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ABSTRACT 8 

Natural selection that affected modern humans early in their evolution has likely shaped some of the 9 

traits that set present-day humans apart from their closest extinct and living relatives. The ability to 10 

detect ancient natural selection in the human genome could provide insights into the molecular basis 11 

for these human-specific traits. Here, we introduce a method for detecting ancient selective sweeps by 12 

scanning for extended genomic regions where our closest extinct relatives, Neandertals and 13 

Denisovans, fall outside of the present-day human variation. Regions that are unusually long indicate 14 

the presence of lineages that reached fixation in the human population faster than expected under 15 

neutral evolution. Using simulations we show that the method is able to detect ancient events of 16 

positive selection and that it can differentiate those from background selection. Applying our method 17 

to the 1000 genomes dataset, we find evidence for ancient selective sweeps favoring regulatory 18 

changes in the brain and present a list of genomic regions that are predicted to underlie positively 19 

selected human specific traits. 20 

 21 
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INTRODUCTION 1 

Modern humans differ from their closest extinct relatives, Neandertals, in several aspects, including 2 

skeletal and skull morphology (Weaver 2009), and may also differ in other traits that are not preserved 3 

in the archeological record (Laland et al. 2010; Varki et al. 2008). Natural selection may have played a 4 

role in fixing these traits on the modern human lineage. However, the selection events driving the 5 

fixation would have been restricted to a specific timeframe, extending from the split between archaic 6 

and modern humans ca. 650,000 years ago to the split of modern human populations from each other 7 

around 100,000 years ago (Prüfer et al. 2014). While methods exist, that can be used to scan the 8 

genome for the remnants of past or ongoing positive selection (Lemey et al. 2009; Nielsen et al. 2007), 9 

current methods have limited power to detect positive selection on the human lineage that acted during 10 

this older timeframe (see Sabeti et al. 2006 for a review on detection methods and their timeframes): 11 

an unusually high ratio of functional changes to non-functional changes, such as the dn/ds test, 12 

requires millions of years and often multiple events of selection to generate detectable signals 13 

(Kryazhimskiy and Plotkin 2008), while unusual patterns of genetic diversity between individuals and 14 

populations (e.g. extended homozygosity, Tajimas D, Fst) are most powerful during the selective 15 

sweep or shortly after (Oleksyk et al. 2010; Sabeti et al. 2006). 16 

The genome sequencing of archaic humans (Neandertals and Denisovans) to high coverage (Meyer et 17 

al. 2012; Prüfer et al. 2014) has spawned new methods to investigate the genetic basis of modern 18 

human traits that are not shared by the archaics (Pääbo 2014). One method, called 3P-CLR, models 19 

allele frequency changes before and after the split of two populations using the archaic genomes as an 20 

outgroup (Racimo 2016). 3P-CLR outperforms previous methods in the detection of older event of 21 

selection (up to 150,000 years ago, Figure 2 from Racimo 2016) but has little power to detect events 22 

older than 200,000 years ago in modern humans. A second method applied an approximate Bayesian 23 

computation on patterns of homozygosity and haplotype diversity around alleles that reach fixation 24 

(Racimo et al. 2014). Although, this approach expands our ability to investigate older time frames, this 25 
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signal of selection also fades over time and events of positive selection older than 300kya become 1 

undetectable. 2 

Based on a method introduced by Green et al. (2010), Prüfer et al. (2014) presented a hidden Markov 3 

model that identifies regions in the genome where the Neandertal and Denisovan individuals fall 4 

outside of the present-day human variation, and applied the model to detect selective sweeps on the 5 

modern human lineage. Regions that are unusually long are candidates for ancient selective sweeps as 6 

variants are likely to have swept rapidly to fixation, dragging along with them large parts of the 7 

chromosomes that did not have time to be broken up by recombination. While this method is, in 8 

principle, expected to be able to detect events as old as the modern human split from Neandertals and 9 

Denisovans, this power was never formally tested and it has several other shortcomings. First, the 10 

method was limited to modern human polymorphisms, ignoring the additional information given by 11 

fixed substitutions. Second, the method does not fit parameters to the data, but requires these 12 

parameters to be estimated through coalescent simulations.  13 

Here, we introduce a refined version of this method, called ELS method, that models explicitly the 14 

longer regions produced under selection, and includes the fixed differences between archaic and 15 

modern human genomes as an additional source of information. The ELS method also takes advantage 16 

of an Expectation-Maximization algorithm to estimate the model parameters from the data itself, 17 

making it free from assumptions regarding human demographic history. 18 

To evaluate the power of the ELS method to detect ancient selective sweeps we tested its performance 19 

under scenarios of background selection and neutrality. Finally, we present an updated list of 20 

candidate regions that likely underwent positive selection on the modern human lineage since the split 21 

from the common ancestor with Neandertals and Denisovans. 22 
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RESULTS 1 

Selection causes extended lineage sorting between closely related populations 2 

The ancestors of modern humans split from the ancestors of Neandertals and Denisovans between 3 

450,000 and 750,000 years ago (Prüfer et al. 2014). Because the two newly formed descendant groups 4 

sampled the genetic variation from the ancestral population, a derived variant can be shared between 5 

some members of both groups, while other individuals show the ancestral variant. At these positions, 6 

some lineages from one group share a more recent common ancestor with some lineages in the other 7 

group than within the same group (Rosenberg 2002), a phenomenon called incomplete lineage sorting 8 

(Figure 1A).  9 

Eventually, a derived allele may reach fixation as part of a region that has not been unlinked by 10 

recombination. In these regions all descendants will derive from one common ancestor and any lineage 11 

from the other population will constitute an out-group, i.e. all lineages are sorted. Because of 12 

recombination, the human genome is a mosaic of independent evolutionary histories and the process 13 

of lineage sorting is expected to randomly affect regions, until, ultimately, all lineages will be sorted. 14 

In the case of modern humans, only a fraction of the regions in the genome are expected to show 15 

lineage sorting (Prüfer et al. 2014), and the genome can be partitioned into regions where an archaic 16 

lineage falls either within the variation of modern humans (internal region) or outside of the human 17 

variation (external region) (Figure 1B).  18 

While lineage sorting can occur under neutrality, selection on the modern human branch is expected to 19 

always lead to external regions as long as the selective sweep finished. In cases where the selective 20 

sweep is sufficiently strong, there will not be sufficient time for recombination to break the linkage 21 

with neighboring sites and a large region will reach fixation (extended lineage sorting, ELS, Figure 22 

1C). We note that neither demography nor selection on the archaic lineage affect the lineage sorting 23 

within modern humans and thus the power to detect selective sweeps. 24 
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Figure 1: Illustration of the lineage sorting process. (A) Effects on the genealogy. The process starts 1 

with a random distribution of lineages when the ancestral population splits. The lineage in black is an 2 

out-group to lineages in blue, so that the blue lineages show a closer relationship between populations 3 

than to the black lineage (incomplete lineage sorting). When the blue lineages in the top population 4 

reach fixation (through a selective sweep for instance), any lineage from the other populations will 5 

constitute an out-group, thereby completing the sorting of lineages. (B) Two types of genealogies 6 

illustrating the possible relationships between an archaic lineage and modern human lineages. (C) 7 

Local effects in the genome at different time points. The curves represent the progression of lineage 8 

sorting for two independent regions, evolving under neutrality (black curve) and positive selection 9 

(blue curve), respectively. Longer fixation times are associated with more recombination so that 10 

neutrality produces smaller external regions.  11 

 12 
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Expected Incomplete Lineage Sorting among Humans to Archaics 1 

We used coalescent simulations to determine the incidence and expected length of regions resulting 2 

from incomplete lineage sorting in modern humans. Using a model of human demographic history 3 

(Yang et al. 2014), we estimated the fraction of lineage sorting in modern humans in regards to 4 

Neandertals and Denisovans. In simulations with 370 African chromosomes, and assuming a uniform 5 

recombination rate, about 10% of the archaic genome falls outside of the human variation. The length 6 

of the external regions is expected to be about 0.0016 cM (95%-CI: 0.001-0.0095 cM; e.g. 1-9.5kb for 7 

a recombination rate of 1cM/Mb) with the longest regions in the order of 0.02 cM. In contrast, internal 8 

regions are expected to be 0.012 cM long (95%-CI: 0.0097-0.07 cM). 9 

Minimum Strength of Selection to Produce Detectable Sweep Signals 10 

We investigated the range of selection coefficients that could have led to the fixation of a lineage after 11 

the split with the Archaic hominins, but before the differentiation of genetically modern humans about 12 

100–120 kyr ago (Li and Durbin 2011) by simulating mutations occurring at different times and 13 

evolving with different selection coefficients. While the simulations show that completed selective 14 

sweeps could have occurred with selection coefficients as low as 0.0005 (Figure 2A), the length 15 

distribution of haplotypes reaching fixation is indistinguishable from neutrality for selection 16 

coefficients under 0.001 (Figure 2, B and C). Under neutrality, the average length of external regions 17 

was 0.02 cM and remained below 0.03cM for most simulations with a selection coefficient of 0.001. 18 

In contrast, external regions longer than 0.1cM were observed for selection coefficients above 0.05. 19 

Therefore, detectable signals are expected to be biased towards strong events with a selection 20 

coefficient larger than 0.001. 21 

Figure 2: (A) Fraction of selected alleles reaching fixation (grey) or segregating (orange) at present, 22 

depending on the strength of selection (columns) and the age of the mutation (rows, in kya) in our 23 

simulations. Events for which the selected variant was lost are not shown. (B) Distribution of the 24 

genetic length of external regions simulated under neutrality. (C) Distributions of the genetic length of 25 
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external regions depending on the strength of selection (columns) and age of mutations in kya (rows). 1 

The blue line corresponds to the upper limit for the length of external regions produced under 2 

neutrality from (B). 3 

 4 

Hidden Markov Model to Detect Extended Lineage Sorting 5 

To detect regions of Extended Lineage Sorting, we modeled the changes of local genealogies along the 6 

genome with a hidden Markov model. We distinguish two types of genealogies, internal or external, 7 

depending on whether the archaic lineage falls inside or outside of the human variation respectively 8 

(Figure 3A). The model includes a third state corresponding to extended lineage sorting, and external 9 

regions produced by this state are required to be longer, on average, than those produced by the 10 

external state. The three states are inferred from the state of the archaic allele (ancestral or derived) 11 
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either at a polymorphic position in modern humans or at a position where modern humans carry a 1 

fixed derived variant. In the following, we describe the different statistical properties expected for 2 

each type of genealogy. 3 

We first consider external regions. At modern human polymorphic sites, the archaic genome is 4 

expected to carry the ancestral variant since the derived variant would indicate incomplete lineage 5 

sorting. To account for sequencing errors or misassignment of the ancestral state, we allow a 6 

probability of 0.01 for carrying the derived allele (see Material and Methods). At sites where the 7 

derived allele is fixed, the archaic genome could carry either the derived or ancestral state depending 8 

on whether the fixation event occurred before or after the split of the archaic from the modern human 9 

lineage. 10 

For internal regions, the archaic is expected to share the derived allele at modern human fixed derived 11 

sites, but can carry the ancestral allele in our model to accommodate errors, albeit with low 12 

probability. In contrast, at sites that are polymorphic in modern humans, the probabilities of observing 13 

the ancestral or the derived allele in the archaic genome will depend on the age of the derived variant, 14 

with young variants being less likely to be shared compared to older variants. The frequency of the 15 

derived variant in the modern human population can be used as a proxy for its age and the emission 16 

probabilities in our model take the modern human derived allele frequency into account (see Material 17 

and Methods). 18 

We modeled the transition probabilities between internal and external regions (related to the length of 19 

the regions) by exponential distributions. The extended lineage sorting state has the same chance of 20 

emitting derived alleles as the other external state but is required to have a larger average length. We 21 

used the Baum-Welch algorithm (Durbin et al. 1998), an Expectation-Maximization algorithm, to 22 

estimate the emission probabilities, and estimate the transition probabilities with a likelihood 23 

maximization algorithm. 24 
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Accuracy of Parameter Estimates and Inferred Genealogies 1 

We first investigated the performance of the parameter inference on simulated data under neutral 2 

evolution. We found that the estimated probabilities for encountering ancestral/derived alleles in 3 

external and internal regions fit the simulated parameters well (on average less than ± 0.08 from 4 

simulated under all tested conditions) (Supplemental Figures S1 and S2), while the estimated length of 5 

internal and external regions deviate more from the simulated lengths (around 15% overestimate of the 6 

mean length, Supplemental Figure S3). However, we found that the model exhibits better accuracy in 7 

labelling the correct genealogies with the estimated length parameters compared to the simulated true 8 

values (Supplemental Figure S4). This difference seems to originate from the difficulty in accurately 9 

detecting very short external regions or internal regions with very few informative sites. We note that 10 

detecting selection is not affected by this problem since we are primarily interested in detecting long 11 

external regions.  12 

We do not expect ELS regions to be detected in our neutral simulations and indeed we found that 13 

either the estimated proportion of ELS converged to zero or the maximum likelihood estimate for the 14 

length of ELS and external regions converge to the same value (49% and 51% of simulations 15 

respectively). A likelihood ratio test comparing a model without the ELS state to the full model with 16 

the ELS state also showed no significant improvement with the additional state in almost all neutral 17 

simulations (only one likelihood ratio test out of 100 simulations showed a significant improvement 18 

after Bonferroni correction for multiple testing). 19 

We then evaluated the accuracy of the ELS method to assign the correct genealogy to regions based on 20 

sequences obtained through coalescent simulations with selection (Figure 3, B and C). In these 21 

simulations, the underlying genealogy at each site along the sequences is known and can be compared 22 

to the estimates. To be conservative, we only focus on results with the smallest selection coefficient 23 

(s=0.005) that produces regions long enough to be detectable. In Figure 3B we show the accuracy for 24 

labelling the extended lineage sorting regions dependent on the posterior probability cutoff for the 25 
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ELS state. The results demonstrate that the model has sufficient power to accurately label sites that 1 

experienced selection with a coefficient s>=0.005 and an occurrence of the beneficial mutation as long 2 

as 600,000 years ago.  3 

We also used the simulations of positive selection events (s=0.005) with two different times at which 4 

the beneficial mutation occurred, 300kya and 600kya, to test how often the beneficial simulated 5 

variant fall within a detected ELS region (Supplemental Table S1). To put this rate of true positives 6 

into perspective, we also counted how many ELS regions did not overlap the selected variant (false 7 

positives). A large fraction of selected mutations were detected (87-92%). However, we also found a 8 

substantial fraction of false positive ELS regions (10-11%). When restricting detected ELS regions to 9 

those that are longer than 0.025cM, we find less than 0.1% false positives compared to 65-68% true 10 

positives. Not all simulated regions with a selection coefficient of 0.005 produce ELS regions of this 11 

size, so that the rate of true positives for truly long regions is expected to be higher. For all following 12 

analysis, we used this minimal length cutoff of 0.025 cM. 13 

Figure 3: (A) Graphical representation of the Extended Lineage Sorting Hidden Markov 14 

Model. States are depicted by nodes and transitions by edges. Each state emits an archaic 15 

allele as either derived, D, or ancestral, A, depending on the type of site in the modern human 16 

population (fixed or segregating at a given frequency). States are labelled I for Internal, E for 17 

External and ELS for Extended Lineage Sorting. (B) Receiver Operator Curves for varying 18 

cutoffs on the posterior probability of the ELS state and counting the number of sites in ELS regions 19 

that were correctly labeled. All bases labelled ELS outside of simulated ELS regions are considered 20 

false positives. Sites in ELS regions with a posterior probability below the cutoff are considered false 21 

negatives. (C) Example of the labelling of a simulated ELS region. Horizontal bars indicate true 22 

external (top) and internal (bottom) regions. The posterior probability is shown in red for ELS regions 23 

and in grey for E regions. The region overlapping position 50,000 (red bar) is caused by a simulated 24 

selective sweep. 25 
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 1 

Role of Background selection 2 

Background selection is defined as the constant removal of neutral alleles due to linked deleterious 3 

mutations (Charlesworth et al. 1993). In regions of the genome that undergo background selection, a 4 

fraction of the population will not contribute to subsequent generations, causing a reduced effective 5 

population size. As a consequence, remaining neutral alleles can reach fixation faster than under 6 

neutrality, potentially producing unusually long external regions that could be mistaken as signals of 7 

positive selection. We investigated the effects of background selection by running forward simulations 8 

with parameters that mimic the strength and extent of background selection estimated for the human 9 

genome (Messer 2013). While background selection simulations did produce some long outlier 10 

regions that fall outside the distribution observed in neutral simulations, most regions are still smaller 11 

than regions simulated with positive selection at a conservative selection coefficient of 0.005 (Figure 12 

4A). Indeed, among the 1160 external regions detected in our simulations of background selection 13 
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(s=0.05, Figure 4A) only six were labeled as ELS and only three passed the minimal length filter of 1 

0.025 cM. 2 

Figure 4: Effects of background selection. (A) Comparison of the length of ELS regions in 3 

simulations of different scenarios. For the distribution under background selection, the s 4 

parameter corresponds to the average selection coefficient from the gamma distribution 5 

(shape parameter of 0.2). We assumed that the deleterious mutations are recessive with 6 

dominance coefficient h=0.1. The horizontal blue line corresponds to the length cutoff applied 7 

to the real data. (B) Distribution of B-scores in the candidate sweep regions (red curve) 8 

compared to sets of random regions with matching physical lengths (blue area with dotted 9 

blue lines indicating the 95% confidence intervals over 1000 random sets of regions). The 10 

lowest B-score (i.e. stronger background selection) was chosen when a region overlapped 11 

several B-score annotations.  12 

 13 

Candidate Regions of Positive Selection on the Human Lineage 14 

To identify ancient events of positive selection on the human lineage, we applied the ELS method to 15 

African genomes from the 1000 genomes project (Abecasis et al. 2012). We disregarded non-African 16 
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populations since Neandertal introgression in these populations could mask selective sweeps and lead 1 

to false negatives. A model with ELS fits the data significantly better than a model without the ELS 2 

state for all chromosomes and for both tested recombination maps (p-value < 1e-8, Supplemental 3 

Table S2). 4 

We identified 81 regions of human extended lineage sorting for which both recombination maps 5 

support a genetic length greater than 0.025cM (average length: 0.05 cM). Depending on the 6 

recombination map, the longest overlap between the maps is 0.12 (African-American map) or 0.17 7 

(deCode map) cM long, which is three to four times longer than the longest regions produced under 8 

background selection in our simulations. An additional 233 regions are longer than 0.025cM according 9 

to only one recombination map, with 71% of those additional regions showing support for the ELS 10 

state using both recombination maps. This suggests that the variation in the candidate set mostly stems 11 

from uncertainty about recombination rates. We will refer to the set of 81 regions as the core set 12 

(Supplemental File S1) and the set including the 233 putatively selected regions found with just one 13 

recombination map as the extended set (314 regions, Supplemental File S2). 14 

For completeness, we also ran our model on the X chromosome and identified 12 additional 15 

candidates (43 if we consider candidates found with at least one recombination map), applying a more 16 

stringent length cutoff of 0.035 cM to account for the stronger effects of random drift on this 17 

chromosome (cf. Material and Methods). Interestingly, we also found a significant increase of 18 

posterior probabilities for selection within previously reported regions under potential recurrent 19 

selective sweeps in apes (Dutheil et al. 2015; Nam et al. 2015) (Mann-Whitney one-sided test, p-value 20 

< 2.2e-16, Supplemental Table S3).  21 

The detected selection candidate regions on the autosomes do not show a decrease in B scores 22 

(McVicker et al. 2009), a local measure of background selection strength, compared with  random 23 

regions (Figure 4B; Wilcoxon rank sum test comparing the average B-scores with permuted regions, 24 
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p-value=0.565, or comparing the lowest B-scores in our regions to permuted regions, p-value=0.504). 1 

This suggests that candidate regions are not primarily generated by strong background selection. 2 

We compared our candidate regions to the top candidates of 8 previous scans for selection, including 3 

iHS, Fst, XP-CLR and HKA (Cagan et al. 2016; Pybus et al. 2014). Using the estimated TMRCA 4 

among Africans for each identified region/site, we found that our ELS scan identified significantly 5 

older events than other screens (Figure 5, Mann-Whitney tests, Supplemental Table S4). We found 23 6 

regions from the core set (detected by both recombination maps) overlapping with candidates from 7 

previous scans and 68 for the extended set (detected by at least one recombination map); neither 8 

overlap is more than expected at random (p-values are 0.06 and 0.595 respectively). In contrast, our 9 

candidate regions overlap more often candidate regions from 3P-CLR (Racimo 2016) and the ABC 10 

approach for detecting ancient selection (Racimo et al. 2014) than expected by chance (p-values<0.05; 11 

Supplemental Table S5).  12 

Figure 5: Distributions of estimated ages of the modern human segregating derived variants 13 

with the highest frequency in putatively selected regions or the age of the derived variants at 14 

sites identified by various genome-wide scans. Our candidate regions are labelled as ELS, for 15 

Extended Lineage Sorting, other candidate regions are from (Cagan et al. 2016; Pybus et al. 16 

2014). The color coding indicates the type of signal detected by each method. Ages were 17 

estimated by ARGweaver (Rasmussen et al. 2014). We only report events between 0 and 18 

600kya. 19 
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 1 

Overlap with Genes, Enhancers and Promoters 2 

Since positive selection acts on advantageous phenotypes that are caused by changes to functional 3 

elements in the genome, we would expect that our candidate regions overlap functional elements in the 4 

genome more often than expected. 5 

We first tested this hypothesis by counting the overlap between sweep candidate regions and protein 6 

coding genes (ENSEMBL release 82). We find no statistically significant overlap of ELS regions with 7 

protein coding genes compared to randomly placed regions of the same size (p-value = 0.671 and 8 

0.124, for core and extended set, respectively; Figure 6A). Previous work has identified 96 proteins 9 

that carry human fixed derived non-synonymous changes compared to Neandertal and Denisova, 10 

which constitute a particularly interesting subset of potentially functional changes to genes that may 11 

have been caused by selective sweeps (Prüfer et al. 2014). We found no overlap between these genes 12 

and the core set of sweep candidate regions that were identified by both recombination maps. 13 

However, when considering the extended set of sweep candidate regions, 11 regions overlapped such 14 

genes: ADSL, BBIP1, ENTHD1, HERC5, KATNA1, KIF18A, NCOA6, PRDM10, SCAP, SLITRK1 and 15 
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ZNHIT2. This overlap is significantly larger than expected by chance (only 2 genes are expected on 1 

average; p-value < 10-3). In all instances, the candidate regions contained at least one fixed amino acid 2 

change. Since fixed changes are part of the information used to infer external regions, it stands to 3 

reason that the presence of such a change may bias towards observing an overlap with candidate 4 

regions. However, we note that the overlap with fixed amino acid changes is also significantly larger 5 

than the overlap with other fixed changes (963 of 20347 fixed changes fall within candidate regions 6 

from the extended set; binomial p-value=0.006).  7 

Phenotype may also be influenced by regulatory changes that affect gene expressions. Interestingly, 8 

we found a significant enrichment for regions overlapping enhancers and promoters (p-value<0.001 9 

and p-value=0.002, respectively; see Figure 6A) when considering the extended set of 314 candidate 10 

regions. However, this enrichment was not significant for the smaller core set of candidates. 11 

Figure 6: Gene expression enrichment (A) Enrichment for regulatory elements (enhancers, p-12 

value<0.001, protein-coding genes, p-value=0.124, and promoters, p-value=0.002) in the extended set 13 

of 314 candidate sweep regions. The distributions were obtained by randomly placing candidate 14 

regions in the genome to obtain lists of regions with similar physical length. The red lines represent 15 

the value observed in the real extended set. (B) Enrichment for genes with tissue-specific expression 16 

(significantly highest expression in one tissue compared to others). NS stands for Not Significant at a 17 

FDR (False Discovery Rate) cutoff of 0.05. 18 
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 1 

Gene Ontology and Tissue-Specific Expression  2 

To further investigate the biological function of our regions, we tested for gene ontology enrichment in 3 

genes within the regions defined by the extended set and find enrichement in a number of categories 4 

(Table 1). Two categories were related to amylase-activity. However, upon further investigation, we 5 

found that this enrichment was driven by one region in a cluster of amylase genes on chromosome 1. 6 

Such a clustering for genes of similar function did not affect the other categories, which showed an 7 

enrichment for genes related to membrane and synapse, suggesting that our regions may have been 8 

selected for brain-related phenotypes. 9 

Table 1: Gene ontology enrichment for the extended set of candidate genes. 10 

Root Node ID FWER 

Molecular Function alpha-amylase activity GO:0004556 <0.001 

Cellular Component membrane region GO:0098589 0.004 

Cellular Component plasma membrane region GO:0098590 0.004 

Cellular Component synapse GO:0045202 0.004 

Cellular Component synapse part GO:0044456 0.005 

Molecular Function amylase activity GO:0016160 0.005 
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To further test this enrichment, we assigned genes that overlap our extended dataset to tissues for 1 

which they show the significantly highest expression (see Material and Methods). In agreement with 2 

the Gene Ontology enrichment, we find a marginally significant signal for genes expressed highest in 3 

brain (OR=1.60, p-value=0.020, FDR=0.16). In an attempt to include potential regulatory changes in 4 

the enrichment test, we further assigned genes that may have been affected by a candidate region 5 

upstream or downstream (see Material and Methods). We then found a significant enrichment for 6 

genes expressed in the brain (core set: OR=3.10, p-value<10-4, FDR<10-3; extended set: OR=2.10, p-7 

value<10-6, FDR<10-4, Figure 6B, Supplemental Table S6 and S7) as well as a marginal signal for the 8 

heart in the extended dataset (OR=2.10, p-value=0.01, FDR=0.083, Supplemental Table S6). 9 

We then investigated whether the enrichment for genes expressed in the brain was specific to any 10 

brain tissue across different developmental stages using the Allan Brain Atlas (Hawrylycz et al. 2012; 11 

Miller et al. 2014). We found expression enrichment in several tissues with the strongest signals in the 12 

cerebral cortex in fetus (hypergeometric test, FWER=0.029), the hippocampus in children 13 

(FWER=0.004; marginal in infant, FWER=0.07) as well as the pineal gland in adults (FWER=0.017, 14 

Methods). 15 

Overlap with Neandertal Introgression 16 

Introgression from Neandertals and Denisovans into modern humans occurred approximately 37,000 17 

to 86,000 years ago (Fu et al. 2014, 2015; Sankararaman et al. 2012, 2016). For those advantageous 18 

derived variants that arose on the modern human lineage prior to introgression, we would expect that 19 

selection may have acted against the re-introduction of the ancestral variant through admixture. We 20 

tested whether this selection may have affected the distribution of Neandertal introgressed DNA 21 

around fixed changes in candidate sweep regions. Out of a total of 963 fixed derived variants in 22 

Africans overlapping the extended set of sweep regions, 240 (25%) show the ancestral allele in non-23 

Africans and show evidence for re-introduction by admixture using a map of Neandertal introgression 24 

(Vernot and Akey 2014). This level of Neandertal ancestry is comparable to the genome-wide fraction 25 

of out-of-Africa ancestral alleles at African fixed derived sites (~26%; bootstrap p-value=0.583). We 26 
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also find no significant reduction in frequency of Neandertal ancestry around candidate substitutions 1 

in sweep regions, when comparing one randomly sampled fixed African substitution per region against 2 

random regions matched for size and distance to genes (Supplemental Figure S5 and S6).  3 

If selection against the re-introduction of an ancestral variant were very strong, selection may have 4 

depleted Neandertal ancestry in a large region surrounding the selected allele. Interestingly we find 5 

some of our sweep candidate regions that fall within the longest deserts of both Neandertal and 6 

Denisova ancestry (Table 2) (Vernot et al. 2016). A significantly high number of the core set of 7 

regions fall in these deserts (5/81 regions, p-value=0.024), while the extended set shows no significant 8 

enrichment (9/314 regions, p-value=0.205). 9 

Table 2: Genes from the core set of candidate regions overlapping with long deserts of Neandertal and 10 

Denisovan ancestry. 11 

Chromosome Start End Overlapping Genes Overlapping Regulatory 
Domains 

chr1 104000000 104154236 AMY2B, RNPC3 COL11A1 
chr1 113429666 113560554 SLC16A1 FAM19A3, LRIG2 

chr3 77027850 77033270 ROBO2 - 
chr7 122320038 122379695 RNF133, RNF148, 

CADPS2 

TAS2R16 

chr10 107809941 107866217 - SORCS1, SORCS3 

DISCUSSION 12 

Many genetic changes set modern humans apart from Neandertals and Denisovans but their functions 13 

remain elusive. Most of these changes probably resulted in either no change to the phenotype or to a 14 

selectively neutral change. However, in rare instances selection may have favored changes modifying 15 

the appearance, behavior and abilities of present-day humans. Unfortunately, current methods to 16 

identify selection have limited power to detect such old events of positive selection (Sabeti et al. 17 

2006).  18 

Here, we introduce a hidden Markov model to detect ancient selective sweeps based on a signal of 19 

extended lineage sorting. Using simulations we were able to show that the method can detect older 20 
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events of selection as long as the selected variant was sufficiently advantageous. The power to detect 1 

older events is due to the fact that the method increases in power with the number of mutations that 2 

accumulated after the sweep finished.  We also showed that background selection can cause false 3 

signals and have chosen a minimum length cutoff on candidate regions. While this cutoff reduces the 4 

number of false positives due to background selection, we note that this cutoff is expected to exclude 5 

bona fide events of positive selection, too. 6 

We applied the ELS method to 185 African genomes, the Altai Neandertal genome and the Denisovan 7 

genome, and detected 81 candidate regions of selection when requiring a minimum genetic length 8 

supported by two independent recombination maps. The uncertainty in the recombination maps has a 9 

large effect on our results, as shown by the much larger number of 314 regions identified by either 10 

recombination map. Recombination rates over the genome are known to evolve rapidly (Lesecque et 11 

al. 2014) and of particular concern are recent changes in recombination rates that make some regions 12 

appear larger in genetic length than they were in the past. By comparing the current recombination 13 

rates in our regions to recombination rates in the ancestral population of both chimpanzee and humans 14 

(Munch et al. 2014), we identified some candidate regions that may have increased in recombination 15 

rates (Supplemental Table S8). However, it is currently impossible to date the change in 16 

recombination rates confidently and these candidate sweeps may post-date the change.  17 

A particular strength of our screen for selective sweeps is the ability to detect older events, as 18 

indicated by the estimated power to detect simulated events of positive selection of old age and 19 

moderate strength. This sets the ELS method apart from previous approaches that made use of archaic 20 

genomes, which were geared towards detecting younger events with an age of less than 300,000 years 21 

ago (Racimo 2016; Racimo et al. 2014). Despite this difference, we found significant overlap between 22 

the ELS candidates and the candidates identified by the other approaches, while the overlap with other 23 

types of positive selection scans is smaller. Among our candidates, 71 are novel candidates (283 if 24 

considering the extended set) that were not detected in any of the previous screens. 25 
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While we find no difference in the fraction of genes in selected regions compared to randomly placed 1 

regions, we detect an enrichment for enhancers and promoter regions. This result is in agreement with 2 

the hypothesis that regulatory changes may play an important role in human-specific phenotypes 3 

(Carroll 2003; Enard et al. 2014; King and Wilson 1975). Interestingly, we find an enrichment for 4 

genes expressed highest in brain among our candidate regions, leading us to speculate that among the 5 

positively selected changes that set us apart from Neandertals are some that are related to behavior or 6 

mental capability. While we are unable to substantiate this hypothesis based on our computational 7 

analysis alone, we note that several gene candidates falling within sweep regions play a role in the 8 

function and development of the brain. A particularly interesting observation is the potential selection 9 

on both the ligand SLIT2 and its receptor ROBO2, which reside on chromosome 4 and 3 respectively. 10 

Members of the Roundabout (ROBO) gene family play an important role in guiding developing axons 11 

in the nervous system through interactions with the ligands SLITs. SLITs proteins act as attractive or 12 

repulsive signals for axons expressing different ROBO receptors. ROBO2 has been further associated 13 

with vocabulary growth (St Pourcain et al. 2014), autism (Suda et al. 2011), and dyslexia (Fisher and 14 

DeFries 2002) and is involved in the development of neural circuits related to vocal learning in birds 15 

(Wang et al. 2015). Interestingly, ROBO2 is also in a long desert of both Denisovan and Neandertal 16 

ancestry in non-Africans. 17 

We also identified interesting brain-related candidates on the X chromosome, among them DCX, a 18 

protein controlling neuronal migration by regulating the organization and stability of microtubules 19 

(Gleeson et al. 1999). Mutations in this gene can have consequences for the expansion and folding of 20 

the cerebral cortex, leading to the “double cortex” syndrome in females and “smooth brain” syndrome 21 

in males (Gleeson et al. 1998). 22 

We have presented a new approach to detect ancient selective sweeps based on a signal of extended 23 

lineage sorting. Applying this approach to modern human data revealed that selection may have acted 24 

primarily on regulatory changes and selection may have favored these changes in the brain. With 25 
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population level sequencing of non-human species becoming more readily available we anticipate that 1 

this approach will help to reveal the targets of ancient selection in other species. 2 

MATERIALS AND METHODS 3 

Data 4 

We used 185 unrelated Luhya and Yoruba individuals from the 1000 Genomes Project phase I 5 

(Abecasis et al. 2012), corresponding to 370 sets of autosomes and 279 X chromosomes. From this 6 

dataset, we extracted allele counts at single nucleotide polymorphism (SNP) sites using vcftools 7 

(Danecek et al. 2011). In order to add sites where all Africans differ from the common ancestor with 8 

chimpanzee, we first compiled a list of all sites where six high-coverage African genomes (Mbuti, San 9 

and Yoriban A and B-panel individuals from Prüfer et al. 2014) are identical. A site was regarded 10 

fixed different when the whole genome alignments of at least three out of four ape reference genome 11 

assemblies (chimpanzee (panTro3), bonobo (panPan1.1), gorilla (gorGor3) and orangutan (ponAbe2); 12 

lastz alignments to the human genome GRCh37/hg19 prepared in-house and by the UCSC genome 13 

browser (Speir et al. 2016)) had coverage and were different from the African allele, and when the site 14 

was not marked as polymorphic among the 1000 Genomes Luhya and Yoruba individuals.  15 

Neandertal and Denisova alleles at polymorphic and fixed positions were extracted from published 16 

VCFs and positions were further filtered to sites passing the published map35_100 filter for both the 17 

Denisova and Neandertal genotypes  (Prüfer et al. 2014). Sites where either Neandertal or Denisova 18 

carried a third allele were disregarded.  19 

Over all autosomes, 11 million SNPs passed the filters in addition to 6.6 million African fixed 20 

variants. For the X chromosome, pseudoautosomal regions, defined as chrX: 60,001-2,699,520, chrX: 21 

154,931,044-155,260,560 in hg19 coordinates (http://www.ncbi.nlm.nih.gov/assembly/2758/), were 22 

filtered out and around 315,000 SNPs as well as 248,000 African fixed variants remained for analysis. 23 

Genetic distances between those positions were calculated using the African-American (Hinch et al. 24 

2011) and the DeCode (Kong et al. 2010) recombination maps (available in Build 37 from 25 
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http://www.well.ox.ac.uk/~anjali/). Both maps were chosen since they estimate recombination rates 1 

from events that occurred within a few generations before present. Recombination maps based on 2 

older events (i.e. LD based map) can underestimate recombination rates in regions that underwent 3 

recent selective sweeps, potentially masking true signals.  4 

Changes of recombination rates along the human lineage could also limit our power to detect selected 5 

regions, and we used an ancestral recombination map of the human-chimpanzee ancestor to annotate 6 

top candidate regions (Supplemental Table S9) (Munch et al. 2014). 7 

Hidden Markov model 8 

We would like to estimate for each informative position the probabilities for the three possible 9 

genealogies external (E), internal (I) and extended lineage sorting (ELS) given the observed data. 10 

Formally, and following the notation from Durbin et al. 1998, we calculate 𝑃(𝜋𝑖 = 𝑘|𝑥) where 𝑖 11 

denotes the position, 𝑘 ∈  {𝐸, 𝐼, 𝐸𝐿𝑆} and 𝑥 is the sequence of observations with the ith observation 12 

denoted 𝑥𝑖. With the genetic distance 𝑑 between consecutive sites and 𝑙𝑘, the average genetic length of 13 

a region in state 𝑘, we specify the transition probabilities between identical states as 𝑡𝑘,𝑘 = 𝑒
−

𝑑

𝑙𝑘  . 14 

Transitions from I to the states ELS and E depend on an additional parameter p , the proportion of 15 

transitions from I to ELS, and their probability is given by 𝑡𝐼,𝐸𝐿𝑆 = 𝑝 (1 − 𝑒
−

𝑑

𝑙𝐼 ) and 𝑡𝐼,𝐸 = (1 −16 

𝑝) (1 − 𝑒
−

𝑑

𝑙𝐼). Lastly, transitions from the two external states to internal have the probability 𝑡𝑗,𝐼 =17 

1 −  𝑒
−

𝑑

𝑙𝑗, with 𝑗 ∈ {𝐸, 𝐸𝐿𝑆}. By construction, transitions between E and ELS genealogies are not 18 

allowed: it would not be possible to detect such transitions as those two states have the same statistical 19 

properties. 20 

The inference further requires the probability for observing an ancestral or derived allele in the archaic 21 

at a site i with a derived allele frequency 𝑓𝑖 > 0 in modern humans (𝑂𝑖) given that the true genealogy 22 

is 𝑘 ∈ {𝐼, 𝐸, 𝐸𝐿𝑆}: 𝑒𝑘(𝑂𝑖) = 𝑃(𝑥𝑖 = 𝑂𝑖| 𝜋𝑖 = 𝑘). We assume that ∀𝑜: 𝑒𝐸𝐿𝑆(𝑜) = 𝑒𝐸(𝑜) , i.e. that both 23 
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external states give rise to ancestral and derived alleles in the archaic with equal probabilities given the 1 

same observation. Since external regions are not expected to give rise to derived sites when the 2 

derived allele is segregating in modern humans, the only sources for such an observation can be errors 3 

or independent coinciding identical mutations and we define an error rate for external regions: 𝜖𝐸 =4 

 𝑒𝐸(𝑂𝑖 = 𝑑𝑒𝑟𝑖𝑣𝑒𝑑, 𝑓𝑖 < 1). Similarly fixed derived sites are expected to show the derived allele in the 5 

archaics if the local genealogy is internal and we define an error rate for internal regions: 𝜖𝐼 = 𝑒𝐼(𝑂𝑖 =6 

𝑑𝑒𝑟𝑖𝑣𝑒𝑑, 𝑓𝑖 = 1).  7 

We compute the posterior probability 𝑃(𝜋𝑖 = 𝑘 | 𝑥) that an observation 𝑂𝑖  came from state 𝑘 given 8 

the observed sequence 𝑥 as: 𝑃(𝜋𝑖 = 𝑘 | 𝑥) =  
𝑃(𝑥,𝜋𝑖=𝑘)

𝑃(𝑥)
. 𝑃(𝑥, 𝜋𝑖 = 𝑘) = 𝑓𝑘(𝑖)𝑏𝑘(𝑖) where 𝑓𝑘(𝑖) =9 

𝑃(𝑂1 … 𝑂𝑖 , 𝜋𝑖 = 𝑘) and 𝑏𝑘(𝑖) = 𝑃(𝑂𝑖+1 … 𝑂𝐿| 𝜋𝑖 = 𝑘) are the output of the Forward and Backward 10 

algorithms respectively (Durbin et al. 1998; Rabiner 1989). 𝑃(𝑥) corresponds to the likelihood of the 11 

data given our model and was also calculated from the Forward algorithm. 12 

Parameter estimate 13 

We used the Baum-Welch algorithm to estimate all emission probabilities with the exception of 𝜖𝐸, 14 

the proportion of segregating sites derived in the archaic genome in external regions, due to limited 15 

accuracy in the estimates. We set this last parameter to a value of 0.01, a conservative upper limit on 16 

contamination and sequencing error in the two high-coverage archaic genomes. The Baum-Welch 17 

algorithm was run for a maximum of 40 iterations and the convergence criteria was set to a log-18 

likelhood maxima difference of less than 10−4.  19 

We estimated the remaining parameters (average lengths of regions and the proportion of transitions to 20 

the ELS state) using the derivative free optimization method COBYLA (Powell 1994) as implemented 21 

in the nlopt library (Steven G. Johnson, The NLopt nonlinear-optimization package) to maximize the 22 

log-likelihood values calculated by the Forward algorithm. Convergence was attained in a maximum 23 

of 1000 evaluations and the log-likelihood maximization accuracy was set to 10-4. To test for 24 

convergence to local maxima, we ran the algorithm twice with different starting points and used the 25 
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parameters of the run with the highest likelihood to run the re-estimation algorithm a third time 1 

starting with those parameters. All three runs gave similar results on all chromosomes. 2 

Post-processing 3 

The HMM was executed independently on all chromosomes for both Denisova and Neandertal and 4 

using the African-American and DeCode recombination maps. An external region was defined as a 5 

stretch of high posterior probabilities (p ≥ 0.7) for the extended lineage sorting state that was 6 

uninterrupted by sites with a low probability (p ≤ 0.1). The two cutoffs on the posterior probabilities 7 

were determined by simulating sequences with positive selection (s=0.005, 500kya, see below). Sites 8 

that were simulated external in both Archaics were labeled as 1 and the remaining sites as 0. The 9 

HMM was then run on the simulations. By running a grid-search over possible cutoffs (step-sizes of 10 

0.05 for the two parameters) and labeling the HMM output accordingly, we identified the set of chosen 11 

parameters by minimizing the root mean square error √
∑ (𝑡𝑖−𝑜𝑖)2

𝑖

𝑛
 with n the number of labelled sites, ti 12 

the true label and oi the observed label.  13 

Simulations 14 

We simulated sequences using a model of recent human demography to test the performance of our 15 

HMM under different scenarios of neutral evolution, positive selection or background selection. Each 16 

simulation consisted of one chimpanzee chromosome, one chromosome from each archaic hominin 17 

and 370 human chromosomes, matching the 185 Luhya and Yoruba individuals used in our analysis. 18 

For all simulations in this study, a constant mutation rate of 1.45x10-8 bp-1·generation-1, a constant 19 

recombination rate of 1cM.Mb-1.generation-1 and a generation time of 29 years were assumed. We 20 

used estimates of population sizes from (Yang et al. 2014) and population split estimates from (Prüfer 21 

et al. 2014) as parameters for the simulated demography (Supplemental Information 1 and 2). Neutral 22 

simulations with these parameters using the coalescent simulator scrm (Staab et al. 2014) give a good 23 

match to our observed data when plotting derived allele frequency in modern humans against the 24 

proportion of derived alleles in the outgroup (Supplemental Figure S7).  25 
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We generated a total of 100 loci of 1Mb-long sequences under neutrality to investigate the accuracy of 1 

labeling external and internal regions using our HMM. To evaluate the length of external regions 2 

expected under neutrality for the chromosome X, we simulated 100 loci of 1Mb-long sequences under 3 

the demographic model shown in Supplemental Information 1 with the exception that all effective 4 

population sizes were reduced to 75% of the original value. To evaluate the accuracy of parameter 5 

estimation, we additionally simulated splits of two populations (including an out-group individual) 6 

with a constant population size and different split times ranging from 400ky to 1My (step-size of 7 

50ky). For each condition, we generated 25 sets of 10 Mb each. In an additional set of 100 loci of 8 

1Mb, we introduced random errors by changing the state of the archaic allele with different rates in 9 

order to assess our error estimates. 10 

To assess our power to detect events of positive selection, we explored selection coefficients ranging 11 

from 0.0005 to 0.1 and different times for the occurrence of the selected allele (every 100ky from 12 

200kya to 600kya) using the coalescent simulator msms (Ewing and Hermisson 2010). The selected 13 

mutation was introduced in the middle of the sequence and we assumed an additive effect of the 14 

selected mutation (i.e. the homozygous genotype has twice the advantage stated by the selection 15 

coefficient). We performed 2000 simulations of 100kb-long loci for which all demographic parameters 16 

match our neutral simulations as described above. We used the –SForceKeep switch to drop the 17 

simulation if the selected mutation was lost. As 100kb loci are too short to make reliable parameter 18 

inferences, we concatenated our simulated sequences, intermittently combining them with 1Mb-long 19 

neutral loci from the previous simulations to limit the extent of the sequence affected by positive 20 

selection. 21 

We investigated how background selection affects lineage sorting in and around a conserved region by 22 

performing forward in time simulations using SLiM (Messer 2013). The simulated locus of 500kb 23 

length contained a conserved region resembling an ‘average’ human gene (see pg. 19 of the 24 

documentary accompanying SLiM (Messer 2013)) and covered 100kb (20%) of the simulated locus. 25 

Mutations in the conserved region were assumed to be neutral (25%) or deleterious (75%), with the 26 
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selection coefficients of the deleterious mutations drawn from a gamma distribution with mean s = 1 

−0.05 and shape parameter α = 0.2. The deleterious mutations were assumed to be partially recessive 2 

with dominance coefficient h = 0.1 for a set of 100 simulations. To explore the effect of the strength of 3 

selection on the results, we produced 2 other sets of 40 simulations each by varying the mean of the 4 

gamma distribution (s = -0.001 and -0.1). 5 

Age Comparison with other Selective Scans 6 

To compare our sweep screen with previous scans, we downloaded candidate regions from the 1000G 7 

positive selection database (Pybus et al. 2014). Only candidates with a p-value lower than 0.001 were 8 

considered. We added to this set of regions the top reported regions from a HKA scan (Cagan et al. 9 

2016). Allele age estimates were obtained from ARGweaver (Rasmussen et al. 2014). 10 

Fst, iHS and XP-EHH are site-based statistics which localise sites that may have been selected, 11 

whereas selective scans such as CLR, XP-CLR, Tajima’s D, Fay & Wu’s H and HKA identify 12 

candidate regions. In order to compare the age of the selection events, we assumed that the selected 13 

variant in candidate regions was the site with the highest frequency. We note that this procedure will 14 

underestimate the age of events if the true selected site reached fixation, as often expected for our 15 

method; the comparison is thus conservative.  16 

Annotations 17 

We used the latest Ensembl gene annotation for hg19 (release 82) to identify protein-coding genes 18 

overlapping with our candidate regions. Based on this annotation, a regulatory region was defined as 19 

at least 5kb upstream and 1kb downstream of each gene. The regulatory region was extended until it 20 

reached a size of 1Mb or came within 5kb upstream or 1kb downstream of a neighboring gene. We 21 

additionally used a set of promoters and enhancers mapped by GenoSTAN in 127 cell types and 22 

tissues from the ENCODE and Roadmap Epigenomics projects (Zacher et al. 2016). 23 

We used B-scores (McVicker et al. 2009) in hg19 coordinates constructed with UCSC’s liftover tool 24 

to evaluate the extent of background selection in our candidate regions. We also compared our 25 
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candidate regions on the X chromosome with  regions previously suggested to have experienced 1 

recurrent selective sweeps in apes (Dutheil et al. 2015; Nam et al. 2015). And, finally, we examined 2 

patterns of introgression in our candidate regions with two maps of Neandertal ancestry 3 

(Sankararaman et al. 2014; Vernot et al. 2014) and overlapped our regions with long deserts of 4 

Neandertal and Denisova ancestry from another recent study (Vernot et al. 2016). 5 

To statistically test the overlap of our regions with these annotations, we permuted regions of similar 6 

physical sizes in the regions of the genome that passed our quality filters. Quality filtered regions that 7 

were smaller than the longest gap present in our candidate ELS regions were regarded as sufficiently 8 

short to not prohibit the placement of regions. 9 

Gene expression enrichments 10 

We defined genes that show tissue-specific expression levels using the Illumina BodyMap 2.0 RNA-11 

seq data (Derrien et al. 2012), which contains expression data from 16 human tissues. We computed 12 

differential expression for all genes between a given tissue and all other tissues pooled using the 13 

DESeq package (Anders and Huber 2010) and genes were defined to be expressed in a tissue-specific 14 

manner when their expression levels were significantly higher (P-value < 0.05) in a given tissue 15 

compared to all other tissues. We tested for enrichment of candidate genes in the 16 sets of tissue-16 

specifically expressed genes comparing to genes that were located outside of candidate regions using 17 

Fisher’s exact test. P-values were corrected for multiple testing using the Benjamini-Hochberg 18 

procedure (Benjamini and Hochberg 1995).  19 

We used the ABAenrichment package (Grote et al. 2016) to pinpoint regions in the brain where 20 

expression of our candidate genes is enriched. As background genes, we only used genes that could 21 

have been potentially identified by the sweep screen according to our genomic filters. We used the 22 

default parameters and the hypergeometric test. 23 
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