

correlations. Additionally, as a more concise statistic, we defined global power as the 

average power across all entries (i.e., electrodes) in a vector: global power = 
�

�
∑ ���
��� , where c is the number of channels (1, 2, ..., 60). 

  

For connectivity, we band-pass filtered the segments using the abovementioned cut-
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off frequencies (EEGlab: pop_eegfiltnew). We selected these values based on the 

shape of the filters' frequency responses, taking care that there was minimal overlap 

between adjacent pass-bands. Next, we applied the Hilbert transform to each 

filtered segment and determined the resulting signals' instantaneous phase and 

amplitude. We then subdivided the phase angle and amplitude time series into ten 

equally sized smaller data chunks, and calculated connectivity separately for each 

chunk. We performed the chunking step to reduce the effect of potential outliers on 

connectivity estimates, and, for phase synchrony, to allow for non-stationary phase 

differences within each segment. Chunk length varied across subjects and data 

segments because data segments had different amounts of artifact removed. While 

the number of samples affects the signal-to-noise ratio of resulting connectivity 

estimates, individual chunks were sufficiently long (at least 20 s, except for one 

outlier with chunk lengths of 5 s) that this variation is unlikely to have had a 

significant influence on our results. 

 

Amplitude correlations, ranging between -1 and 1, were determined using the 

Spearman correlation, and were assessed between each channel pair's Hilbert-

amplitudes, yielding a matrix Mamp of 60x60 connectivity values for every chunk. We 

used a nonparametric correlation metric because amplitude envelopes are generally 

not normally distributed. Phase synchrony was assessed by first calculating the 

phase difference for every channel pair (j, k) at each sample. We then determined 

phase synchrony for each channel pair as the length of the average phase difference 

vector across samples, expressed in the complex plane as: phase synchronyj,k = 

��
�

 ∑ �������	
����	

�
	�� � where i is the imaginary operator, φ indicates phase (in 

radians), t is the sample, and j and k index the channels. Phase synchrony values 

ranged from 0 (random phase relations) to 1 (perfect phase consistency). This 

resulted in another 60x60 matrix Mphase with phase synchrony values between every 

channel pair for each data chunk. For both amplitude correlation and phase 

synchrony, we then averaged connectivity estimates across the ten chunks.  

 

We selected the upper triangles of the symmetrical Mamp and Mphase matrices to 

count each connection only once. To further limit the effect of spurious coupling on 

our results we removed from each connectivity matrix the values connecting 

neighboring electrodes (Fieldtrip: ft_prepare_neighbours), removing 192 

connections. This yielded, for every subject, data segment, and frequency band, and 

for both phase synchrony and amplitude correlation, a vector U of length 1578 

reflecting the degrees of connectivity between all unique channel pairs. Similar to 

power, we also defined a global connectivity metric as the average across all entries 

in a vector: global connectivity = 
�

�
∑ ��
�
��� , where c is the number of connections (1, 

2, ..., 1578). For topographical plots of connectivity, we averaged the 60x60 matrix M 

(with neighboring connections removed) across one of its dimensions (e.g., row-

wise) to obtain the average connectivity between each electrode and all other 

electrodes. 

 

We observed that connectivity values within each vector U were generally not 

normally distributed. However, the degree of skewness differed depending on 
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frequency band, connectivity metric, data segment and subject. In order to render 

the data normally distributed for subsequent Pearson correlation analyses, we first 

added a value of 1 to each connectivity vector entry to ensure all values were 

positive. We then performed box-cox power transformations to all vectors, where 

the exponent used for transformation was automatically selected for each vector to 

minimize the standard deviation of the transformed vector (Box and Cox 1964). 

Finally, we z-scored the resulting vectors to obtain a standardized appearance when 

visualized in scatter plots. However, z-scoring does not affect subsequent Pearson 

correlation statistics. Thus, apart from the power transformation, which was only 

performed for connectivity vectors, oscillatory power and functional connectivity 

metrics were processed similarly. 

 

In order to directly compare power and connectivity vectors, which were of different 

length (V: 60, U: 1578), we also constructed "power connectivity" vectors of equal 

size as the connectivity vectors.  Specifically, we set the weight of each power 

"connection" to be the average power of the two involved electrodes. Naturally, this 

manipulation did not add any novel information, as each of the newly computed 

values in the larger vector was a linear combination of the original power estimates. 

As a result, this operation did not influence the similarity among power networks 

(i.e., power-based network similarity values were identical for vector lengths of 60 

and 1578), enabling direct comparisons between power and connectivity metrics. 

 

Network similarity and statistics 

 

Our basic approach for assessing the similarity of networks involved computing the 

Pearson correlation coefficient between two vectors. To aggregate network 

similarities across more than two networks, we used procedures referred to as 

representational similarity analysis in the modeling and fMRI literature (Kriegeskorte 

2008). Specifically, we calculated the Pearson correlation between each unique pair 

of networks, resulting in a large matrix of similarity scores. Then, for specific 

questions of interest, similarity values were averaged across the relevant entries and 

compared to a suitable baseline. Thus, we could compare networks within, between 

and across subjects, behavioral states, frequency bands, test sessions and oscillation 

metrics. 

 

In general, we evaluated network similarity statistically on two levels. In "level-1" 

analyses we determined how much evidence individual subjects showed for a 

particular phenomenon. Then, these results were summarized across subjects and 

appropriately tested for significance. In contrast, "level-2" analyses included all 

subjects' networks and asked whether there was reliable support for a particular 

finding at the group level. 

 

For both level-1 and level-2 analyses, we took a data-driven resampling approach to 

determine whether observed similarity scores across networks were statistically 

different from what would be expected by chance. For every comparison of interest 

we constructed a null distribution by repeatedly selecting as many random networks 

as there were included in the original observation. At each iteration, similarity scores 
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between each pair of selected networks were averaged, thereby creating a surrogate 

distribution of similarity values. The number of resampling iterations we used 

depended on the number of unique random samples available. If the number of 

combinations was over 1,000, a truly random sample was selected for each of 1,000 

iterations (i.e., Monte Carlo sampling). When the number of combinations was 

lower, every unique combination was sampled exactly once (i.e., permutation 

sampling). Due to the precise mechanics of shuffling, some level-1 analyses could 

use the same null distribution for every individual, while others required a different 

baseline distribution for every individual, as outlined below. For every comparison of 

interest, we defined baseline similarity as the average similarity across permutations 

(i.e., the center of the null distribution). In case individual subjects used separate null 

distributions, we further averaged these baselines. 

 

We assessed significance in several ways. First, for some analyses we use a one-

sample t-test to compare observed level-1 similarity scores to the average baseline 

value. This approach tests whether single-subject effects, as a group, are different 

from the permutation-derived baseline. Second, for both level-1 and level-2 

analyses, we used the null distributions to z-score each observation and calculate the 

associated P values. We then applied the false discovery procedure (Benjamini and 

Hochberg 1995) to correct for multiple comparisons (i.e., for multiple subjects, 

frequency bands, oscillation metrics). We used z-based P values, rather than the 

"raw" permutation-based P values, because the latter often severely underestimated 

the size of the effect. That is, even with 1,000 iterations the lowest obtainable 

significance value was P<0.001, while z-based P values provide a more accurate 

estimate of the distance between an observation and its null distribution. 

Importantly, for a minority of level-1 analyses, mostly those involving task networks, 

the number of possible permutations was rather low. As a consequence, the 

resulting null distributions were based on a limited number of samples and were 

often not Gaussian-shaped. In these cases, z-based P values did not optimally 

capture the size of the effect. Moreover, even when observed similarity values were 

more extreme than the entire null distribution, their raw permutation-based P 

values were limited by the number of permutations. This state of affairs severely 

affected subsequent multiple comparison correction with the false discovery 

procedure. Third, therefore, we additionally present uncorrected, permutation-

based P values for these cases in order to offer a complete picture of the pattern of 

results. In detail, our permutations proceeded as follows for different comparisons, 

organized by results section: 

 

Network consistency within individuals: The consistency of intra-individual network 

structure for each network type was determined, for rest segments, by selecting a 

subject's rest networks, computing all pair-wise correlations, and averaging them. 

For permutation testing, this procedure was repeatedly performed with shuffled 

subject labels. Then, each subject's observed network similarity was compared to 

the permutation distribution as explained above. For task segments, the procedure 

was identical. For rest-task comparisons, we calculated all unique rest-task 

correlations for each subject. For permutation, subject labels of task segments were 

kept intact, but rest segment labels were repeatedly shuffled. As a result, a different 
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null-distribution was generated for each subject. 

 

Distinct rest and task network profiles across individuals: For each network type, we 

selected all task segments from all subjects, computed all pair-wise correlations, and 

averaged them. We did the same for rest, but using only two rest segments from 

each subject (to equalize the number of rest and task segments). For permutation 

testing, we repeatedly shuffled the labels of behavioral condition, and recalculated 

similarity values. 

 

Frequency-specific networks for individuals: For every individual, oscillation metric, 

and behavioral state, we selected all networks of the same frequency, determined 

each pair-wise correlation, and averaged them. For permutation testing, we 

repeatedly shuffled frequency labels before recomputing similarity scores. For every 

individual, observed single-frequency network similarity in different frequency bands 

could then be compared to a baseline distribution of network similarity scores across 

frequency bands. 

 

Frequency-specific networks across individuals: For every oscillation metric and 

behavioral state, we selected all networks across all subjects of the same frequency, 

and determined the average within-frequency network similarity. Frequency labels 

were then repeatedly shuffled to generate a surrogate distribution of group-level 

network similarity across frequencies. Observed group-level single-frequency 

similarity scores were then compared to this null distribution. 

 

Distinct power-, phase-, and amplitude-based networks for individuals: For every 

individual, frequency band, and behavioral state, we selected all networks of the 

same oscillation metric. For power, we used the "power connectivity" values as 

explained above.  We calculated every pair-wise correlation and averaged them to 

obtain an estimate of same-metric similarity. We then shuffled oscillation metric 

labels to generate a null distribution of cross-metric similarity, against which 

observed vales were compared. 

 

Distinct power-, phase-, and amplitude-based networks across individuals: For every 

frequency band, and behavioral state, we selected all networks of the same 

oscillation metric across all subjects, and determined the average within-metric 

network similarity. Oscillatory metric labels were then repeatedly shuffled to 

generate a surrogate distribution of group-level network similarity across oscillation 

metrics. 

 

Short-term/long-term network stability: For each network type and oscillation 

metric, we calculated for each subject every unique correlation between segments 

from the to-be-compared sessions (rest-rest, task-task, and rest-task for Session A-

Session B, and Session AB-Session C). For permutation testing, subject labels were 

kept intact for one session, but were repeatedly shuffled for the other one. 

 

As an additional tool, we employed multidimensional scaling to visualize the 

similarity of networks, as implemented in Matlab's mdscale function. 
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Multidimensional scaling techniques project high-dimensional data points onto a 

space of lower dimension while optimally preserving the distances between points 

(Hout et al. 2013). In our case, each network can be viewed as a point in 60-

dimensional (for power topographies), or 1578-dimensional space (for connectivity 

patterns), and the distance between networks can be expressed as (1 - Pearson 

correlation), such that more similar networks are closer together. By projecting 

these points onto two dimensions, relations between networks of different subjects 

and types that are not apparent from inspecting the full-dimensional data can be 

approximately visualized. All statistics were done on the full-dimensional data, 

however. 

 

Classifiers 

 

We used k-nearest neighbor classifiers (Cover and Hart 1967) as a supervised 

learning strategy to distinguish between behavioral states within the same session, 

and to classify subject identity across sessions. In both instances, the algorithm 

(implemented in Matlab as fitcknn) was trained using the correlation distance (1 - 

Pearson correlation) between each pair of multivariate networks, similar to how we 

assessed network similarity. Different classifiers were trained for different network 

types. In the test phase, unseen networks were assigned labels according to the 

labels in the training set, such that training networks closest to each test network 

(i.e., more similar networks) contributed more to the final assigned label. This was 

implemented using an inverse distance-weighting scheme. The number of nearest 

training networks allowed to vote (i.e., k) was set to 5, except for the set of analyses 

where we investigated classifier performance as a function of k. 

 

To classify behavioral states within the same session (i.e., rest vs. task), we used a 

cross-validated approach in which we repeatedly trained each classifier on the data 

of all but one subject, and then tested the classifier on the remaining subject's 

networks. For cross-session subject recognition, we trained classifiers on data from 

session A and tested them on data from session C. Classifier performance was 

calculated as the proportion of test networks that were assigned the correct label. 

 

To ascertain whether information pooled across network types improves 

classification rates of data segments, we combined the information contained by 

different classifiers. In particular, every individual classifier Cs (where s is 1, 2, ...., 12 

for every single network type: 4 frequency bands x 3 metrics) returns the posterior 

probabilities that test network Xi belongs to training class Yj , where j = 1, 2 for 

behavioral classifiers (rest or task), and j = 1, 2, ..., 21 for subject identity classifiers. 

For every test network Xi, we averaged the probabilities across classifiers of interest 

to obtain "class weights" indicating how likely it is network Xi belongs to class Yj 

(note that resulting values do not necessarily sum to 1 and therefore do not reflect 

true probabilities). Then, the class with the highest class weight determined the 

assigned class label, similar to how individual classifiers operate.  

 

For subject identification, we further averaged these class weights across the 

multiple data segments derived from each individual subject. In a final merger step, 
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we combined rest and task networks by taking, for each training class Yj, the 

maximum class weight from the composite rest and composite task classifier, and 

assigned identity based on the maximum resulting class weight. Classifier 

performance was evaluated using both binomial tests and permutation-based tests 

in which we repeatedly shuffled training labels. For various control analyses, we 

systematically left out network information from particular frequency bands, 

oscillation metrics, or data segments, prior to merging them. 

 

For searchlight analysis we used the Fieldtrip function ft_prepare_neighbours with a 

neighbor distance of 0.65 to determine the neighborhood structure around each 

electrode. We then iterated through all electrodes, at each iteration selecting the 

current electrode, its neighbors, and all non-neighboring connections among them, 

and trained and tested classifiers on these local networks. 

 

Results 

 

Twenty-one young, healthy volunteers completed either one or two visits to the lab 

(Fig. 1). During the first visit, we acquired 60-channel high-density EEG across two 

sessions (A and B) while subjects underwent a sequence of resting state and memory 

encoding blocks. During Session A, we recorded seven 5-min segments of quiet, 

eyes-closed resting activity (restA1-restA7), and two segments of approximately 

similar duration while subjects encoded arbitrary visuospatial relations in an 

associative memory task (encodingA1 and encodingA2). In two corresponding retrieval 

blocks, subjects' recall performance was assessed (recallA1 and recallA2). Following a 

2 h break, Session B began, and subjects underwent four additional resting state 

recordings (restB1-restB4) and performed delayed recall blocks (recallB1 and recallB2) 

for the material learned during Session A's encodingA1 and encodingA2 blocks. 

Memory performance and its relation to network dynamics are presented in a 

separate paper (Cox et al., submitted).  
 

 

 

Figure 1. Protocol overview. Sessions A and B were separated by 2 hours, while Session C 

took place after approximately 6 months. In Session A, there were encoding and recall 
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blocks interspersed with rest periods. In Session B, additional recall blocks were interspersed 

with rest. In Session C, subjects completed an additional memory task as well as a viewing 

control task with no memory component. EEG from rest and task blocks (solid lines) but not 

recall blocks (dashed) was analyzed. During encoding, 36 stimuli were presented, one at a 

time, on a unique grid location. During retrieval, subjects were cued by presentation of a 

learned stimulus on the right of the screen, and attempted to select the corresponding 

location. 

 

After a period of 3.5 to 7.5 months, 14 subjects returned to complete a follow-up 

Session C, during which five additional resting state (restC1-restC5), and two 

additional task performance recordings were collected. One of these task segments 

was another associative encoding task (encodingC) to be followed by a corresponding 

retrieval block (recallC), while the second was a passive viewing control task 

(controlC) resembling the encoding protocol but without the memory component 

(and therefore no corresponding retrieval block). We will refer to both encoding and 

control blocks as general "task" segments (e.g., taskA2 or taskC1), except when 

investigating differences between these block types. 

 

We extracted continuous EEG segments corresponding to the ~5 min blocks of rest 

and task activity. (We do not investigate stimulus-evoked brain dynamics in this 

study.) After applying a surface Laplacian filter to data segment to emphasize local 

neural activity and reduce artificial coupling between electrodes (Cohen 2015; Tenke 

and Kayser 2015), we determined spectral power at each electrode, and assessed 

phase synchrony and amplitude envelope correlation between every pair of 

electrodes. We removed connections between neighboring electrodes for all 

subsequent analyses to further minimize spurious coupling. We calculated all 

oscillation metrics (power, amplitude-, and phase-based connectivity) separately for 

the theta (3-7 Hz), alpha (8-12), beta (13-30) and gamma (32-60) frequency bands. 

For spectral power, this yielded – for each subject, data segment, and frequency 

band – a vector of length 60, reflecting all electrodes' power estimates. For 

connectivity, the result was a vector of length 1578, reflecting every unique channel 

pair's connectivity strength. In what follows, we use the term "network" to refer to 

individual or multiple such vectors, i.e., the set(s) of values reflecting the brain-wide 

pattern of oscillatory activity across all electrodes or connections. We use the term 

"network type", to refer to power/connectivity vectors stemming from a particular 

combination of the oscillatory dimensions under investigation (e.g., amplitude-based 

beta networks during rest). 

 

Global and topographical oscillatory activity 

 

In order to obtain an overall picture of oscillatory activity, we first examined global 

spectral power (i.e., averaged across all channels), for rest and task segments during 

Session A (Fig. 2A, top). A 4 (frequency) x 2 (rest/task) repeated-measures ANOVA 

revealed significant main and interaction effects (all P<0.04). In line with typical 1/f 

frequency scaling, lower frequency bands generally showed greater power than 

higher bands (paired t-tests: all Pcorr<10
-9

), except for the theta and alpha pair which, 

due to prominent alpha peaks, showed the reverse pattern during rest [t(20)=-

6.3,Pcorr<10
-5

] and did not differ during task [t(20)=1.7,Pcorr=0.11). Comparing rest 
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and task, theta [t(20)=3.3;Pcorr=0.005] and especially alpha activity 

[t(20)=8.5;Pcorr<10
-6

]
 
were distinctly higher during eyes-closed rest periods compared 

to task segments, while the reverse was true for gamma power (t(20)=-5.5;Pcorr<10
-

4
). Accompanying topographical plots demonstrate the regional contributions to 

these global effects (Fig. 2A, bottom). 

 

 

 

Figure 2. Global and local power and connectivity during session A rest and task segments. 

(A) Top: Power averaged across all electrodes. Rest periods were marked by greater alpha 

and theta power but reduced gamma activity. Bottom: Topographical distributions of power 

show typical posterior distributions of alpha activity, with greater power during rest. Global 
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amplitude correlation (B), and global phase synchrony (C) averaged across all electrode pairs 

(top), and as topographical plots where each electrode's connectivity is color-coded 

according to its average connectivity with all other electrodes (bottom). Symbols indicate 

significantly (~: P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001) different global power or 

connectivity between rest and task. For details regarding statistical differences between 

frequency bands see text. 
 

Similarly, to assess overall levels of connectivity, we computed the mean connection 

strength of each connectivity vector and averaged the resulting values separately for 

task and resting-state segments. For both amplitude- (Fig. 2B, top) and phase- (Fig. 

2C, top) based connectivity metrics, 4x2 ANOVAs yielded reliable main and 

interaction effects (all P<0.01). Regarding rest-task differences, rest periods 

exhibited stronger alpha connectivity [amplitude-based: t(20)=6.8,Pcorr<10
-5

;
 
phase-

based: t(20)=4.8, Pcorr=0.0004] and beta connectivity [amplitude-based: 

t(20)=4.7,Pcorr=0.0003; phase-based: t(20)=1.9, Pcorr=0.07]. During task, gamma 

connectivity was stronger for both metrics [amplitude: t(20)=-2.3,Pcorr=0.04; phase: 

t(20)=-2.1,Pcorr=0.06], as was phase-based theta connectivity [t(20)=4.0,Pcorr=0.002]. 

Considering frequencies, all individual frequency pairs demonstrated significant 

differences for amplitude-based rest connectivity (Fig. 2B, top, blue bars) and phase-

based task connectivity (Fig 2C, top, red bars). For amplitude-based task segments 

and phase-based rest segments, 3/6 and 4/6 frequency comparisons were significant 

(all Pcorr<0.05). Topographical plots visualizing the average connectivity at every 

electrode site with the rest of the brain indicate the contributions from specific 

cortical regions to these global effects (bottoms of Fig. 2BC). 

 

We also examined global and topographical power and connectivity dynamics during 

Session C and found very similar results. We note that while some features of global 

connectivity resembled the power profile (e.g., highest values in alpha band during 

rest), others did not (e.g., greater theta power during rest but stronger theta phase 

connectivity during task; rest-task differences in beta connectivity but not beta 

power). To examine in depth if functional connectivity findings could be due to 

volume conduction we performed several control analyses. However, we did not see 

a consistent link between global power and global connectivity (Supplementary 

Text). Analogous to global effects, topographical maps for power, amplitude 

correlation, and phase synchrony suggest both regional similarities across oscillatory 

metrics (e.g., posterior activity during rest), and marked differences (e.g., central 

distributions for beta amplitude-based connectivity not seen for power or phase 

synchrony). 

 

Combined, findings in this section indicate that global and topographical measures of 

oscillatory activity vary with frequency and are affected differently by task and rest 

conditions in separate frequency bands. Moreover, different oscillatory metrics 

appear sensitive to different aspects of brain dynamics, a notion we will explore 

more in depth in subsequent sections. 

 

Similarity of large-scale oscillatory networks 

 

While the previous analyses offer an overall perspective on brain dynamics by 
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examining absolute oscillatory activity/connectivity (either topographically or pooled 

across electrodes/connections), a complementary and more fine-grained approach 

compares the distribution of oscillatory activity levels across all electrodes or 

connections between networks. Here, the level of analysis concerns the relative 

distribution of oscillatory activity across the cortex and its consistency from one 

state to another. In this approach, absolute power/connectivity levels are irrelevant, 

and not all individual network elements are required to exceed noise levels as signal 

may still be present in the distributed pattern. Similarly, while we found no evidence 

for volume conduction affecting connectivity (Supplementary Text), having inflated 

connectivity estimates due to potential confounds with power does not present a 

major concern for these network analyses. Again, what matters is the pattern of 

connectivity, not how accurately individual connection weights capture true 

neuronal synchrony. By then comparing networks across several dimensions (by 

individual, behavioral state, frequency band, oscillation metric, and across time), 

new insights concerning the variability and stability of oscillatory organization 

emerge. 

 

We quantified the degree of similarity between any two networks (i.e., two vectors 

reflecting brain-wide activity/connectivity patterns) as their Pearson correlation: 

high similarity between networks indicates a relatively preserved, and therefore 

stable, configuration of connection strengths or local power across the scalp, 

irrespective of possible differences in absolute connection strength or power. 

Illustrative scatterplots for alpha phase synchrony networks demonstrate the 

generally high correspondence of connection weights between segments derived 

from the same subject, both within and across behavioral states (Fig. 3AB). In 

contrast, network similarity between two different subjects was much lower (Fig. 

3C). In what follows, we will first characterize oscillatory profiles along all 

aforementioned dimensions, before turning to the question of how the observed 

network features may be utilized for subject identification. 

 

 

Figure 3. Similarity between alpha phase synchrony networks. Example scatterplots show 

network similarity between (A) a single subject's restA1 and restA2 segments; (B) the same 

subject's restA1 and taskA1 segments; and (C) restA1 from the same subject and the 

corresponding restA1 of a second subject. Every dot reflects the strength between a pair of 

electrodes (1578 in total): the Pearson correlation coefficient (R) constitutes the degree of 

network similarity. Axes indicate z-scored connectivity strength and blue lines reflect least-
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squares fit. Note that as a result of the large number of data points even modest 

associations have very low P values. 

 

Network consistency within individuals 

 

To examine the notion of intra-individual consistency of network configurations, we 

assessed the similarity among all Session A data segments obtained from a given 

subject. For the task conditions, we computed the correlation between taskA1 and 

taskA2 for each subject. For resting states, we computed all unique pair-wise 

correlations between a subject's 7 (restA1-restA7) segments and averaged the 21 

resulting values. We performed this procedure separately for each of 12 network 

types (4 frequencies x 3 oscillation metrics). Further averaging across subjects, we 

observed substantial within-subject network similarity, with average Pearson 

coefficients ranging from 0.49 to 0.98 (Supplementary File 1A; due to the large 

amount of network comparisons we performed, here, and throughout this report, 

results are presented at a descriptive level, while detailed network similarity values 

and statistics are presented in supplementary material). In addition to analyzing 

networks within behavioral states, we determined intra-subject network consistency 

between segments of rest and task. Here, we calculated, for every subject, the 

average correlation between each of the 14 unique pairs of rest-task segments. 

Compared to similarity of networks from the same behavioral state, correlation 

values were reduced, but still sizable (range: 0.33-0.73; Supplementary File 1A). 

Overall, intra-individual similarity scores indicate that network profiles are highly 

correlated across sequential blocks of time, with strong effect sizes within a 

behavioral state, and moderate to strong effects between rest and task. 

 

To evaluate whether these correlation scores indicate intra-subject network 

consistency beyond what is expected by chance, we adopted a resampling approach 

in which we randomly selected networks from the pool of all subjects. Keeping 

network type (i.e., frequency, oscillation metric, behavioral state) constant, we 

repeatedly permuted subject labels to generate a null distribution of similarity values 

(see Methods). Null distributions for rest-rest and rest-task comparisons are shown 

in Fig. 4A, C, and D. Individual subjects' values (orange bars) had far higher similarity 

values than expected by chance, and were often the most extreme scores. As a 

complementary tool, we employed multidimensional scaling techniques (see 

Methods) to visualize the relatedness of these networks (Fig. 4BE). Here, each 

colored dot reflects a network's position in high-dimensional space, and smaller 

distances between dots reflect greater similarity between networks. These plots, 

with each subject coded in a separate color, demonstrate that oscillatory profiles 

from the same individual are tightly clustered together in multivariate space, 

indicating that network structure is highly stable for a given individual. 
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Figure 4. Within-subject similarity of rest and task segments in Session A. Top: Similarity 

(Pearson's R) of rest segment networks based on amplitude correlation in the beta band. A: 

Observed within-subject similarity values (orange bars) are much higher than for the null 

distribution generated by resampling across subjects (red line: mean of null distribution; 

black dotted line: maximum value in distribution). B: Multidimensional scaling plot (see 

Methods) shows similarity between networks for same network type as in A as distances 

between dots. Each color represents a single individual. Dots of the same color are generally 

clustered together, reflecting high intra-individual network similarity. For visualization 

purposes only six subjects are plotted, although clustering is equally present when including 

all 21 subjects. Bottom: Similarity between task and rest segments for theta phase 

synchrony networks. Each subject's similarity score across behavioral states was compared 

to its own null distribution. Distributions for two subjects (C and D) show much higher 

within-subject similarity between rest and task structure (orange bars) than expected by 

chance. E: Distance plot for rest-task similarity, as presented in C and D. Smaller dots 

indicate rest networks (as above) and larger dots signify task networks. For several subjects, 

their 2 task segments are close to their 7 rest segments, indicating a close correspondence 

between network structures across behavioral states. At the same time, task networks from 

different subjects tend to cluster together to the right of the plot, suggesting group-level 

differences between task and rest networks. Again, only 6 subjects are plotted for 

visualization purposes. 
 

 

We assessed the significance of this apparent within-subject network stability in two 

ways. First, to examine group-level effects, we performed a series of one-sample t-

tests comparing the distribution of observed similarity scores across subjects to a 

null-hypothesis baseline defined as the average similarity across permutations. This 

procedure was performed separately for each network type. For reference, these 

baseline scores are visualized as red dashed lines in the center of the null 

distributions presented in Fig. 4 (ACD). For all frequency bands, oscillation metrics, 

and data segment comparisons (within-rest, within-task and rest vs. task) this 

yielded highly significant results (all P<0.002, Supplementary File 1A), indicating that 

Session A power and connectivity profiles are more similar within than between 

subjects. 
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Second, we used the null distributions to z-score each participant's network 

similarity estimates and calculate the associated P values. We then used the false 

discovery rate (Benjamini and Hochberg 1995) to correct for the multiple tests we 

performed, thus determining significance for each individual separately. Results 

indicated 90-100% of individual subjects, depending on network type, displayed 

above-chance (Pcorr<0.05) network similarity within their resting state recordings for 

all oscillation metrics and frequency bands. For task segments, within-subject 

network stability was significant for 55-90% of subjects across network types, except 

for beta and gamma power profiles. Concerning rest-task similarity, 65-100% of 

subjects exhibited significant network stability across these behavioral states. We 

note that for task-task similarity, percentages of subjects reaching significance 

increased for 9/12 (3 metrics x 4 frequency bands) network types when using more 

lenient uncorrected thresholds. Details of subject proportions meeting corrected and 

uncorrected thresholds for each combination of oscillation metric, frequency band 

and behavioral state are reported in Supplementary File 1A. 

 

We repeated these analyses using only two rest segments, matching the number we 

had available for task segments, thus removing any potential bias due to different 

amounts of rest and task data. Our results were very similar (Supplementary File 1B). 

We also assessed Session B intra-subject resting state similarity (Supplementary File 

1C), and Session C intra-subject rest, task, and rest-task similarity (Supplementary 

File 1D). These analyses showed highly similar and consistent patterns of results, 

providing independent confirmation of intra-subject network consistency across the 

same recording session, both within and between behavioral states, and, 

equivalently, sizable between-subject variability in network organization. 

 

Distinct rest and task network profiles across individuals 

 

Analyses of rest and task network patterns showed striking differences between 

these behavioral states. Upon visual inspection of the distance plot in Fig. 4E, it 

appears task segments from different subjects tend to cluster together (larger dots 

in the lower right of the plot), suggesting the existence of group-level differences 

between task and rest network structure. To investigate this further, we calculated 

group-level similarity across all subjects' rest segments, and separately, across all 

task segments, and compared these values to a baseline distribution of similarity 

scores obtained through resampling from the combined pool of rest and task 

segments across subjects. This approach was taken separately for each network 

type. 

 

Observed similarity scores during Session A varied depending on the oscillation 

metric, frequency band, and condition analyzed (Supplementary File 2A), but overall, 

10 of the 12 (3 metrics x 4 frequency bands) network types exhibited significantly 

clustered network configurations, during either rest, task or both. These findings 

indicate that network organization across individuals within a behavioral state (rest, 

task) is more similar than would be expected by chance. We repeated this procedure 

for the rest and task segments from Session C and obtained similar results 

(Supplementary File 2B). Thus, in addition to individual differences in network 
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organization, both rest and task networks share common profiles across subjects. 

 

We asked whether the observed group-level rest-task differences would allow us to 

predict behavioral state from network structure. For each [oscillation 

metric/frequency band] combination, we trained a k-nearest neighbors classifier 

(see Methods) on Session A rest and task networks from all subjects. In a cross-

validated approach, we repeatedly left out each subject's networks from the training 

procedure and allowed the classifiers to predict their associated behavioral state. 

We obtained significantly greater than chance (50%) performance for all 12 network 

types (binomial tests: all Pcorr<0.04). Recognition rates ranged from 60% for gamma 

amplitude- and power-based networks, to 88% for alpha phase- and amplitude-

based networks (Supplementary File 2A). Average performance across 12 classifiers 

was 77 ± 10%. Rest networks were more accurately classified than task patterns (83 

± 19% vs. 71 ± 12%), although the difference was not significant [(t(11)=1.85, 

P=0.09]. Merging evidence from individual classifiers, each based on a different 

network type (see Methods), we obtained a classification rate of 92%, indicating 

different network types are sensitive to different aspects of rest-task differences. 

Repeating these analyses for Session C, we again found considerable evidence for 

distinct task and rest-based networks (Supplementary File 2B). 

 

In sum, these observations demonstrate that, in addition to subject-specific 

networks that remain stable from rest to task execution, oscillatory profiles of these 

behavioral states nonetheless exhibit global task-rest differences that can be 

discerned at the group level. 

 

Frequency-specific networks for individuals 

 

The previous findings demonstrated reliable intra-individual network consistency for 

all examined frequency bands. However, this leaves unanswered whether an 

individual's oscillatory networks are similar across frequencies, which would suggest 

that they derive from the same intrinsic network activity, or whether distinct 

spectral bands are independently organized, suggesting the existence of multiple 

parallel modes of neural processing. 

 

We used our resampling approach to address this issue, comparing within subjects 

the similarity of single-frequency networks to the similarity of networks selected 

randomly across frequencies. For Session A resting states, every subject showed 

significantly enhanced network similarity within one or more frequency bands than 

across bands (Supplementary File 3A), indicating that the involved frequency-specific 

networks differed reliably from each other. We found this to be the case for all three 

oscillation metrics. In terms of frequency, networks in the alpha range were most 

distinctly clustered (for all oscillation metrics), and, in terms of oscillatory feature, 

networks based on phase synchrony showed most reliable between-frequency 

differences. Overall, across oscillation metrics and frequency bands, 70-100% of 

subjects showed significantly greater than chance within-frequency consistency 

(Supplementary File 3A). To assist interpretation, Fig. 5A uses multidimensional 

scaling to visualize single-frequency clustering for a sample subject's phase-based 
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rest segments, where different colors indicate different frequencies and shorter 

distances between dots indicate greater network similarity. Repeating these 

analyses for rest segments from Sessions B and C, >90% of subjects showed 

significant single-frequency clustering for one or more frequency bands, with subject 

percentages across all network types ranging between 50-100% for Session B 

(Supplementary File 3B), and between 35-90% for Session C (Supplementary File 3C). 

 

 
 

Figure 5. Frequency- and oscillation metric-specific clustering of Session A resting state 

networks. Single subject-level (A) and group-level (B) frequency clustering of phase-based 

networks indicating greater similarity of same-frequency than between-frequency oscillatory 

profiles. Single subject-level (C) and group-level (D) oscillation metric clustering in the beta 

range. Note how power topographies are distinctly different from both connectivity-based 

metrics. 

 

We performed an analogous set of analyses on each individual's task segments, for 

both Sessions A and C. The observed same-frequency similarity was often the most 

extreme score of all possible permutations and, depending on oscillation metric and 

session, 65-90% of subjects exhibited frequency-specific task networks for at least 

one frequency (Supplementary File 3A and 3C). All told, these findings strongly 

indicate that connectivity and power profiles differ across frequencies within 

individuals, for both rest and task, suggesting large-scale oscillatory activity is 

organized in frequency-specific manner. 

 

Frequency-specific networks across individuals 

 

Next, we turned to the question of whether frequency-band specificity extends to 

the group level. Given that we observed statistically distinct oscillatory profiles for 

different individuals, it does not trivially follow that single-frequency networks 

across subjects are more similar than expected by chance. Using our permutation 

approach, we observed significantly enhanced network similarity within frequency 
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bands for all oscillation metrics during rest segments from Session A (Supplementary 

File 3A). Correspondingly strong clustering was visible in multidimensional scaling 

plots (Fig. 5B). Similar group-level correspondences were found for Session B and C 

rest segments (Supplementary File 3B and 3C). Task segments from Sessions A and C 

also demonstrated significant group-level clustering, except for theta and alpha 

connectivity networks (Supplementary File 3A and 3C). Thus, these findings suggest 

not only the existence of within-subject, frequency-specific networks, but also the 

presence of canonical frequency-dependent networks across subjects. 

 

Distinct power-, phase-, and amplitude-based networks for individuals 

 

We also see important distinctions among networks based on the oscillation metric 

employed. As explained in the introduction, estimates of power, amplitude 

correlation, and phase synchrony should be sensitive to distinct facets of oscillatory 

activity and communication (Bruns et al. 2000; Cohen 2014; Watrous et al. 2015; 

Bastos and Schoffelen 2016). However, whether this separation extends to the level 

of brain-wide EEG patterns is an open question. Using our permutation approach, we 

asked whether network configurations were reliably more similar when they derived 

from a single oscillatory metric than when the networks were randomly selected 

across oscillatory categories. 

 

Overall, single-metric correlation values for Session A resting state networks were 

greater than the average correlation stemming from permuting across oscillatory 

metrics (Supplementary File 4A). All subjects displayed significant single-metric 

clustering for all oscillation metrics for the theta, beta and gamma bands, while for 

alpha 90, 95 and 100% showed significant similarity for phase-, amplitude-, and 

power-based networks, respectively. Fig. 5C displays a corresponding distance plot 

for a single subject's resting beta networks. We repeated these analyses for Sessions 

B and C rest networks and found similarly high proportions of subjects with 

significantly distinct network types (Supplementary File 4B and 4C). Thus, these 

findings demonstrate that oscillatory profiles based on different oscillatory features 

are reliably distinct, even when derived from the same frequency band, for almost 

all individuals. 

 

Distinct power-, phase-, and amplitude-based networks across individuals 

 

Next, we asked whether networks based on different oscillation metrics are 

consistently distinct across subjects. Permutation testing demonstrated this be the 

case for all frequencies except alpha, for both rest and task segments, for all metrics, 

and during all sessions. For alpha, at least one metric failed to reach significance in 

each session (Supplementary File 4A-C). Fig. 5D displays the group-level similarity of 

resting beta networks during Session A across oscillation metrics. These data 

demonstrate that power-, phase-, and amplitude-based network patterns are 

differently organized, both within and across individuals. 

 

As seen in Fig. 5CD, power networks differed substantially from connectivity 

networks in general, with phase- and amplitude showing less difference. We 
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therefore repeated the preceding set of analyses excluding power networks and 

found that 80-100% of individual subjects showed significant clustering for one or 

both metrics in the theta, alpha and beta bands, with lower proportions of 30-60% 

for gamma (Supplementary File 4D-F). Generally, phase synchrony networks showed 

more reliable within-subject same-metric network consistency than amplitude-based 

networks. In contrast, group-level network consistency was significant mostly for 

amplitude-based networks. These effects again occurred for both rest and task 

networks, and across all sessions and frequency bands. Thus, direct comparisons 

between functional connectivity networks based on mathematically and 

theoretically distinct measures of neural communication confirm the distinctiveness 

of these networks, both across and within individuals. 

 

Short-term network stability 

 

The previous analyses demonstrated intra-subject network consistency within a 

single recording session, but did not address the stability of these patterns across 

longer periods. We first studied the stability of network structure across sessions by 

comparing networks from Sessions A and B, which were spaced 2 h apart. We 

compared observed within-subject, between-session similarity scores to null 

distributions in which we paired each subject's networks from one session with 

networks randomly selected across subjects from the other session. We did this for 

all network types, and separately for rest A-rest B and task A-rest B comparisons. 

 

Both sets of analyses yielded within-subject similarity values that were consistently 

greater than those obtained by chance (Supplementary File 5A). At the group-level, 

higher than expected network stability occurred for every network type, and for 

both rest-rest, and task-rest comparisons (one-sample t-tests: P < 0.005 for each 

comparison). At the single subject-level, 90-100% of individuals reached significance 

for rest-rest stability, depending on network type, while 50-100% showed 

significantly stable network organizations between rest and task segments across 

the 2 h interval. Interestingly, this pattern of results did not deviate substantially 

from the within-session analyses (Supplementary File 1A). Across network types, 

proportions of subjects showing significant same-session versus between-session 

stability were similar for rest segments [96.4 ± 4.1 vs. 97.6 ± 3.2%, t(11)=-1.4, P=0.19, 

paired t-test], and decreased over time for rest-task comparisons [86.9 ± 9.3 vs. 72.2 

± 15.0%, t(11)=6.6, P<10
-4

]. These findings suggest a modest change in oscillatory 

brain patterns over a 2 h period. 

 

Long-term network stability 

 

Whether the within-subject stability of oscillatory brain patterns seen across 2 h 

reflects state or trait differences is unclear. State differences based on any of a 

number of psychological or physiological parameters (e.g., mood, hours slept the 

previous night) might form the basis of these individual differences. To examine this 

further, we used Session C data to analyze stability of individual subjects' network 

structure across a period of months. We performed four sets of comparisons 

between Session C and Sessions A and B: rest-rest, task-task, rest-task, and task-rest. 
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Because rest segments from Sessions A and B were highly similar, we treated these 

data as stemming from one session.  

 

Assessing single-subject-level statistics across months, we observed sizable 

proportions of individual subjects with significant similarity scores. Between 15 and 

60% of subjects exhibited significant cross-session network stability from Sessions A 

and B to Session C for rest-rest and rest-task comparisons, depending on frequency 

band and oscillation metric (Supplementary File 5B and 5C). Values for task-task and 

task-rest comparisons were somewhat lower and ranged from 0 to 40%. At more 

lenient thresholds (P<0.05, uncorrected), the number of subjects showing consistent 

network stability increased, but for no network type did the proportion rise above 

60%.  Clearly, subject proportions reaching significance for long-term inter-session 

stability were reduced compared to same-session consistency. Compared across all 

oscillation metrics and frequency bands, subject proportions reaching significance 

decreased from 94.4 ± 4.1% to 37.5 ± 11.4% for rest segments, and from 76.6 ± 

10.6% to 18.4 ± 7.8% for task data [t(11)=19.5, P<10
-9

 and t(11)=14.2, P<10
-7

]. Still, 

for 47 out of the total 48 long-term cross-session comparisons we performed, one or 

more subjects showed evidence for significant network stability. In sum, while we 

found substantial evidence for long-term stability of oscillatory networks within 

individuals, a clear reduction in network similarity was also apparent. 

 

Identifying individuals from oscillatory patterns 

 

Data segment classification 

 

The permutation approach described in the last section asked whether a subject's 

Session C networks were more similar to his or her own Session A/B networks than 

to Session A/B networks taken across participants. We next asked whether a 

supervised learning technique might be more sensitive to long-term network 

stability by capitalizing on only the most similar networks across sessions. To address 

this question, we trained a set of k-nearest neighbors classifiers, one for each 

frequency band/oscillation metric/behavioral state combination, on Session A and B 

network configurations. We then allowed the trained classifiers to predict subject 

identities for Session C networks. Of note, while data of only two-thirds of the 

original volunteers was available to assess classification accuracy, each classifier was 

trained on all 21 subjects' network patterns and was allowed to predict any of the 21 

identities. 

 

Trained on all available session A and B segments (11 from rest, 2 from task), 

classifier performance for Session C segments (5 rest and 2 task) was significantly 

above the chance rate of 4.8% (1/21), ranging from 33% for theta amplitude-based 

networks during rest, to 79% for alpha phase-based patterns during task (Table 1). 

All classifiers were significant at P<10
-10

 (binomial test), and returned a more 

extreme result than observed across 1,000 iterations of reshuffling subject labels (all 

P<0.001). On the whole, the set of rest classifiers performed similarly to the set of 

task classifiers [t(11)=1.7,P=0.12]. For reference, we compared these classification 

rates to rates obtained with the uncorrected (and most lenient) threshold of the 
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similarity-and-permutation approach. Without exception, classifiers performed 

better [t(11)=4.5 and t(11)=7.5 for rest and task, both P<0.001]. In a control analysis, 

we limited the number of training and test segments available to rest classifiers to 

two of each (from Session A), to match the number of segments used for task 

classifiers (Supplementary File 6). As expected, this resulted in reduced performance 

for rest classifiers, but also for rest compared to task classifiers [t(11)=-3.6,P=0.005], 

although the poorest performing classifier still correctly identified 25% of segments 

and performed better than all attempts with reshuffled training labels (both 

binomial and permutation: P<0.001). In sum, these findings demonstrate that 

oscillatory network patterns carry substantial information for classification across 

months, for all oscillation metrics and frequency bands, and for periods of both rest 

and task. 

 

Our earlier findings highlighted network variability not only across subjects, but also 

across frequency bands and oscillation metrics within an individual. Thus, combining 

different classifiers that are sensitive to partly non-overlapping information should 

improve performance. In separate approaches, we fused classifiers across frequency 

bands, oscillation metrics, or both, separately for rest and task (see Methods). 

Combining information across frequency bands, we obtained numerically improved 

performance for all oscillation metrics during rest, with each composite classifier 

showing greater accuracy than the best performing individual classifier they were 

based on (Table 1), although similar improvements were not seen for task segment 

classification. Combining information across oscillation metrics improved 

classification accuracy for rest segments in all frequency bands, and, for task 

segments, in three out of four bands. Finally, when we combined all classifiers, 

performance was further boosted to 81% and 82% for rest and task segments, 

respectively, correctly identifying the source of 57 out of 70 rest segments and 23 of 

28 task segments (binomial tests: both P<10
-16

; permutation tests: both P<0.001). In 

sum, the improvements observed from these mergers strongly suggest that 

networks based on different metrics and frequency bands contain unique identifying 

information. 

 

rest AB-rest C combined across frequencies 

phase-sync 58.6 72.9 67.1 47.1 75.7* 

amp-corr 32.9 62.9 62.9 50 68.6* 

power 57.1 65.7 54.3 50 71.4* 

combined across oscillation metrics 
61.4* 81.4* 70.0* 62.9* 81.4 

      

task A-task C 

phase-sync 53.6 78.6 57.1 42.9 78.6 

amp-corr 35.7 71.4 39.3 57.1 64.3 

power 50 42.9 53.6 35.7 53.6 

combined across oscillation metrics 
57.1* 78.6 75.0* 57.1* 82.1** 
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Table 1. Classifier performance for all oscillation metrics, frequency bands and behavioral 

states. Numbers indicate percentage of data segments correctly identified. All classifiers 

performed significantly above chance (4.8%). Single asterisk indicates improved classifier 

performance when combining frequencies or oscillation metrics. Double asterisk indicates 

further improved performance when combining frequencies and oscillation metrics. 

 

Subject identification 

 

Importantly, successful subject identification does not require correct classification 

of each individual data segment when multiple segments are available from a 

subject. Pooling across segments separately for rest and task segments, we correctly 

identified 13 of the 14 subjects based on rest networks, and 11 of 14 using task 

networks (binomial tests: both P<10
-13

; permutation: both P<0.001). Task-based 

classification rates were similar for individual data segments and for subject identity 

(82% vs. 79%), but the greater number of rest segments available for analysis led to 

numerically improved subject recognition (93%) relative to segment classification 

(81%). In a final step, we combined rest and task information, thereby harnessing 

information from multiple oscillation metrics, frequency bands and behavioral 

states. Using this approach, we reached perfect accuracy, correctly recognizing 

14/14 subjects (binomial test: P<<10
-16

; permutation test: P<0.001). In sum, 

oscillatory network organization within an individual is sufficiently distinct across 

frequencies, oscillatory metrics, and behavioral states to differentiate that individual 

from others, thereby having the potential to serve as a brain-based fingerprint. 

 

Influence of frequency bands, oscillation metrics and data segments 

 

We examined the contribution of different network types to our classification results 

by repeatedly excluding one or more network types from the classifier merger 

procedure (but retaining both rest and task networks). Removing either all phase-

based or all amplitude-based information did not affect performance, but excluding 

power topographies decreased classification to 86% (12 of 14 subjects). Including 

only a single oscillation metric (but keeping all frequency bands), subject recognition 

was 79% for phase-based networks, and 71% for both amplitude-based networks 

and power topographies. Including only single frequency bands (but retaining all 

oscillation metrics), we obtained classification rates of 64% for theta, 86% for beta 

and 79% for gamma. Impressively, including only the alpha band left accuracy at 

100%. Using only single oscillation metrics for alpha networks, but still combining 

rest and task information, resulted in recognition rates of 86% for phase-based, 79% 

for amplitude-based, and 71% for power-based classifiers. Thus, while alpha activity 

affords sufficient discriminatory power on its own, these results also demonstrate 

that alpha networks based on different oscillatory metrics capitalize on different 

sources of discerning information. 

 

Including all metrics and frequency bands again, we repeated the subject 

classification procedure using only two rest segments and two task segments (for 

both training and testing) to match the number of segments available to task 

classifiers and obtained a success rate of 93% (13 of 14). Next, including all rest and 

task segments again, we evaluated whether our results might depend on the 
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number of nearest training networks evaluated when labeling a test network. 

Varying the parameter k between 1 and 10 we found that for k=1 and k=2 one 

subject was misclassified, but accuracy was stable at 100% for all higher values. 

Finally, we tested the classifiers trained on Session A/B rest networks on Session C 

task segments, and vice versa, and combined their votes. This yielded 79% correct 

subject identification, demonstrating robust network stability across both time and 

behavioral state. 

 

In summary, these findings demonstrate that better subject recognition is obtained 

when combining different types of networks, indicating that oscillatory profiles from 

distinct behavioral states, frequency bands, and oscillation metrics carry unique 

identifying information. 

 

Contribution of individual network components 

 

The analyses described thus far were all based on the full 60-channel EEG data. To 

examine how many electrodes are required for accurate classification, we varied the 

number of included elements in each vector used for training and testing classifiers 

between two and the maximum number available, repeating this process ten times 

and averaging the results. We first assessed classification rates for individual data 

segments. Interestingly, the percentage of networks accurately classified by 

classifiers trained on a single network type reached a plateau quite early on, when 

approximately 200 out of 1578 (13%) or 100 (6%) connections were included for 

phase- and amplitude-based networks, respectively (Fig. 6AB). Significantly above 

chance performance, defined as P<0.05 for one-sample t -tests comparing each 

sample of ten scores to 4.8%, was achieved with as few as 4.2 ± 1.3 connections for 

different network types, with alpha amplitude correlation showing significant 

classification using just two connections (rest: 8.9%, P=0.001; task: 7.9%, P=0.03). 

For power, performance appeared relatively stable once 20 (33%) electrodes were 

included (Fig. 6C), but significantly higher than chance performance was observed 

with only two electrodes for all frequency bands and during both rest and task 

execution (mean performance: 6.8 ± 1.1%).  
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Figure 6. Data segment classification and subject recognition accuracy as a function of 

number of included connections and electrodes. Percentage of data segments accurately 

classified as a function of number of included connections for rest and task segments in 

different frequency bands, for phase synchrony (A) and amplitude correlation (B). For 

visualization purposes, A and B data were smoothed with a moving average window of size 

11 and down-sampled by a factor 21. Dashed lines indicate chance level performance. C: 

Similar to A and B for power as a function of number of included electrodes. D: Subject 

recognition as a function of electrode array size (electrodes plus connections among them), 

including all oscillation metrics, frequency bands and behavioral states. Black line indicates 

average, red shading standard deviation, and grey shading range of minimum and maximum 

values across 100 iterations. Inset: topographical map displaying subject recognition for 

searchlight analysis. 

 

Next, we asked how subject recognition rates (i.e., when multiple network types and 

data segments from the same individual are pooled) depend on these numbers. We 

varied the number of randomly selected electrodes between two and sixty, and 

selected all pairwise connections, except neighbors, among them. While the 

resulting electrode layouts did not reflect conventional montages, they allowed for a 

simple parametric manipulation of scalp coverage. We repeated this process 100 

times for each montage size, training, testing and combining the different classifiers 

to assess subject identity for every montage size. Results indicated improved 

performance with larger electrode arrays, with a shape roughly following that of 

individual classifiers (Fig. 6D). On average, arrays of five, ten and 21 electrodes were 

sufficient to obtain subject identification rates of 60, 80 and 90%, respectively. 

 

We wondered whether particular clusters of adjacent sensors contributed more to 

classifier success. To answer this question, we performed a searchlight analysis 

where, for each electrode, we selected all surrounding electrodes and connections, 

except those between direct neighbors, within a small radius. Selecting an average 
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of 8 neighbors (range: 6-11) around each searchlight center, we then trained and 

tested classifiers on these sub-networks, using information from all network types 

and both behavioral states. Average subject recognition rate across all searchlight 

centers was 58 ± 14% (range: 36-86%). When we compared searchlight-based 

recognition rates to recognition scores from random, and therefore generally more 

distributed, electrode arrays of similar size (9 electrodes), we observed, on average, 

far superior performance for these distributed networks [79 ± 11%, t(158)=10.2, 

P<10
-16

]. Topographically, searchlight-based performance was highest at 86% (12 of 

14) in two symmetrically lateralized frontocentral clusters, centered on 5 electrodes 

in total (Fig. 6D, inset). This score was significantly elevated compared to randomly 

distributed networks of the same size [one-sample t-test:  t(99)=6.2, P=10
-8

]. 

However, topographical maps of individual classifier performance – based on only 

one network type – were highly variable and generally not suggestive of superior 

discriminability over particular cortical regions. 

 

In sum, while greater numbers of included connections and electrodes improve 

subject recognition rates, a remarkable amount of identifying information can be 

extracted from networks of much smaller size, especially when electrodes are 

spaced further apart. 

 

Discussion 

 

In the present work, we offer an extensive analysis of the multivariate network 

structure of continuous rhythmic brain activity as measured by scalp EEG. Employing 

a data-driven approach with internal replications, we demonstrate that oscillatory 

network patterns differ across individuals, behavioral states, frequency bands, and 

oscillation metrics, suggesting that distinct network types capture separate 

processing streams operating in parallel. Moreover, while we established that there 

are clear commonalities in oscillatory templates across subjects, we also observed 

robust individual differences. Remarkably, individuals exhibited characteristic 

network profiles that were sufficiently stable over several months to allow successful 

long-term identification, demonstrating the potential usefulness of topographical 

patterns of oscillatory activity for biometric purposes. 

 

Distinct oscillatory profiles based on behavioral state, frequency, and oscillatory 

feature 

 

Considering these results in more detail, we showed that the network structure of 

EEG oscillations is reliably distinct for different behavioral conditions, frequency 

bands, and oscillation metrics. The observation that different behavioral states are 

associated with distinct spectral profiles is a classic finding [e.g., (Pfurtscheller 1992)] 

that we also observe (Fig. 2A). Our network similarity approach simply confirms this 

from a pattern similarity perspective. Variations in the topographical organization of 

power and connectivity as a function of frequency have also been demonstrated 

previously (Hipp et al. 2012; Siems et al. 2016). Our similarity findings fit with these 

observations and extend them by offering a detailed description of how reliably 

distinct frequency bands differ from each other during rest and task. These 
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observations are further supplemented by investigating several distinct measures of 

oscillatory brain activity. While the great variety of available spectral and 

connectivity methods has been widely discussed and simulated (Cohen 2014; Bastos 

and Schoffelen 2016), direct comparisons of power-, phase-, and amplitude-based 

activity in human physiological recordings are scarce (Bruns et al. 2000; Arnulfo et al. 

2015). We observed reliably distinct oscillatory profiles for large-scale networks 

based on these metrics, suggesting these measures are indeed sensitive to different 

kinds of dynamics. 

 

More generally, the notion that several frequency-specific and metric-specific 

patterns may be derived from the same data supports the idea that EEG activity 

reflects distinct "layers" of multiplexed activity. Membrane oscillations can 

coordinate spiking activity in distributed cell assemblies across space and time 

according to many organizational schemes regarding frequency, phase, and 

amplitude (Akam and Kullmann 2014; Watrous et al. 2015). To the extent that 

multiple such oscillatory phenomena contribute to the macroscopic EEG, 

decomposing EEG signals into their putative components allows identification of 

parallel modes of neural coding, which, importantly, can serve distinct functional 

roles (Schyns et al. 2011; Watrous et al. 2013). Although we observed substantial 

similarity levels even between networks operating in different frequency ranges, or 

based on distinct oscillatory features, permutation results indicated separable 

networks well beyond this baseline commonality. Thus, our findings offer 

physiological support for the notion of multiple, parallel, brain-wide networks. 

 

We observed differentiated networks on two levels. First, at the group-level, our 

findings indicate that networks of different types (e.g., beta amplitude correlation 

networks during rest and during task) are statistically separable, yet remarkably 

consistent across individuals. While most analysis approaches in cognitive 

neuroscience already assume different brains are sufficiently similar to enable 

meaningful comparisons between groups (e.g., as a function of behavioral condition 

or clinical group), there is only limited evidence to suggest such between-subject 

correspondences hold for macroscopic cortical oscillation structures. Thus, our 

findings add to a growing literature reporting consistent cortical connectivity 

patterns across subjects (Chu et al. 2012; Hipp and Siegel 2015; Siems et al. 2016). 

This finding is perhaps even more notable given the marked between-subject 

variability we observed. Further supporting these group-level analyses, our 

demonstration that classifiers trained on oscillatory network structure could 

successfully differentiate between an out-of-sample subject's rest and task states, 

and, moreover, could do so for the great majority of frequency bands and oscillation 

metrics, further underscores the similarity of network patterns across subjects, as 

well as the difference between these behavioral states. Second, we observed that 

specific network types were statistically separable even within individuals, 

highlighting the robustness of our group effects. Furthermore, the presence of 

several multiplexed oscillatory profiles within an individual importantly supports 

improved subject recognition by pooling information across frequency bands, 

oscillatory metrics, and behavioral states, as discussed below. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/093005doi: bioRxiv preprint 

https://doi.org/10.1101/093005
http://creativecommons.org/licenses/by/4.0/


 

 

32

Individual variability and stability of network structure 

 

Alongside the distinctions between network types, and the similarities in oscillatory 

network organization across subjects, we uncovered substantial individual 

differences for all network types examined. The distinctiveness of these idiosyncratic 

oscillatory patterns far surpassed the commonalities shared across subjects. While 

the suggestion that different brains are organized somewhat differently is not 

contentious (Mueller et al. 2013; Finn et al. 2015), we demonstrate that EEG-

measured network activity is robustly sensitive to such differences. In observing that 

individual oscillatory profiles persisted, and were in fact identifiable, across months, 

we conclude that these patterns reflect traits rather than states. It has long been 

noted that numerous aspects of electrophysiological activity vary among individuals 

and are, in fact, heritable (Begleiter and Porjesz 2006). Stability of oscillatory 

parameters across several days to years has been shown for the power spectrum 

(Salinsky et al. 1991; Kondacs and Szabó 1999), power envelope autocorrelation 

(Nikulin and Brismar 2004), and graph theoretical characteristics (Deuker et al. 2009; 

Hardmeier et al. 2014), to name just a few. Oscillatory patterns have also been found 

to be stable within individuals across frequency bands, brain states, and time (Chu et 

al. 2012). Our findings build on this body of work and additionally demonstrate 

oscillatory stability holds across different network types and brain states, both 

within and across subjects. While it is in principle possible that non-neural factors, 

such as remaining eye and muscle activity, may have led to our (and others') findings 

of long-term stability of EEG signals, we found that pooling information across rest 

and task networks led to higher classification accuracy compared to using a single 

behavioral state, suggesting that state-specific neural activity contributed to the 

observed network stability. Moreover, as we demonstrate in our companion paper 

(Cox, et al., submitted), individual variability in network organization is robustly 

related to memory performance, a finding that is difficult to explain unless 

oscillatory patterns capture cognitively meaningful brain activity. 

 

Network-based subject identification 

 

Moving from network stability to identification, many different EEG features have 

been successfully employed for subject recognition [for an overview, see (Del Pozo-

Banos et al. 2014)]. However, only a limited number of studies have addressed the 

long-term permanence of these effects, relying instead on data from the same 

acquisition session(s) for both classifier training and testing. This constitutes an 

important factor because differences in electrode placement across recordings 

might impact performance substantially. Nonetheless, we achieved highly accurate 

recognition rates without the use of neuronavigational tools to ensure similar cap 

positioning across visits, thus indicating a remarkable degree of robustness with 

respect to precise electrode placement. 

 

While distributed oscillatory patterns have been used for subject identification 

before (Rocca et al. 2014; Maiorana et al. 2016), our approach substantially 

increased the interval between recordings. More generally, however, we do not wish 

to claim that subject identification based on oscillatory patterns leads to the most 
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distinguishable neural fingerprints possible, as we are aware of various other 

approaches achieving impressive performance rates for EEG- (Näpflin et al. 2007; 

Lewandowski et al. 2013; Maiorana et al. 2016) or fMRI-based classification (Finn et 

al. 2015). Rather, by analyzing the different contributions of different frequency 

bands, oscillation metrics, behavioral states, and the inclusion of specific 

electrodes/connections, we hope to come to a more thorough understanding of the 

scope and limits of individual network variability. 

 

Interestingly, the combination of information from distinct network types generally 

resulted in improved classification rates, indicating that different network types 

contributed differently. On the whole, power topographies afforded about as much 

identifying information as connectivity profiles did. This may seem surprising given 

that power topographies are based on a much smaller number of unique values 

compared to connectivity vectors. However, connectivity measures are inherently 

noisier than power estimates, possibly explaining the similar performance levels. 

While we also noted independent contributions to classification accuracy from 

different frequencies, alpha activity was sufficient to reach perfect accuracy. This 

effect is likely at least partly related to the overall prominence of alpha activity, 

leading to higher signal-to-noise ratios and more accurate (and reproducible) 

oscillatory estimates. It is unclear whether alpha networks afford superior 

recognition beyond this consideration. Finally, while task- and rest-based 

classification rates differed by only a small amount, their combined information 

enabled us to boost recognition to 100%, indicating the same combinations of 

frequency bands and oscillation metrics offer some distinct identifying information 

during different behavioral states. 

 

An open question pertains to the number of unique individuals our approach could 

conceivably recognize before different subjects' network structures begin to overlap 

and reduce performance. In our sample, networks from different individuals show 

high baseline degrees of similarity, suggesting networks cannot freely occupy 

arbitrary positions in multidimensional space. Moreover, power and connectivity 

values between adjacent electrodes and frequency bands are typically correlated, 

further limiting the number of potential network configurations. Even with these 

constraints, however, the number of possible network states is enormous. In fact, 

the dimensionality of this space may be arbitrarily increased by estimating network 

structure for more fine-grained frequency bins – potentially targeting subject-

specific frequencies (Haegens et al. 2014) – by including additional oscillation metrics 

(e.g., directional connectivity measures), or by expanding the number of cognitive 

states sampled. Moreover, our results show that substantial reductions of network 

size still resulted in quite accurate performance, indicating sizeable redundancy 

across the full network. We speculate that this redundancy is related, in part, to the 

limited number of individuals we had available, as larger samples might require 

formerly uninformative connections to assist in differentiating between the 

increased number of subjects. 

 

Limitations and outlook 
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A potential issue affecting our analyses concerns volume conduction, whereby 

activity from a single brain source projects to multiple sensors, giving rise to 

artificially inflated connectivity estimates between nearby electrodes (Palva and 

Palva 2012). While we used a surface Laplacian filter to reduce volume conduction 

(Perrin et al. 1989), and removed neighboring channels from the connectivity matrix, 

we acknowledge these approaches do not completely abolish volume conduction. 

Yet, if connectivity is driven by volume conduction, power and connectivity should 

be correlated (Cohen 2014). However, we did not find any evidence for such a 

relation, neither across individuals, nor across data segments within the same 

individual (Supplementary Text). 

 

More fundamentally, however, we should stress that the level of analysis in our 

network approach concerns the degree of similarity between oscillatory activity 

patterns, which is still meaningful, for our purposes, even if confounded by power. 

That said, we found that power, phase-, and amplitude-based networks are 

statistically separable, both within and across individuals, and that connectivity-

based networks allowed better subject recognition than power topographies in 

several instances. Thus, even if we assume a large degree of spurious connectivity, 

empirical evidence clearly indicates connectivity-based networks to be of practical 

use beyond that afforded by power topographies. Finally, we note our approach is 

conceptually similar to multivariate fMRI analyses in which multi-voxel activity 

patterns (Kriegeskorte 2008), or voxel-voxel correlation patterns are examined 

(Tambini and Davachi 2013), even though neighboring voxels are typically highly 

correlated. In sum, while empirical results suggest volume conduction does not pose 

a major concern for our connectivity results, we emphasize the scope of our network 

analyses and associated methodological considerations are different from those 

encountered in conventional EEG analyses. 

 

What, then, is the nature of information indexed by multivariate oscillatory 

patterns? It is generally accepted that EEG signals reflect the summed activity of 

synaptic potentials rather than action potentials (Buzsáki et al. 2012; Lopes da Silva 

2013), but the precise relation between scalp potentials and underlying brain activity 

is an active topic of research. Recently, it was found that scalp-recorded EEG activity 

depends on both the amplitude and synchrony of intracortical sources, but that this 

relation, in turn, varies with frequency band (Musall et al. 2014). Moreover, 

oscillations of a particular frequency may be generated by distinct mechanisms in 

different cortical layers (Bollimunta et al. 2011), and may serve different 

computational roles in different areas (Supp et al. 2011). Thus, the brain-wide EEG 

patterns we considered reflect mixtures of many, likely non-linearly, interacting 

neural processes. Furthermore, in considering only the similarity of oscillatory 

patterns between conditions, individuals, etc., this approach further abstracts away 

from particular cortical regions or connections and adopts a more global perspective. 

Therefore, while our sensor-level network approach does not address anatomically 

resolved hypotheses as source reconstruction approaches do (Palva et al. 2010; Hipp 

et al. 2012), its sensitivity to changes in distributed oscillation patterns may offer a 

complementary perspective on large-scale brain dynamics (Kriegeskorte 2008; Park 

and Friston 2013; Pessoa 2014; Petersen and Sporns 2015). Indeed, as we report in 
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our companion paper (Cox et al., submitted), distributed patterns of alpha activity 

relate robustly to individual differences in memory performance, while we do not 

observe this relation for localized alpha activity. These findings fit with 

electrophysiological evidence indicating that representational categories may be 

identified from distributed sensors (Van de Nieuwenhuijzen et al. 2013; Kaneshiro et 

al. 2015), and fMRI findings that neural regions carrying object category information 

are quite widespread (Haxby 2001). At the same time, our findings appear quite 

compatible with previous source-level studies (Hipp et al. 2012; Siems et al. 2016), 

further lending credence to our approach. 

 

In conclusion, we characterized the variability and stability of large-scale distributed 

oscillatory networks across individuals, behavioral states, frequency bands, and 

several theoretically relevant attributes of rhythmic activity. This approach revealed 

the existence of several canonical, yet distinct, oscillatory profiles, and 

demonstrated that such patterns constitute neural fingerprints with potential 

biometric applications. These observations attest both to the human brain's 

incredibly complex spatiotemporal dynamics and to the wealth of information that 

can be extracted from EEG signals. We suggest that examining oscillatory activity 

from a network similarity perspective is a fruitful approach for future studies 

addressing brain activity and its relation to cognition and behavior. 
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