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By analyzing multi-tissue gene expression and genome-wide genetic variation data 60 
in samples from a vervet monkey pedigree, we generated a transcriptome resource 61 
and produced the first catalogue of expression quantitative trait loci (eQTLs) in a 62 
non-human primate model. This catalogue contains more genome-wide significant 63 
eQTLs, per sample, than comparable human resources, and reveals sex and age-64 
related expression patterns. Findings include a master regulatory locus that likely 65 
plays a role in immune function, and a locus regulating hippocampal long non-66 
coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. 67 
This resource will facilitate genetic investigation of quantitative traits, including 68 
brain and behavioral phenotypes relevant to neuropsychiatric disorders.  69 

  70 
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Efforts to understand how genetic variation contributes to common diseases and 71 
quantitative traits increasingly focus on the regulation of gene expression. Most loci 72 
identified through genome-wide association studies (GWAS) lie in non-coding 73 
portions of the genome1, and are enriched for eQTLs; SNPs that regulate transcript 74 
levels, primarily those of nearby genes2. This observation suggests that eQTL 75 
catalogs may signpost specific variants responsible for GWAS signals3.  76 

The majority of known human eQTLs have been identified in lymphocytes or 77 
lymphoblastoid cell lines obtained from adults4. As normal development and 78 
function in complex organisms depends on tightly regulated gene expression at 79 
specific developmental stages in specific cell types, most existing datasets 80 
describing human transcriptome characterization likely miss data relevant to 81 
understanding disease5. This lack is particularly striking for brain and behavior 82 
disorders, given the inaccessibility of the most relevant tissues in living individuals 83 
and the enormous modifications that occur in these tissues across development6. 84 

The Genotype Tissue Expression (GTEx) project, using samples obtained from 85 
several hundred post-mortem donors7, has begun to remedy the lack of human data 86 
connecting genotypic variation and multi-tissue transcriptome variation. GTEx 87 
provides an eQTL catalog, from multiple tissues, that is the most extensive such 88 
resource available7. However limitations of GTEx, inherent to human research, 89 
motivate the generation and investigation of equivalent resources from model 90 
organisms. Advantages of model systems include: (1) the feasibility of controlling 91 
for inter-individual heterogeneity in environmental exposures and of minimizing 92 
the interval between death and tissue preservation; (2) the practicability of 93 
obtaining sizable numbers of multi-tissue samples across a full range of 94 
developmental stages; and (3) the opportunity to systematically assess phenotypes 95 
of interest in individuals carrying particular eQTL variants. Because of the 96 
similarities between humans and non-human primate (NHP) species in behavior, 97 
neuroanatomy, and brain circuitry8,9,10, NHP eQTLs may be particularly valuable for 98 
our understanding of neuropsychiatric disorders.  99 

We report here, in 58 Caribbean vervets (Chlorocebus aethiops sabaeus) from the 100 
Vervet Research Colony (VRC) extended pedigree, the first NHP resource combining 101 
genome-wide genotypes11, multi-tissue expression data across post-natal 102 
development, and quantitative phenotypes relevant to human brain and behavior, in 103 
a setting in which key environmental exposures have been carefully controlled 104 
(Online Methods). The Caribbean vervets are an Old World monkey population that 105 
has expanded dramatically from a founding bottleneck occurring with the 106 
introduction of West African vervets to the Caribbean in the 17th Century10; it has 107 
experienced a drastic reduction in genetic variation and, like recently expanded 108 
human population isolates, displays enrichment for numerous potentially 109 
deleterious alleles (Ramensky, unpublished data).  110 

Through necropsies performed under uniform conditions, we obtained both brain 111 
and peripheral tissue samples from the 58 vervets included in this study, whose 112 
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genomes were also sequenced13. Using these resources we have delineated cross-113 
tissue expression profiles for seven of these tissues, across multiple developmental 114 
stages from birth to adulthood. We identified numerous local and distant eQTLs in 115 
each tissue, including a master regulatory locus that, via IFIT1B, a gene with a 116 
hypothesized role in immune function, modulates expression in blood cells of 117 
multiple genes on several chromosomes. Additionally, we demonstrated the 118 
relevance of vervet tissue-specific eQTLs to higher-order traits, using hippocampus-119 
specific local eQTLs to identify a set of lncRNAs associated with hippocampal 120 
volume, a phenotype related to neuropsychiatric disorders12.  121 

Results 122 

We investigated two datasets. Dataset 1, described previously13, consists of gene 123 
expression levels obtained by hybridizing all available whole blood-derived RNA 124 
samples from the VRC pedigree (N=347) to Illumina HumanRef-8 v2 microarrays, 125 
which we used because no vervet arrays are available. After filtering out probe 126 
sequences not represented in the vervet genome14 or containing common vervet 127 
SNPs11, we estimated expression levels at 6,018 probes, corresponding to 5,586 128 
unique genes (Supplementary Data 1, Supplementary Table 1). Dataset 2 consists of 129 
RNA sequencing (RNA-Seq) reads from seven tissues collected under identical 130 
conditions from each of 58 sequenced VRC monkeys (representing 10 131 
developmental stages, from birth through adulthood, Online Methods). Five of these 132 
tissues play prominent roles in cognitive and behavioral phenotypes 15-17: 133 
Brodmann area 46 [BA46], a cytoarchitectonically defined region which 134 
encompasses most of the dorsolateral prefrontal cortex (DLPFC); hippocampus; 135 
caudate nucleus, a component of the dorsal striatum; pituitary gland; and adrenal 136 
gland. The other two tissues (cultured skin fibroblasts and whole blood) are 137 
relatively accessible, and thus widely used in studies aimed at identifying 138 
biomarkers. We assessed expression of an initial set of 33,994 annotated genes. 139 
Before analyzing Dataset 2, we minimized spurious signals by excluding genes 140 
expressed in fewer than 10% of individuals or at a level lower than one read per 141 
tissue. The gene numbers after this exclusion step are listed by tissue and biotype in 142 
Supplementary Table 2. A principal components analysis (PCA) of Dataset 2 showed 143 
that, overall, expression levels clustered more by tissue than by individual 144 
(Supplementary Fig. 1). Most genes were expressed in multiple tissues; 137 genes 145 
demonstrated strong expression in only a single tissue (Supplementary Table 3).  146 

Multi-tissue Expression Data: Variation By Age, Sex, Cellular Composition, and 147 
Technical Factors  148 

The availability, in Dataset 2, of multiple samples from both sexes at each age point 149 
enabled us to examine developmental trajectories and sex differences in gene 150 
expression for each tissue. To maximize our ability to observe patterns, we 151 
conducted PCA on the expression of the 1,000 most variable genes, separately by 152 
tissue (Fig. 1). Comparison of the ranks of expression of the orthologs of these genes 153 
in matched tissues in humans and rhesus macaques yielded Spearman correlations 154 
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of between ~0.5-0.8 and ~0.3-0.4, respectively (Supplementary Material and 155 
Supplementary Tables 4-6).  156 

Among the seven vervet tissues, the patterns in BA46 and caudate display the 157 
clearest association with development; PC1 (20.1% of BA46 variability and 18.5% of 158 
caudate variability) distinguishes the vervets in a nearly linear manner, with 159 
increasing age. All tissues except fibroblast show a sharp demarcation in expression 160 
pattern between males and females; this differentiation is observed on PC1 for 161 
hippocampus and pituitary (19.3% and 16.2% of variability, respectively), on PC2 162 
for BA46, caudate and blood (15.5%, 17.4%, and 3.2% of variability, respectively), 163 
and on PC3 for adrenal (8.2% of variability).  164 

As an initial, descriptive exploration of the biology underlying these tissue-related 165 
expression patterns, we identified, in the brain and endocrine tissue, the genes in 166 
the top and bottom 10% of the distribution of PC loadings on PCs 1, 2, and 3 (200 167 
genes total per tissue, per PC). We evaluated the known functions of these genes, 168 
which contribute most to the variance explained by the PCs in relation to sex (BA46, 169 
caudate, hippocampus, pituitary, and adrenal, see Supplementary Table 7, 170 
Supplementary Material) or age (BA46 and caudate, Supplementary Table 8).  171 

Age-related expression patterns in BA46 and caudate highlight numerous genes that 172 
are essential for nervous system development or that are implicated in human 173 
diseases. For example, three thrombospondin genes controlling synaptogenesis 174 
show a clear developmental pattern in BA46; THBS1 and THBS2 are upregulated in 175 
neonates, while THBS4, a gene upregulated during human brain evolution18, shows 176 
increasing expression across development (Fig. 2). Supplementary Fig. 2 illustrates 177 
striking age-related expression patterns in BA46 and caudate observed for other 178 
notable genes (see Supplementary Material). Supplementary Fig. 3 displays 179 
developmental expression profiles for the orthologs of these genes in human and 180 
rhesus macaque brain tissues that are most equivalent to vervet BA46 and caudate 181 
(Online Methods); the overall patterns are roughly similar to, but less pronounced 182 
than those we observed in vervet. Given the PCA results showing an age-related 183 
component to gene expression variation that differs by tissues, we conducted a 184 
differential expression analysis, using age as both a continuous and a categorical 185 
predictor in two different linear models. Nearly 8,000 genes across all seven tissues 186 
show significant differential expression by age for either analysis, mostly with very 187 
small effects (Supplementary Table 9) 188 

We considered that cell-type heterogeneity could influence the interpretation of our 189 
expression and eQTL results, particularly for blood and the three brain tissues. To 190 
evaluate such heterogeneity we conducted a transcriptional deconvolution analysis 191 
of these tissues, using published data19,20 (Supplementary Fig. 4-7). We estimated 192 
the diversity of cell types per sample in each tissue by calculating entropy and 193 
observed that blood has substantially higher diversity of cell types than do the three 194 
brain tissues (Supplementary Fig. 8).  195 
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We also examined the relationship between the proportion of specific cell types and 196 
developmental stage. For BA46 and hippocampus, the proportion of 197 
Oligodendrocyte Precursor cells decreases as age increases, which is consistent with 198 
data from a prior study in human21, while the proportion of this cell type in caudate 199 
increases with increasing age. Similarly, the proportion of neurons increases as age 200 
increases in BA46 and hippocampus, and decreases with increasing age in caudate. 201 
(Supplementary Fig. 4-6). We found no correlation between estimated cell 202 
proportions and major PC axes in any tissue. 203 

We evaluated the potential impact of technical variables on transcriptomic profiles 204 
and PC patterns (Supplementary Material). RNA-Seq sample batch demonstrated an 205 
association with expression profiles in pituitary and adrenal (PC2) and caudate and 206 
pituitary (PC3); we therefore included batch as a covariate in eQTL analysis. 207 

Identification of eQTLs 208 

Whole genome sequencing (WGS) of 721 VRC monkeys has previously provided the 209 
first NHP genome-wide, high-resolution genetic variant set11: 497,163 WGS-based 210 
SNPs that tag common variation genome-wide. Using these SNPs we conducted 211 
separate GWAS of Datasets 1 and 2 to identify local (probes/genes < 1 Mb from an 212 
associated SNP) and distant (all other probe/gene-SNP associations) eQTLs in each 213 
dataset. Covariates in all eQTL analyses included age, sex, and batch.  214 

We used SOLAR22 to estimate heritability of probe expression in Dataset 1, 215 
identifying significant heritability for 3,417 probes (out of the 6,018 filtered probes 216 
that we evaluated, corresponding to 5,586 unique genes) at a false discovery rate 217 
(FDR) threshold < 0.01 (Supplementary Data 1, 2). In a GWAS of each heritable 218 
probe, we identified 461 local and 215 distant probes to have one or more eQTLs 219 
(significant at Bonferroni-corrected thresholds of 4.8 x 10-8 for local and 1.5 x 10-11 220 
for distant eQTLs, Table 1, Supplementary Data 3). Approximately 35% of probes 221 
with a significant eQTL (173/498) displayed at least one local and one distant 222 
significant association.  223 

In Dataset 2 we observed, for each of the five solid tissues, between 361-596 genes 224 
with local eQTLs and 30-80 genes with distant eQTLs, and for blood and fibroblasts, 225 
60 and 239 genes with local eQTLs and 4 and 43 genes with distant eQTLs, 226 
respectively, all at Bonferroni corrected significance thresholds (6.5 x 10-10 [local] 227 
and 5.3 x 10-13 [distant]) (Table 1, Supplementary Data 4). The smaller number of 228 
eQTLs observed in blood likely reflects heteroegentiy in the proportions of different 229 
cell types in this tissue as identified in deconvolution analyses (Supplementary Fig. 230 
1, 8); we have no obvious explanation for the relative paucity of eQTLs in 231 
fibroblasts, aside from the observation that fewer genes were analyzed in 232 
fibroblasts than in tissues with cellular heterogeneity. At Bonferroni significance 233 
levels, we had 80% power to detect a significant local eQTL accounting for 11% of 234 
variability in expression in Dataset 1, and accounting for 55% of variability in 235 
expression in Dataset 2. For about 70% of Bonferroni-significant eQTLs (local and 236 
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distant and in all tissues), the SNPs demonstrating association had minor allele 237 
frequency > 30% (Supplementary Table 10). 238 

We considered the possibility that genotypic variation within the vervet pedigree 239 
could confound the effects of age in generating the strong loadings on PCs 240 
associated with age in BA46 and caudate. Among the 200 genes with such strong 241 
loadings, 26 of 200 genes in BA46 showed evidence of an eQTL, and for only one 242 
gene (LOC103219658) could genotype partially account for the association with age.  243 
Similarly, 37 genes showed evidence of eQTLs in caudate, even when using the more 244 
liberal FDR controlling procedure. For these 37 genes, we modeled expression as a 245 
function of both age and genotype, using the most significant eQTLs, and found that 246 
genotype could not account for the association with age (data not shown).  247 

We evaluated the enrichment/depletion of cis-eQTLs in genes with age effects, using 248 
genes without age effects as reference (Supplementary Table 9). We observe that 249 
the genes with age related pattern are actually depleted for eQTLs (Supplementary 250 
Table 11), in accord with prior studies predicting that purifying selection results in 251 
such depletion in genes that play important roles at particular developmental 252 
timepoints23. 253 

Comparison to Human eQTLs 254 

While the eQTLs summarized in Table 1 exceeded Bonferroni thresholds, we also 255 
applied FDR-controlling procedures, to expand the list of local eQTLs for more 256 
exploratory investigations, and to make our results comparable to those of GTEx 257 
(Table 2). We controlled the FDR for eGenes at 0.05 (Online Methods), accounting 258 
for multiple testing using a hierarchical error controlling procedure developed for 259 
multi-tissue eQTL analysis24. We applied this same procedure to GTEx eQTLs to 260 
facilitate the comparison between the datasets. 261 

In comparison with GTEx V6, despite having a smaller sample size we identify more 262 
local eQTLs (at FDR thresholds applied to both datasets, see Online Methods) for the 263 
five solid tissues that were evaluated in both resources (Table 2). We attribute the 264 
larger number of local eQTLs identified in the vervet sample, relative to GTEx, to the 265 
more homogenous environment of colonied NHPs compared to humans, and to the 266 
more uniform process of collecting tissues in this study. We also evaluated the 267 
degree to which specific vervet and GTEx eQTLs overlap. All genes with a genome-268 
wide significant vervet eQTL (at FDR <0.05) also display a human eQTL in the same 269 
tissue (at p< 0.05), given that the gene has a known human ortholog and was tested 270 
in GTEx. Using instead, GTEx’s defined significance threshold for orthologous genes 271 
(FDR < 0.05), an average of 19% of vervet eQTLs display such a human eQTL (Table 272 
2). Restricting the comparison to Bonferroni-significant local eQTLs, an average of 273 
23% of vervet eQTLs also have such an eQTL in the same tissue in GTEx 274 
(Supplementary Table 12). 275 
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We also compared our local eQTL results for brain tissues to the Open Access 276 
version of human eQTLs from DFPLC, available from CommonMind Consortium 277 
(CMC)25. More than 87% of vervet brain local eQTL genes with human orthologs in 278 
the CMC dataset have a local eQTL at FDR<0.05 in that dataset (Supplementary 279 
Material and Supplementary Table 13).  280 

eGene Sharing Among Tissues 281 

We assessed sharing of locally regulated eGenes (genes with a significant local eQTL, 282 
see Online Methods) across tissues (Supplementary Fig. 9). We differentiated 283 
between tissue-specific and shared eGenes. We observed that the tissue-specific 284 
eGenes in all tested tissues except blood are more common than eGenes shared 285 
among tissues. The largest number of shared local eGenes was observed between 286 
adrenal and pituitary (300), organs inter-regulated in the same neuroendocrine 287 
pathway, and then among the three brain regions (239); 229 eGenes are shared 288 
across all tissues but blood and 82 eGenes are shared across all seven tissues. 289 

Genomic Distribution of eQTLs 290 

Regulatory variants occur most frequently in functional genomic regions26, and we 291 
find that vervet gene regions encompassing exons, introns and adjacent flanks show 292 
a clear enrichment for local eQTLs (Supplementary Fig. 10, Supplementary Table 293 
14). Conversely, intergenic regions show a significant deficit of local eQTLs 294 
(Supplementary Fig. 10, Supplementary Table 14). As in other primates27, vervet 295 
eQTLs are enriched around gene boundaries (transcription start site [TSS] and 296 
transcription end site [TES]) (Supplementary Fig. 11).  297 

We used previously published chromatin immunoprecipitation with DNA 298 
sequencing (ChIP-Seq) data28,33  to evaluate eQTL distribution in H3K4me3 enriched 299 
regions (promoters) and H3K27ac enriched regions (which include acetylated 300 
promoters and enhancers). As H3K4me3 marks are typically conserved across 301 
tissues we analyzed them using vervet liver data. As enhancer marks are more 302 
tissue specific29-31  we analyzed H3K27ac marks in both vervet liver and available 303 
brain data (caudate and prefrontal cortex) from rhesus macaque28. The promoter 304 
regions show stronger enrichment for vervet local eQTLs than either genic or 305 
H3K27ac-enriched regions (Supplementary Fig. 10, Supplementary Table 14).  306 

Validation of Distant eQTLs: a Master Regulatory Locus on Vervet 307 
Chromosome 9  308 

Our Dataset 1 is well-powered for discovery of distant eQTLs. Among the 215 genes 309 
for which we observed association at genome-wide significance thresholds to one or 310 
more distant eQTLs, a locus on CAE9 in which 76 SNPs across a ~500 Kb region 311 
displayed genome-wide significant local eQTL signals, stood out for showing 312 
association to multiple unlinked genes. For each of these 76 SNPs we identified  313 
genome-wide significant distant eQTLs at between five and 14 genes, on different 314 
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vervet chromosomes, for a total of 2,127 distant SNP-gene associations (Fig. 3, 315 
Supplementary Table 15). 316 

Because we obtained Dataset 2 using a different platform from Dataset 1, and from a 317 
mostly non-overlapping sample (only 6 vervets were in both datasets), we 318 
evaluated it for replication of the CAE 9 distant eQTLs, recognizing the limited 319 
power of this much smaller dataset. Considering the percent of variance accounted 320 
for by the distant eQTLs in Dataset 1 (Supplementary Table 15), we have 82% 321 
power to identify eQTLs in Dataset 2, with 58 animals, when the SNP accounts for 322 
35% or more of expression variance, using a significance threshold (p<2.35 x 10-5) 323 
that accounts for multiple testing of the 76 SNPs to multiple genes (2,127 tests). 324 
Two genes, ST7 (31 SNPs) and YPEL4 (22 SNPs) replicate association at this 325 
threshold, with estimated regression coefficients for these 53 SNP-gene associations 326 
being similar in magnitude and direction in the two datasets (Supplementary Table 327 
16). We confirmed eight distant associations (RANBP10, LCMT1, ST7, TMEM57, 328 
YPEL4, NARF, STXBP1, DEDD2) across the two datasets, with at least one SNP 329 
demonstrating association at a marginal p<0.05 (Supplementary Table 15).   330 

These results suggest that the CAE 9 eQTL represents a master regulatory locus 331 
(MRL). This genomic segment contains a cluster of acid lipase genes and interferon-332 
inducible genes, including IFIT1B (Interferon-Induced Protein With 333 
Tetratricopeptide Repeats 1B), a gene recently implicated in viral resistance in 334 
vervets, but not humans32. The same SNPs contributing to the MRL are also local 335 
eQTLs for IFIT1B, at genome-wide significant levels, however GTEx reports no 336 
significant local eQTLs for IFIT1B in human blood. 337 

Expression of IFIT1B correlates strongly with expression of the distant genes 338 
regulated by this eQTL (Supplementary Material, Supplementary Table 17). We 339 
conducted mediation analyses in Dataset 1 for a SNP (CAE9_82694171) that, at 340 
Bonferroni corrected significance thresholds, is both a distant eQTL for all 14 genes 341 
and a local eQTL for IFIT1B (Supplementary Table 18). This SNP accounts for 19-342 
37% of the variance in expression level of the 14 genes not located on CAE 9. When 343 
we conditioned these analyses on expression of IFIT1B, the magnitude of these 344 
distant associations diminished substantially, the variance accounted for by this SNP 345 
dropping to 10% or less for all 14 genes. These results indicate that IFIT1B, under 346 
direct control of a local eQTL on CAE 9, likely influences expression of 14 other 347 
genes spread across the genome. As suggested by studies in human populations, 348 
such phenomenon of mediation by local eQTLs of distant eQTLs provides a further 349 
validation of the latter loci33.  350 

Identification of Hippocampus-Specific eQTLs in a Region Linked to 351 
Hippocampal Volume 352 

In an initial investigation of the impact of vervet tissue-specific eQTLs on higher 353 
order traits we focused on MRI-based hippocampal volume, a highly heritable trait 354 
in the VRC (h2 =0.95)34, for which the strongest QTL signal genome wide (peak LOD 355 
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score 3.42) lies in an ~8.3 Mb segment of CAE 18. Power simulations in SOLAR 356 
indicate that, in the VRC pedigree, quantitative trait data for 347 vervets (the 357 
number with hippocampal volume data) provide 80% power to detect a locus with 358 
LOD=2 when locus-specific heritability is > 45%. In the center of the broad region 359 
around this linkage peak, two hippocampus-specific local eQTLs were Bonferroni-360 
significant at a genome-wide threshold (Fig. 4).  361 

The genome-wide significant eQTLs SNPs reside in, and regulate expression of, two 362 
lncRNAs located 168 Kb apart: LOC103222765 (nine associated local eQTL SNPs) 363 
and LOC103222769 (three associated local eQTL SNPs). An additional lncRNA gene, 364 
LOC103222771, situated two bp from LOC103222769, shows hippocampal specific 365 
association to six SNPs at a significance level (p < 10-9) just above the genome-wide 366 
Bonferroni-corrected threshold. While all three genes display hippocampus-specific 367 
eQTLs, the genes themselves are expressed across all seven tissues that we 368 
analyzed, and show no significant sex or age specific differences in expression 369 
patterns (data not shown). The incomplete database annotation of lncRNAs35 limits 370 
comparative analyses of such genes among primates; a BLAST search found a 371 
homolog for LOC103222765 in the white-tufted-ear marmoset and one for 372 
LOC103222771, in the crab-eating macaque. While LOC103222765 overlaps a coding 373 
gene (RAB31), LOC103222769 and LOC103222771 do not overlap exons of any 374 
coding genes and therefore are more specifically classified as long intergenic non-375 
coding RNA (lncRNA) genes36.  376 

Given the physical proximity of these lncRNAs, we used multivariate conditional 377 
analyses to evaluate whether the regulation of these genes depends on a single or 378 
multiple independent eQTLs. For each lncRNA we designated a “lead SNP” (the SNP 379 
most significantly associated to its expression, Supplementary Table 19). For both 380 
LOC103222769 and LOC103222771, modeling expression as a function of both lead 381 
SNPs results in diminished significance levels for both SNPs (Supplementary Table 382 
19), suggesting that one eQTL regulates both genes. Modeling LOC103222765 383 
expression as a function of its lead SNP and the lead SNP of the other two genes, the 384 
lead SNP for LOC103222765 remains significant, while the other two lead SNPs are 385 
non-significant, confirming the “distinctness” of this signal (Supplementary Table 386 
19). This analysis suggests two eQTLs in this region; one associated with 387 
LOC103222765, and the second associated with LOC103222769 and LOC103222771.  388 

We observed a positive correlation between hippocampal expression of 389 
LOC103222765, LOC103222769 and LOC103222771, and hippocampal volume as 390 
assessed by MRI, in six vervets for which both MRI and RNA-Seq data were 391 
available. To extend this observation, we assessed, using an independent platform, 392 
quantitative real-time PCR (qRT-PCR), LOC103222765, LOC103222769 and 393 
LOC103222771 hippocampal expression in these six vervets and 10 additional 394 
vervets for which both hippocampal RNA and MRI data were available. In this 395 
expanded sample set, we identified significant positive correlations (Fig. 5) between 396 
LOC103222765, LOC103222769 and LOC103222771 expression and hippocampal 397 
volume. While the above data suggest that genetic variation in this region regulates 398 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/092874doi: bioRxiv preprint 

https://doi.org/10.1101/092874


12 
 

these lncRNAs and also has a strong impact on the MRI phenotype, colocalization 399 
analysis37  does not support the hypothesis that a single variant accounts for both 400 
the genome-wide linkage (MRI) and GWAS (eQTL) findings (8.2% posterior 401 
probability).  402 

Discussion  403 

The data presented here provide the first NHP resource for investigating the genetic 404 
contribution to inter-individual variation in gene expression across multiple tissues 405 
and development. This resource, in a species closely related to humans, 406 
complements GTEx, which has become an essential tool for pinpointing genes, and 407 
even variants, underlying human GWAS findings38,39.  408 

Several features differentiate this vervet resource from GTEx, reflecting aspects of 409 
the study design that are infeasible in human research. Notably, the age-based 410 
sampling design enabled us to delineate tissue-specific expression profiles in 411 
relation to developmental trajectories. Delineating these trajectories provides 412 
insights into biological processes that may be associated with the expression 413 
profiles of particular genes. For example, several genes that contribute to synapse 414 
formation and postnatal myelination of the central nervous system40-43 contribute to 415 
the near linear age-related pattern observed in BA46 and caudate and, and suggest 416 
that the observed expression pattern reflects this process. Conversely, the lack of 417 
such a developmentally specific pattern in the hippocampus may relate to the 418 
generation of functional neurons in this tissue that occurs throughout the lifespan, 419 
underpinning its functions in learning and memory44,45.  420 

Three factors increased the signal-to-noise ratio of vervet eQTL analyses, relative to 421 
human studies: (i) the homogeneity of the vervet sample with respect to 422 
environmental exposures; (ii) the greater control over necropsy conditions; and (iii) 423 
the restricted genetic background of the recently bottlenecked Caribbean vervet 424 
population. These factors enabled us to identify 385 genes with one or more 425 
genome wide significant distant eQTLs, including the MRL at IFIT1B.  426 

The function of IFIT1B, one of a cluster of five IFIT genes, is poorly understood. It is 427 
a paralog of IFIT1, which is involved in innate antiviral immunity in mammals, 428 
broadly46, and in regulation of gut microbiota in mouse47. In some mammalian 429 
species IFIT1B contributes to discrimination between “self versus non-self” 430 
transcripts based on the lack of 2’ O-methylation on mRNA 5’ caps in viruses, a so-431 
called cap0 structure32. Vervet IFIT1B recognizes and inhibits replication of viruses 432 
with cap0-mRNAs, while human IFIT1B lacks this function32. This functional 433 
divergence of IFIT1B antiviral activity may reflect the divergence of the human 434 
lineage from that of other primates, in exposures and adaptations to particular 435 
pathogens, including the arboviruses which are responsible for diseases such as 436 
encephalitis, dengue, and yellow fever.  437 
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Our results suggest that investigation of genes regulated by IFIT1B in vervet might 438 
reveal mechanisms for its role in defense against viral pathogens. While these genes 439 
do not act together in any annotated pathway, recent evidence points to immune 440 
functions for the products of several of them. For example, RANBP10, a 441 
transcriptional coactivator, promotes viral gene expression and replication in HSV-1 442 
infected cells48. SUGT1, a cell cycle regulator, is the homolog of SGT1, which plays an 443 
essential role in innate immunity in plants as well as mammals49,50, while TMEM57 444 
shows genome-wide significant association in human to blood markers of 445 
inflammation51.  446 

Just as GTEx data are helping refine signals from human GWAS of complex traits5, 447 
we used vervet hippocampal eQTLs to identify a set of lncRNAs as candidate genes 448 
for a higher order phenotype, hippocampal volume. The genetic and environmental 449 
homogeneity of the relatively small vervet study sample likely facilitated these 450 
findings, and supports the extension of multi-tissue vervet eQTL studies as a 451 
strategy for identifying loci with a large impact on higher-order phenotypes, 452 
generally. As the tissues examined to date are only a fraction of those available from 453 
the same set of vervets, it will be possible to extend the investigations reported here 454 
to an additional 60 brain regions and 20 peripheral tissues.  455 

While expanding expression resources in other NHP species will create additional 456 
opportunities to identify eQTLs that are informative for various biomedical 457 
investigations9,52, the Caribbean vervet is unique among NHPs in having abundant 458 
natural populations available for such investigations, with an essentially identical 459 
genetic background to the samples studied here10,13. For example, the lead SNPs for 460 
the eQTLs contributing to hippocampal volume in the VRC each occur at a relatively 461 
high frequency in these island populations (Supplementary Material). We therefore 462 
anticipate that most findings presented here can be followed up through well-463 
powered association studies.  464 

Online Methods 465 

Study Sample 466 

The vervet monkeys used in this study are part of the Vervet Research Colony 467 
(VRC), established by UCLA during the 1970’s and 1980’s from 57 founder animals 468 
captured from wild populations in St. Kitts and Nevis10. In 2008 the VRC was moved 469 
to Wake Forest School of Medicine; the MRI phenotypes included in this study were 470 
collected when the colony was in California (see Supplementary Material for more 471 
details). All of the animals in this study were captive-born, mother-reared and 472 
socially-housed in large, indoor-outdoor enclosures, in matrilineal groups that 473 
approximated the social structure of wild vervet populations. They had a uniform 474 
exposure to light and darkness and were fed a standardized diet. 475 

Gene Expression Phenotypes 476 
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Two data sets of gene expression measurements were collected. Dataset 1 consisted 477 
of microarray (Illumina HumanRef-8 v2) assays of RNA obtained from whole blood 478 
in 347 vervets, while Dataset 2 consisted of RNA-Seq data from 60 animals, with 479 
seven tissues assayed in each animal. Six vervets were in both Datasets; no 480 
randomization was applied in allocating animals to Datasets and investigators were 481 
not blinded to the allocation of animals to Datasets. 482 

Dataset 1: Microarrays From Whole Blood  483 

The microarray data set has been described in Jasinska et al.13 and is available at 484 
NCBI at the BioProject PRJNA115831. Details on RNA extraction, cDNA synthesis, 485 
and initial data processing are presented in Supplementary Material. To obtain a set 486 
of probes usable in vervet from the Illumina HumanRef-8 v2 microarray (originally 487 
developed for assaying gene expression in humans), we used the vervet reference 488 
sequence to select probes that contain no vervet indels and demonstrate < five 489 
mismatches, with a maximum of one mismatch in the 16 nt central portion of the 490 
probe. To prevent bias in the measurement of expression due to SNP interference 491 
with hybridization, we excluded probes targeting sequences with common SNPs 492 
identified in the VRC pedigree. A total of 11,001 probes passed these filters 493 
(Supplementary Table 1). Illumina provides a “detection p-value” for each subject 494 
and probe; p<0.05 indicates significant detection of a given probe in a specific 495 
individual. We retained for analysis 6,018 probes that were detected with detection 496 
p-values of p<0.05 in at least 5% of vervets, and tested for association 3,417 probes 497 
that were significantly heritable. Expression data were inverse-normal transformed 498 
prior to analysis. 499 

Dataset 2: RNA-Seq Data from Seven Tissues  500 

Tissues harvested during experimental necropsies were obtained from 60 vervets 501 
representing 10 developmental stages, ranging from neonates (7 days), through 502 
infants (90 days and one year), young juveniles (1.25, 1.5, 1.75, 2 years old), 503 
subadults (2.5, 3 years old) to adults (4+ years old), with six vervets (3 male and 3 504 
female) from each developmental time point. The IACUC protocol number covering 505 
the necropsies was A09-512. This necropsy protocol was approved by the IACUC at 506 
Wake Forest School of Medicine. Two vervets (a 1.75 year old female and a 7 day old 507 
male) for which we did not have WGS data were excluded from the eQTL study. 508 
Altogether, in the eQTL study we included 11 vervets below one year old, 23 vervets 509 
between one to two years old, and 24 vervets between two and four years old, 29 510 
males and 29 females. Details regarding tissue collection and RNA collection 511 
procedures are in Supplementary Material.  512 

We conducted RNA-Seq for all vervets in seven tissues: three brain tissues (BA46, 513 
caudate and hippocampus), two neuroendocrine tissues (adrenal and pituitary) and 514 
two peripheral tissues serving as a source of biomarkers (blood and fibroblasts). 515 
From purified RNA, we created two types of cDNA libraries, poly-A RNA (fibroblasts, 516 
adrenal and pituitary) and total RNA (blood, caudate, hippocampus, BA46) cDNA 517 
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libraries (Supplementary Table 20, Supplementary Material). For one vervet the 518 
RNA-Seq data indicated that the caudate and BA46 samples had been mixed-up, and 519 
for this vervet we therefore did not include the data from these two tissues in any 520 
analyses. Details on library preparation are in Supplementary Material. The RNA-521 
Seq read data were made available through NCBI as BioProject PRJNA219198. 522 

RNA-Seq reads were aligned to the vervet genomic assembly Chlorocebus_sabeus 523 
1.1 http://www.ncbi.nlm.nih.gov/assembly/GCF_000409795.2 by the ultrafast 524 
STAR aligner53 using our standardized pipeline. STAR was run using default 525 
parameters, which allow a maximum of ten mismatches. Gene expression was 526 
measured as total read counts per gene. For paired end experiments, total fragments 527 
are considered. Fragment counts that aligned to known exonic regions based on the 528 
NCBI Chlorocebus sabaeus Annotation Release 100 were quantified using the HTSeq 529 
package54. The counts for all 33,994 genes were then combined, and lowly 530 
expressed genes, defined as genes with a mean in raw counts of < 1 across all 531 
samples, as well as genes detected in fewer than 10% of individuals were filtered 532 
out. The calcNormFactors function in the edgeR package55 was applied to normalize 533 
counts. Finally, an inverse-normal transform was applied to counts per million prior 534 
to analysis. 535 

Deconvolution analysis was perfomed in vervet brain and blood tissue using 536 
available reference for these tissues. For the brain tissues, gene signatures were 537 
obtained from Zhang et al.20, for blood, cell type specific markers were taken from 538 
datasets built into the CellMix package19. Cell type composition for each tissue was 539 
evaluated using the CellMix R package. 540 

Datasets for comparative expression analysis between species 541 

We performed comparative analysis of gene expression between vervet brain 542 
regions and age-matched human and rhesus macaque samples. We compared 543 
overall expression profiles between these species and inspected developmental 544 
expression patterns of selected genes. 545 

We paired age categories between vervet and two primate species with 546 
developmental gene expression data available from the Allen Brain Atlas (ABA). 547 
Gene expression in human from BrainSpan dataset was assessed using RNA-Seq, 548 
and gene expression in rhesus macaque from the NIH Blueprint Non-Human 549 
Primate (NHP) Atlas was assessed using microarray6,52  (Supplementary Tables 21, 550 
22). We matched the three vervet brain tissues to the most closely corresponding 551 
available tissues in the two other species (Supplementary Table 23).  552 

Overall mean levels of expression were compared between species using a rank 553 
correlation. For the comparison with human, two independent analyses were 554 
performed using two different datasets: GTEx data and ABA developmental data. 555 
The rhesus macaque comparison was limited to a single developmental dataset of 556 
male animals, also obtained from the ABA. Analyses involving the ABA 557 
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developmental datasets were limited to the three brain regions most closely related 558 
to the brain tissues analyzed in vervets (Supplementary Table 23). For the GTEx 559 
comparison, vervet tissues were matched to the five corresponding tissues 560 
available: adrenal, blood, caudate, hippocampus and pituitary. As the ABA rhesus 561 
macaque dataset included only males, we limited comparisons to male vervets.  562 

For each of the three dataset comparisons, vervet raw counts were first converted to 563 
RPKM values using the edgeR R package55. GTEx and human ABA counts obtained 564 
were already normalized to RPKM values; rhesus macaque counts had been 565 
normalized using an RMA approach52. Mean expression was then calculated by 566 
tissue for vervet and comparison datasets. For comparisons to ABA developmental 567 
datasests, mean expression was calculated by tissue type and time point, according 568 
to matched age groups (Supplementary Tables 21, 22). Vervet gene names were 569 
converted to their corresponding human orthologs to ensure gene names matched 570 
between vervet and comparison datasets; Genes with no human ortholog were 571 
excluded. In addition, genes not present in both vervet and the comparison species 572 
dataset were also removed. Variances were then calculated for each gene across the 573 
five or three different vervet tissues, for GTEx and ABA comparisons, respectively. 574 
The top 1,000 genes with the highest variances were then selected for rank-rank 575 
correlation testing. The base R function cor.test was used to perform correlation 576 
testing.  577 

Real-time quantitative PCR (qPCR) 578 

Real-time quantitative PCR was performed in two steps. First, reverse transcription 579 
(RT) was performed using the SuperScript® III First-Strand Synthesis System (Life 580 
Technologies) following the manufacturer’s protocol for priming with random 581 
hexamers. Custom primers and hydrolysis probes were designed for each lncRNA 582 
and three candidate reference genes (Hypoxanthine phosphoribosyltransferase 1, 583 
HPRT1; Glyceraldehyde 3-phosphate dehydrogenase, GAPDH; and Beta-2-584 
Microglobulin, B2M) using the Custom TaqMan® Assays Design Tool (Applied 585 
Biosystems, Supplementary Table 24). Expression analyses were conducted on the 586 
LightCyclerTM 480 platform (Roche) using the iTaq® Universal Probes Supermix 587 
(Bio-Rad). All qPCR reactions were carried out in triplicate and reactions containing 588 
water instead of cDNA were included as negative controls. cDNA samples were 589 
diluted 1:5 with water, and a five-point standard curve of four-fold dilutions was 590 
prepared for each gene using pooled cDNA as the template. Stability of each 591 
candidate reference gene was evaluated using the NormFinder software (v5) in R56. 592 
Quantification was performed using the relative standard curve method, with the 593 
geometric mean of the most stably expressed reference genes (GAPDH and HPRT1) 594 
used as an endogenous control for normalization of the interpolated lncRNA 595 
quantities. Finally, relative expression levels were generated by dividing the 596 
normalized lncRNA quantities by the corresponding quantity in one experimental 597 
sample which served as a calibrator. Refer to Supplementary Material for additional 598 
experimental details and complete primer and probe sequences information. 599 
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Hippocampal Volume Phenotype 600 

Estimates of hippocampal volume were measured in 347 vervets >2 years of age 601 
using MRI. Details of the image acquisition and processing protocol were described 602 
previously34 and are outlined in Supplementary Material. Prior to genetic analysis, 603 
hippocampal volume was log transformed, regressed on sex and age using SOLAR22, 604 
and residuals used as the final phenotype. 605 

Genotype Data  606 

Genotype data were generated through whole genome sequencing of 725 members 607 
of the VRC11. Genotypes from 721 VRC vervets that passed all QC procedures can be 608 
directly queried via the EVA at EBI (www.ebi.ac.uk/eva) using the PRJEB7923 609 
accession number. Two genotype data sets were used in the current study11: (1) The 610 
Association Mapping SNP Set consists of 497,163 SNPs on the 29 vervet autosomes. 611 
In this set of ~500K SNPs, there were an average of 198 SNPs per Mb of vervet 612 
sequence, and the largest gap size between adjacent SNPs was 5 Kb. (2) The Linkage 613 
Mapping SNP Set consists of 147,967 markers on the 29 vervet autosomes. In this 614 
set of ~148K SNPs, there were an average of 58.2 SNPs per Mb of vervet sequence, 615 
and the average gap size between adjacent SNPs was 17.5 Kb. 616 

The software package Loki57, which implements Markov Chain Monte Carlo 617 
methods, was used to estimate the multipoint identical by decent (MIBD) allele-618 
sharing among all vervet family members from the genotype data. As long stretches 619 
of IBD were evident among these very closely related animals, a reduced marker 620 
density was sufficient to evaluate MIBD at 1cM intervals; we used a 9,752 subset of 621 
the 148K SNP data set. The correspondence between physical and genetic positions 622 
in the vervet was facilitated by a vervet linkage map58, constructed using a set of 623 
360 STR markers. Both the physical and genetic position of these markers was 624 
known, and genetic locations of SNPs were found by interpolation. 625 

Statistical Analysis 626 

Principal Components Analysis (PCA) 627 

In Dataset 2, the top 1,000 most variable genes were selected for each tissue, and 628 
PCA applied to log2-transformed counts per million, using the singular value 629 
decomposition and the prcomp function in R (https://www.R-project.org, version 630 
3.2.3). Expression was mean-centered prior to analysis. We examined the genes in 631 
the top and bottom 10% of the distribution of PC loadings on PCs 1, 2, or 3 (200 632 
genes total per tissue, per PC) where these loadings are taken from the eigen-633 
decomposition of the expression matrix. The gene loadings represent the amount 634 
that gene contributes to the PC value for that sample on the axis in question. 635 

Mapping of Gene Expression and Hippocampal Volume Phenotypes 636 
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We expected greater power for association analyses of gene expression traits 637 
compared to more complex phenotypes. Therefore we applied genome wide 638 
association analyses to these traits. For the higher-order phenotype examined 639 
(hippocampal volume) we anticipated having power only to detect loci with a much 640 
stronger effect, and therefore utilized linkage analysis for this trait.  641 

Heritability and Multipoint Linkage Analysis We estimated familial aggregation 642 
(heritability) of traits using SOLAR, which implements a variance components 643 
method to estimate the proportion of phenotypic variance due to additive genetic 644 
factors (narrow sense heritability). This model partitions total variability into 645 
polygenic and environmental components. The environmental component is unique 646 
to individuals while the polygenic component is shared between individuals as a 647 
function of their pedigree kinship. If the variance in phenotype Y due to the 648 
polygenic component is designated as σg2 and the environmental component as σe2, 649 
then in this model Var(Y) = σg2 + σe2, and the covariance between phenotype values 650 
of individuals i and j is Cov(Yi,Yj)=2 φij σg2, where φij is the kinship between 651 
individuals i and j. 652 

Whole genome multipoint linkage analysis of hippocampal volume was also 653 
implemented in SOLAR, which uses a variance components approach to partition 654 
the genetic covariance between relatives for each trait into locus-specific heritability  655 
and residual genetic heritability. Linkage analysis was performed at 1cM intervals 656 
using the likelihood ratio statistic.  657 

Association Analysis Association between specific SNPs and gene expression 658 
phenotypes was evaluated using EMMAX59. EMMAX employs a linear mixed model 659 
approach, where SNP genotype is a fixed effect, and correlation of phenotype values 660 
among individuals is accounted for using an identity by state (IBS) approximation to 661 
kinship. Association analyses used the full set of 497,163 SNP markers, and for both 662 
Dataset 1 and Dataset 2 included age (where in Dataset 2 age, in days, corresponds 663 
to developmental stage), sex, and sample batch as covariates. It is common to try to 664 
account for unmeasured factors influencing global gene expression by including 665 
probabilistic estimation of expression residuals (PEER) factors as covariates60. We 666 
considered the controlled nature of the study environment and experimental design 667 
to preclude the need for this adjustment.  668 

Colocalization of eQTL and Hippocampal Volume QTL 669 

We evaluated the posterior probability that the hippocampal volume QTL and the 670 
hippocampus local eQTLs on CAE 18 share a single, common causal variant using 671 
COLOC37. The same variants were tested in both analyses, and only six vervets 672 
overlapped between the two data sets.  673 

Multiple Testing Considerations in eQTL 674 

We used a Bonferroni correction to account for multiple testing across genes, SNPs, 675 
and tissues as our primary error-controlling strategy for the identification of eQTLs. 676 
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Thresholds for Dataset 2 were more stringent, as more genes were tested than in 677 
Dataset 1 (~25K vs. ~3K) and multiple tissues were analyzed in Dataset 2. Dataset 1 678 
was analyzed association to 3,417 heritable probes. The local eQTL significance 679 
threshold (4.8 x 10-8) was corrected for the testing of SNPs within 1 Mb of 3,417 680 
probes, and the distant eQTL significance threshold (1.5 x 10-11) accounted for 681 
genome-wide testing of 3,417 probes. Dataset 2 significance thresholds were 682 
constructed in a similar fashion, but also accounted for testing of 191,263 gene-683 
tissue combinations (the number of genes tested per tissue is in Table 1). The RNA- 684 
Seq local eQTL threshold was 6.5 x 10-10, and the distant eQTL threshold was 5.3 x 685 
10-13.  686 

To identify multi-tissue eGenes, the tissues in which they are active, and the 687 
associated SNPs in each of these tissues, we used TreeBH, a hierarchical approach 688 
testing proposed in Bogomolov et al.24  which extends the error-controlling 689 
procedure characterized in Peterson et al.61 to the multi-tissue eQTL setting. To 690 
apply this method, the hypotheses are grouped into a tree with three levels: genes in 691 
level 1, tissues in level 2, and SNPs in level 3. Testing proceeds sequentially starting 692 
from the top of the tree in a manner that accounts for each previous selection step. 693 
This method allows control of the FDR of local eGenes (defined as those genes 694 
whose expression is regulated in at least one tissue by some genetic variants located 695 
within 1 Mb of the gene) and of the expected average false discovery proportion of 696 
the tissues in which we claim this regulation is present across the discovered 697 
eGenes. P-values are defined by building up from the bottom of the tree. Specifically, 698 
to obtain a p-value for the null hypothesis of no local regulation for a given gene in a 699 
given tissue (corresponding to a hypothesis in level 2 of the tree), we applied Simes’ 700 
combination rule62 to the p-values obtained via EMMAX for the hypotheses of no 701 
association between the expression of the gene in the tissue and each of the SNPs in 702 
the local neighborhood (corresponding to the hypotheses in level 3 of the tree). To 703 
obtain a p-value for the null hypothesis of no local regulation for a given gene in any 704 
of the tissues under study (corresponding to a hypothesis in level 1 of the tree), we 705 
applied Simes’ combination rule to the gene x tissues p-values just described. We 706 
then tested the global null hypotheses of no local regulation in any tissue for all the 707 
genes in our study, applying the Benjamini Hochberg procedure63 to control the FDR 708 
at the 0.05 level. For those genes for which we were able to reject the null 709 
hypotheses of no local regulation, we examined the tissue-specific p-values, 710 
applying the Benjamini Bogomolov procedure that allows the identification of 711 
significant findings controlling for the initial selection64. Finally, the individual SNPs 712 
responsible for regulation of the gene in each tissue were identified, again using a 713 
selection-adjusted threshold as described in Bogomolov et al.24 An R package 714 
implementing this procedure is available 715 
at http://www.bioinformatics.org/treeqtl/.65 716 

We compared the number of eGenes identified in each tissue using the above 717 
procedure with the results of GTEx (Analysis Release V6; dbGaP Accession 718 
phs000424.v6.p1). We downloaded all eQTL association results for tissues in 719 
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common with our study, and applied this same hierarchical procedure to the GTEx 720 
results to identify eGenes. 721 

Association between local eQTLs and genomic features 722 

We estimated the possible enrichment of eQTLs in exons, introns, flanking regions, 723 
intergenic regions, and regulatory regions using logistic regression in a generalized 724 
linear mixed model (GLMM), using the GMMAT software66. We categorized each SNP 725 
in two binary dimensions (local eQTL and located in or near a given region). A SNP 726 
was considered a local eQTL if it was  associated (at Bonferroni significance 727 
thresholds) to gene expression of a gene within 1 Mb, in any tissue, in either Dataset. 728 
Local eQTL status was the outcome variable, and a separate GLMM logistic 729 
regression performed for each region. A matrix of r2 values among all SNPs was 730 
included as a random effect to account for lack of independence among SNPs.  731 
GLMMs are computationally very demanding and the full set of 497,163 SNPs could 732 
not analyzed in one model. We LD pruned the SNP data, agnostic to eQTL status and 733 
region, and used 18,464 genome-wide SNPs based on LD pruning the entire set of 734 
497,163 SNPs at r2<0.6 in 14 unrelated individuals. This SNP set included 1,202 735 
local eQTLs. 736 

Enrichment of local eQTLs in near TSS/TES 737 

Our examination of potential enrichment of local eQTLs near TSS/TES gene regions 738 
was purely descriptive and involved no hypothesis testing. We restricted our 739 
summary to the 27,196 genes that were <0.5 Mb in size, and the 426,403 SNPs that 740 
were within 200kb of the TSS/TES of these genes (or in between the TSS/TES). In 741 
this set of 426,403 SNPs, 17,595 were local eQTLs to one (or more) of the 27,196 742 
genes (at Bonferroni significance levels), in one (or more) tissues in either Dataset, 743 
and were within 200 Kb of the TSS/TES of the gene(s) to which they were 744 
associated. For each gene, we created 10 Kb distance bins on either side of the 745 
TSS/TES, and tallied the proportion of SNPs in the bin that were local eQTLs for the 746 
gene. As the distance between TSS and TES varied by gene, we binned distances in 747 
this area by deciles of the total distance.  748 

Data Availability 749 

The RNA-Seq datasets generated in the current study are available in the NCBI Gene 750 
Expression Ominibus repository, https://www.ncbi.nlm.nih.gov/gds/?term=PRJNA219198. 751 
The other data sets, microarray and genotype, analysed during the current study are 752 
available in the NCBI Gene Expression Ominibus 753 
repository, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15301 (microarray 754 
data) and the EMBL-EBI, https://www.ebi.ac.uk/ena/data/view/ERP008917 (genotype 755 
data). 756 
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 921 
Figure Legends 922 

Fig. 1. PCA of 1,000 genes with the most variable expression levels. Analysis was 923 
performed separately by tissue; sample size was 60 animals for adrenal, blood, 924 
fibroblasts, and pituitary and was 59 for BA46, caudate, and hippocampus. Numbers 925 
in the labels for x and y axes indicate the proportion of total variance accounted for 926 
by that PC. 927 

Fig. 2. Boxplot of log counts per million (CPM) expression in samples of BA46 from 928 
58 animals vs. timepoint, for three genes with a strong relationship between 929 
expression pattern and age. The inter-quartile range defines the height of the box, 930 
and whiskers extend to 1.5x the inter-quartile range. Outliers are indicated as 931 
individual points. In each box, the median is represented by the horizontal black bar. 932 

Fig. 3. Master regulatory locus on vervet chromosome CAE 9. Upper panel: Ensembl 933 
view of the CAE 9 region. Lower panel: The minimum –log10(p-value) for each SNP 934 
in association analyses vs. expression in 347 animals of microarray probes on 935 
different chromosomes. The symbols are color-coded to represent the number of 936 
probes significantly associated to each SNP: 1-2 probes (black), 3-4 probes (yellow), 937 
5-6 probes (blue), 7-10 probes (green), 11-14 probes (red). Symbols indicate the p-938 
value from analysis of expression in Dataset 2 (RNA-Seq). Cross: p<2.35e-05; X: 939 
p<0.001; circle: p>0.001. The large red X at the top of the plot is CAE9_82694171. 940 

Fig. 4. Hippocampal volume QTL and local hippocampal volume eQTLs in RNA-Seq 941 
analysis. Top panel: purple dotted line is the multipoint LOD score for hippocampal 942 
volume (measured in 347 animals). Circles represent evidence for association of 943 
SNPs to hippocampal expression in 58 animals of three genes: LOC103222765 (red), 944 
LOC103222769 (blue) and LOC103222771 (green). Solid circles indicate genome-945 
wide significant associations. The region between the black vertical lines is blown 946 
up in the middle and bottom panels. The horizontal dotted line represents the 947 
genome-wide significant threshold for local eQTLs. Middle panel: SNPs with –948 
log10(p-value)>8 for association to expression in hippocampus, color codes are as 949 
in the top panel. Bottom panel: Genes sited between 68.7 and 69 Mb (the eQTL 950 
region). Color codes are as in the top panel. 951 

Fig. 5. Correlation in 16 animals of hippocampal volume (MRI) with hippocampal 952 
expression of LOC103222765 (left), LOC103222769 (middle) and LOC103222771 953 
(right). The expression data are from qRT-PCR. Quantification was performed using 954 
the relative standard curve method, with the geometric mean of the reference gene 955 
HPRT1 used as an endogenous control for normalization of the interpolated lncRNA 956 
quantities. Hippocampal volume measurements are residuals from a regression on 957 
covariates of age and sex. “r” is the Pearson correlation coefficient, and the p-value 958 
tests the null hypothesis that r=0. 959 
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Supplementary Information is linked to the online version of the paper 960 
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Table 1. Gene expression data sets. The number of probes/genes with at least one significant local 
and distant eQTL (at Bonferroni corrected thresholds) are presented.  We have 80% power to 
detect distant eQTLs accounting for 15% of the variability in expression in Dataset 1 and 66% of 
the variability in Dataset 2 

Tissue 
 

Probes/genes 
analyzeda 

Local eQTLb 

 
Distant eQTLc 

 
%Distant eQTL 

on same chr 
Dataset 1: 
Microarray 

    

Blood 3,417 461 215 80.8% 
Dataset 2:  
RNA-seq 

    

Adrenal 25,187 555 80 54.5% 
BA46 27,530 307 30 81.8% 
Blood 33,776 60 4 100% 
Caudate 28,249 441 47 69.0% 
Fibroblast 22,328 239 43 33.2% 
Hippocampus 26,957 361 45 70.6% 
Pituitary Gland 27,236 596 80 77.5% 

amicroarray dataset (Dataset 1) with an initial set of 22,184 probes on Illumina HumanRef-8 v2 (6,018 probes 
passed filters described in Supplementary Table 1; 3,417 were heritable); RNA-seq (Dataset 2) with an initial set of 
33,994 genes annotated in vervet 
bLocal eQTL are eQTL that are within 1 Mb of the gene. Bonferroni threshold for Dataset 1: 4.8 x 10-8; Bonferroni 
threshold for Dataset 2: 6.5 x 10-10 

cDistant eQTL are more than 1 Mb away from the gene, and may be on the same or a different chromosome. 
Bonferroni threshold for Dataset 1: 1.5 x 10-11; Bonferroni threshold for Dataset 2: 5.3 x 10-13 
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Table 2 Comparison of specific genes with local eQTL in Vervet Dataset 2 to GTEx.  The number of genes with at least one 
significant local eQTL in Vervet (at FDR thresholds) are presented.   

Tissue Vervet 
number of 
individuals 

# Local 
eQTL 

Vervet 
Genesa 

GTEx 
number of 
individuals 

GTEx 
number of 

eGenesa 

# Vervet 
Genes with 

Human 
Ortholog 

# Orthologous 
Genes Tested 

in GTExb 

% Tested 
Genes 
p<0.05 

% Tested 
Genes 

p <.05/# 
tested Genesc 

% Tested 
Genes 

significant 
genome-wide 

in GTExd 

Adrenal 58 2932 126 2915 1828 1674 100% 28.7% 18.2% 
Blood 58 574 338 5438 264 229 100% 70.7% 38.9% 
Caudate 57 3140 100 2396 1737 1548 100% 24.6% 14.1% 
Hippocampus 58 2437 81 1405 1436 1296 100% 18.4% 9.2% 
Pituitary 58 3395 87 2222 1863 1743 100% 20.7% 13.0% 
aThe number of eGenes found in the multi-tissue hierarchical FDR procedure applied to vervet Dataset 2 and to GTEx. 
bVervet genes with a human ortholog that were not tested in GTEx were filtered by their QC procedures 
cThe threshold for significance corrected for the number of genes compared between Vervet and GTEx (column 7). 
dGenes were declared significant by GTEx at an FDR of 0.05. 
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