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By analyzing multi-tissue gene expression and genome-wide genetic variation data 
in samples from a vervet monkey pedigree, we generated a transcriptome resource 
and produced the first catalogue of expression quantitative trait loci (eQTLs) in a 
non-human primate model. This catalogue contains more genome-wide significant 
eQTLs, per sample, than comparable human resources, and reveals sex and age-
related expression patterns. Findings include a master regulatory locus that likely 
plays a role in immune function, and a locus regulating hippocampal long non-
coding RNAs (lncRNAs) whose expression correlates with hippocampal volume. 
This resource will facilitate genetic investigation of quantitative traits, including 
brain and behavioral phenotypes relevant to neuropsychiatric disorders.  
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Efforts to understand how genetic variation contributes to common diseases and 
quantitative traits increasingly focus on the regulation of gene expression. This 
focus reflects the finding that most genetic loci demonstrating significant 
association to such phenotypes in genome wide association studies (GWAS) lie in 
non-coding portions of the genome1, and are enriched for eQTLs; SNPs that regulate 
transcript levels, primarily those of nearby genes2. This observation has led to the 
idea that detailed genome wide eQTL catalogs may provide signposts for the specific 
variants responsible for GWAS signals3.  

The majority of known human eQTLs have been identified through gene expression 
studies in lymphocytes or lymphoblastoid cell lines obtained from adults4. As 
normal development and function in complex organisms depends on tightly 
regulated gene expression at specific developmental stages in specific cell types, 
most existing datasets describing human transcriptome characterization likely miss 
the data most relevant to understanding disease5. This lack is particularly striking 
for brain and behavior disorders, given the inaccessibility of the most relevant 
tissues in living individuals and the enormous modifications that occur in these 
tissues across development6. 

To remedy the lack of human data connecting genotypic variation and multi-tissue 
transcriptome variation, the United States National Institutes of Health launched the 
Genotype Tissue Expression (GTEx) project, using samples obtained from several 
hundred post-mortem donors7. GTEx has already provided an eQTL catalog, from 
multiple tissues, that is the most extensive such resource available7. However 
several limitations of GTEx, inherent to human research, motivate the generation 
and investigation of equivalent resources from model organisms. The advantages of 
model systems for genetic investigation of the regulation of gene expression include: 
(1) the feasibility of controlling for inter-individual heterogeneity in environmental 
exposures and of minimizing the interval between death and tissue preservation; 
(2) the practicability of obtaining sizable numbers of multi-tissue samples across a 
full range of developmental stages; and (3) the opportunity to systematically assess 
phenotypes of interest in the individuals from whom tissue samples are obtained. 
Non-human primate (NHP) species offer an additional advantage8; their brain 
circuitry, behavior, immune systems, and metabolism more closely resemble those 
of humans than do those of rodents and other model systems9.  

We report here, in a sample of Caribbean vervets (Chlorocebus aethiops sabaeus) 
from the Vervet Research Colony (VRC) extended pedigree, the first NHP resource 
combining genome-wide genotypes, multi-tissue expression data across post-natal 
development, and quantitative phenotypes relevant to human brain and behavior 
disorders. This Old World monkey population has expanded dramatically from a 
founding bottleneck occurring with the introduction of West African vervets to 
three Caribbean islands in the 17th Century9; it has experienced a drastic reduction 
in genetic variation and, like recently expanded human population isolates, displays 
an enrichment for potentially deleterious alleles at loci throughout the genome 
(Ramensky, unpublished data). Through necropsies performed under uniform 
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conditions, we obtained tissue samples from a series of vervets in which key 
environmental exposures, such as diet, had been carefully controlled. Using these 
resources we have delineated cross-tissue expression profiles across multiple 
developmental stages from birth to adulthood. We identified numerous local and 
distant eQTLs in each tissue, including a master regulatory locus that, via IFIT1B, a 
gene with a hypothesized role in immunie function, modulates expression in blood 
cells of multiple genes on several chromosomes. Additionally, we demonstrated the 
relevance of vervet tissue-specific eQTLs to higher-order traits, using hippocampus-
specific local eQTLs to identify a set of lncRNAs as candidate regulators of 
hippocampal volume, a phenotype related to neuropsychiatric disorders10.  

Results 

We investigated two datasets. Dataset 1, as described previously11, consists of gene 
expression levels in 347 vervets obtained by hybridizing whole blood-derived RNA 
to microarrays designed for human sequences (Illumina HumanRef-8 v2). After 
filtering out probe sequences that were not represented in the vervet genome12 or 
that contained common vervet SNPs13, we estimated expression levels at 6,018 
probes (Supplementary Data 1, Supplementary Table 1). Dataset 2 consists of RNA 
sequencing (RNA-Seq) reads from six tissues collected under identical conditions 
from each of 58 sequenced VRC monkeys (representing 10 developmental stages, 
from birth through adulthood, see Methods). Four of these tissues (caudate nucleus, 
hippocampus, pituitary, and adrenal) are components of a neuroendocrine circuit 
that plays a prominent role in brain and behavior14,15 but is underrepresented in 
human studies, because of the inaccessibility of the constituent tissues. The other 
two tissues (cultured skin fibroblasts and whole blood) are readily accessible in 
humans, and thus have been more widely used in functional genomics studies. 
Before analyzing Dataset 2, we minimized spurious signals by excluding genes 
expressed in fewer than 10% of individuals or at a level lower than one read per 
tissue. Table 1 presents the number of genes analyzed for each of the six tissues. 
While most genes were expressed in multiple tissues, 147 genes demonstrated 
strong expression in only a single tissue (Supplementary Table 2). A principal 
components analysis (PCA) of Dataset 2 indicates that most tissues cluster 
separately from each other (Supplementary Fig. 1). 

Multi-tissue expression data: variation by age and sex  

The availability, in Dataset 2, of multiple samples from both sexes at each 
age/developmental time point enabled us to examine developmental trajectories 
and sex differences in gene expression for each tissue. To do so we conducted PCA 
on the expression of the 1,000 most variable genes, separately by tissue (Fig. 1). 
Among the six tissues, the pattern in the caudate nucleus displays the clearest 
association with development; PC1 distinguishes the monkeys in a nearly linear 
manner, with increasing age. All tissues except fibroblast show a sharp demarcation 
in expression pattern between males and females; this differentiation is observed on 
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PC1 for hippocampus and pituitary, on PC2 for caudate and blood, and on PC3 for 
adrenal.  

As an initial exploration of the biology underlying the tissue-related expression 
patterns in the brain-neuroendocrine circuit examined here, we identified in each 
tissue, the genes in the top and bottom 10% of the distribution of PC loadings on PCs 
1, 2, or 3 (200 genes total per tissue, per PC), in relation to age (caudate) or sex 
(caudate, hippocampus, pituitary, and adrenal) (Supplementary Tables 3, 4). The list 
of genes with age-related expression patterns in the caudate includes several genes 
that are both essential for nervous system development and implicated in the 
causation of human disorders. Figure 2 shows expression patterns by age-point of 
some notable examples; ASPM, which regulates neurogenesis in the cerebral cortex 
and, when mutated, results in primary microcephaly16; NDRG1, which (i) stimulates 
cellular differentiation and proliferation, (ii) is commonly involved in somatic 
rearrangements leading to medulloblastoma (the most prevalent pediatric brain 
tumor17), and (iii) when mutated, causes a progressive peripheral neuropathy, 
Charcot-Marie-Tooth (CMT) disease Type 4d; GJB1, which encodes a gap-junction 
protein mutated in CMT Type X18; and HSPB8, which encodes a heat-shock protein 
mutated in two peripheral neuropathies, axonal CMT Type 2L and distal hereditary 
motor neuropathy type IIA19,20. Several genes on this list contribute to postnatal 
myelination of the central nervous system16,18,20,21, suggesting the possibility that 
the caudate age-related expression pattern at least partially reflects this process.  

Among genes contributing to the sex-related expression patterns in specific tissues, 
perhaps the most striking examples are genes encoding the receptors for two 
structurally similar neuropeptides, the oxytocin receptor OXTR (in caudate) and the 
vasopressin receptor AVPR1A (in hippocampus). These two genes function in a sex 
specific manner mediated by the sex-steroids estrogen (for OXTR) and androgen 
(for AVPR1A)22. The distribution and function of these genes also differ dramatically 
between mammalian species, including among some that are closely related. For 
example, a polymorphism in the promoter of Avpr1a has been associated, in prairie 
voles, with inter-species differences in sex-related social behaviors, such as pair 
bonding23. In monogamous prairie vole males, additional polymorphisms in this 
region result in inter-individual variation in expression of Avpr1a in hippocampus 
and other tissues comprising a memory circuit, and these expression differences are 
related to sex-specific spatial behaviors24. Another notable example from the 
hippocampus gene list is PDYN, encoding the opioid peptide dynorphin, which 
modulates hippocampal synaptic plasticity25 in a sex-specific manner, mediated by 
estrogen26.  

The lists of genes with sex-related expression patterns in pituitary and adrenal 
overlap substantially (40 of the top 200 genes in common) and include several 
molecules with functions in reproduction or in biological processes with a marked 
sex bias. Tissue-specific examples include, for pituitary, TAC1, encoding substance P, 
which regulates puberty onset and fertility27 and PTGER2 which plays a role in 
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ovulation and fertilization28, and, for adrenal, PRL, which stimulates lactation in new 
mothers, plays a role in social behaviors, and is regulated by adrenal steroids29. 

Identification of eQTLs 

We previously reported the first NHP genome-wide, high-resolution genetic variant 
set13, obtained by whole genome sequencing (WGS) of 721 monkeys from the VRC 
pedigree, aligning sequencing reads to the vervet reference genome12, calling 
variants, and identifying 497,163 WGS-based SNPs that tag common variation in 
most linkage disequilibrium (LD) blocks genome-wide. Using these SNPs we 
conducted separate GWAS of Datasets 1 and 2 to identify local (probes/genes < 1 
Mb from an associated SNP) and distant (all other probe/gene-SNP associations) 
eQTLs in each dataset.  

We used SOLAR30 to estimate heritability of probe expression in Dataset 1, 
identifying significant heritability for 3,417 probes at a false discovery rate [FDR] 
threshold < 0.01 (Supplementary Data 1, 2). In a GWAS of each heritable probe, we 
identified 461 local and 215 distant eQTLs that were significant at Bonferroni-
corrected thresholds of 4.8 x 10-8 for local and 1.5 x 10-11 for distant eQTLs (Table 1, 
Supplementary Data 3). Approximately 35% of probes with a significant eQTL 
(173/498) displayed at least one local and one distant significant association.  

We conducted a GWAS for each gene-tissue combination in Dataset 2, using as 
phenotypes the full set of genes that passed expression level thresholds for that 
tissue. In this dataset we observed, for each of the four solid tissues, between 338-
537 local eQTLs and 39-71 distant eQTLs, and for blood and fibroblasts, 70 and 196 
local eQTLs and 4 and 23 distant eQTLs, respectively, all at Bonferroni corrected 
significance thresholds (7.6 x 10-10 [local] and 6.1 x 10-13 [distant]) (Table 1, 
Supplementary Data 4). The smaller number of eQTLs observed in blood likely 
reflects the high degree of inter-individual variability in the proportions of different 
cell types in this tissue compared to the other tissues analyzed (Supplementary Fig. 
1); we have no obvious explanation for the relative paucity of eQTLs in fibroblasts, 
aside from the observation that fewer genes were analyzed in fibroblasts than in 
tissues with cellular heterogeneity.  

The significant eQTLs in Table 1 exceeded highly conservative Bonferroni 
thresholds. We also applied FDR controlling procedures, to expand the list of local 
eQTLs for more exploratory investigations, and to make our results comparable to 
those of resources such as GTEx. Specifically, for the discovery of eGenes we 
controlled the FDR at 0.05 (see Methods), accounting for multiple testing using a 
hierarchical error controlling procedure developed for GWAS of multiple 
phenotypes31, extended here to accommodate the analysis of multiple tissues. We 
observe that, in comparison with GTEx V6, despite having a smaller sample size we 
identify more local eQTLs for all tissues except for whole blood and adrenal (Table 
2). We attribute the larger number of local eQTLs identified in the vervet sample, 
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relative to GTEx, to the more homogenous environment of colonied NHPs compared 
to humans, and to the more uniform process of collecting tissues in this study. 

We considered the possibility that genotypic variation within the vervet pedigree 
could confound the effects of age in generating the strong loadings on PCs 
associated with age in caudate. Among the 200 genes with such strong loadings, 33 
genes showed evidence of eQTLs, even when using the more liberal FDR controlling 
procedure. For these 33 genes, we modeled expression as a function of both age and 
genotype, using the most significant eQTLs, and found that genotype could not 
account for the association with age (data not shown).  

Genomic Distribution of eQTLs 

Reasoning that regulatory variants are most frequent in functional genomic regions, 
we analyzed the distribution of all eQTL, in both expression data sets, with respect 
to gene boundaries (transcription start site [TSS] and transcription end site [TES]), 
promoters, and enhancers. We categorized all SNPs along two binary dimensions: 
influence on gene expression (eQTL, yes/no, for any tissue and either dataset, at 
Bonferroni corrected significance thresholds) and location (in putative functional 
region, yes/no) and evaluated the significance of the odds ratio (OR) using Fisher’s 
Exact Test. To account for LD between SNPs, we selected 22,892 genome-wide SNPs 
by LD pruning the entire set of 497,163 SNPs at r2<0.6 in 14 distantly related 
individuals. This SNP set included 1,663 eQTL SNPs (1,380 that are local eQTLs, 239 
that are distant eQTLs, and 44 that are both local and distant eQTLs). 

Gene regions encompassing exons, introns and adjacent flanks show a clear 
enrichment for eQTLs (Supplementary Fig. 2), which is more significant for local 
than distant eQTL, likely due to the larger number of loci in the former category. As 
in other primates32, vervet eQTLs are more frequent around gene TSS and TES 
(Supplementary Fig. 3). Conversely, intergenic regions show a significant deficit of 
eQTLs, both distant and local (Supplementary Fig. 2).  

Chromatin immunoprecipitation with DNA sequencing (ChIP-seq) experiments 
using vervet liver samples33 enabled us to classify genomic regions as active 
promoters (sites enriched in either trimethylated lysine 4 of histone H3 (H3K4me3) 
or in both H3K4me3 and acetylated lysine 27 on histone H3 (H3K27ac) marks) or 
active enhancers (enriched in H3K27ac only)33. Vervet promoter regions show 
stronger enrichment for eQTLs than either genic regions or enhancers 
(Supplementary Fig. 2). The combined set of all types of eQTLs (local and distant 
together), and local eQTLs alone showed the greatest enrichment in promoter 
regions dually-marked with both H3K27ac and H3K4me3, slightly lower enrichment 
in promoters marked with only H3K4me3 and a moderate enrichment in active 
enhancer regions (Supplementary Fig. 2). The depletion of eQTLs in intragenic 
regions and the eQTL enrichment in functional genomic regions is consistent with 
their presumed regulatory functions. 
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To evaluate whether vervet eQTLs, like human eQTLs, show enrichment at genome-
wide significant human GWAS loci, we downloaded from www.ebi.ac.uk/gwas the 
coordinates of such loci, using LD to define a region of interest (ROI) around each 
associated index SNP. We then transposed these ROI coordinates to the vervet 
genome, and evaluated the association between local eQTLs and the vervet 
segments syntenic to the human GWAS ROI, using Fisher’s Exact Test as described 
above. Vervet local eQTLs were enriched in these ROI: 13.2% of the vervet local 
eQTL SNPs lie in these ROI compared to 10.6% of the evaluated SNPs that are not 
vervet local eQTLs (OR=1.28, p=0.0027). 

Validation of Distant eQTLs: a Master Regulatory Locus on Vervet 
Chromosome 9  

Unlike most human expression data sets, our Dataset 1 is well-powered for 
discovery of distant eQTLs. Among the 215 such eQTLs that we identified at 
genome-wide significance thresholds, two loci stood out because they showed 
association to multiple unlinked genes. On vervet chromosome (CAE) 5, four SNPs in 
a 322 Kb region were each associated to five distant genes (Supplementary Table 5), 
but no local genes. On CAE 9, 76 SNPs across a ~500 Kb region displayed genome-
wide significant local eQTL signals. Additionally, for each of these SNPs we identified 
multiple genome-wide significant distant eQTLs (ranging between five and 14 
genes, on different vervet chromosomes, for each SNP, Fig. 3, Supplementary Table 
5).  

We evaluated Dataset 2 for replication of the CAE 5 and CAE 9 distant eQTLs, 
recognizing that the much smaller size of this dataset gave us limited power to 
achieve replication. Because the Dataset 2 data were obtained using a different 
platform from those in Dataset 1, and were from a mostly non-overlapping sample 
of monkeys (only 6 monkeys were represented in both datasets), we considered 
that such a replication would provide a validation of these eQTLs.  

For the SNPs at the CAE 5 locus we did not observe any eQTLs in Dataset 2 (at a 
threshold of a marginal p<0.05). At the CAE 9 locus, we confirmed the distant eQTLs 
for six of the genes that showed such eQTLs in Dataset 1 (RANBP10, LCMT1, ST7, 
TMEM57, YPEL4, NARF), with at least one SNP demonstrating association at a 
marginal p<0.05 and in the same direction (Supplementary Table 5), with ST7 
continuing to show association at a Bonferroni level (p<2.35 x 10-5). This result 
suggests that the CAE 9 eQTL represents a master regulatory locus (MRL). This 
genomic segment contains a cluster of acid lipase genes and interferon-inducible 
genes, including IFIT1B (Interferon-Induced Protein With Tetratricopeptide Repeats 
1B), a gene recently implicated in viral resistance in vervets, but not humans34. The 
same SNPs contributing to the MRL are also local eQTLs for IFIT1B, at genome-wide 
significant levels.  

We conducted further analyses in Dataset 1 for a SNP (CAE9_82694171) that is both 
a significant distant eQTL for all 14 genes and a local eQTL for IFIT1B, at Bonferroni 
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corrected significance thresholds (Supplementary Table 6). This SNP accounts for 
19-37% of the variance in expression level of the 14 genes not located on CAE 9. 
When we conditioned these analyses on expression of IFIT1B, the magnitude of 
these distant associations diminished substantially, with the percentage of variance 
accounted for by this SNP dropping to 10% or less for the 14 genes. Overall, these 
results support a scenario in which IFIT1B, under direct control of a local eQTL on 
CAE 9, influences expression of 14 other genes spread across the genome. As 
suggested by studies in human populations, such mediation by local eQTLs of 
distant eQTLs provides a further validation of the latter loci35.  

Identification of Hippocampus-Specific eQTLs in a Region Linked to 
Hippocampal Volume 

As an initial investigation of the impact of vervet tissue-specific eQTLs on higher 
order traits we focused on a neuroanatomic trait, hippocampal volume. A previous 
MRI-based study in the VRC showed extremely high heritability (h2 =0.95) for this 
phenotype36. We reasoned that genome wide QTL analysis of MRI-based 
hippocampal volume, in conjunction with eQTL analysis of hippocampal RNA, could 
reveal variants contributing to this trait. The strongest QTL signal for hippocampal 
volume (peak LOD score 3.42) occurred in an ~8.3 Mb segment of CAE 18. We 
identified in the center of this region, two hippocampus-specific local eQTLs, 
Bonferroni-significant at a genome-wide threshold, together with the genes that 
these eQTLs regulate (Fig. 4).  

The genome-wide significant eQTL SNPs reside in, and regulate expression of, two 
lncRNAs located at a distance of 168 Kb from each other: LOC103222765 (nine 
associated local eQTL SNPs) and LOC103222769 (three associated local eQTL SNPs). 
An additional lncRNA gene, LOC103222771, situated two bp from LOC103222769, 
shows hippocampal specific association to six SNPs at a significance level (p < 10-9) 
just above the genome-wide Bonferroni-corrected threshold. While all three genes 
display hippocampus-specific eQTLs, the genes themselves are expressed across all 
six tissues that we analyzed, and show no significant sex or age specific differences 
in expression patterns (data not shown). The incomplete database annotation of 
lncRNAs37 limits comparative analyses of such genes among primates; a BLAST 
search found a homolog for LOC103222765 in the white-tufted-ear marmoset and 
one for LOC103222771, in the crab-eating macaque. While LOC103222765 overlaps a 
coding gene (RAB31), LOC103222769 and LOC103222771 do not overlap exons of 
any coding genes and therefore are more specifically classified as long intergenic 
non-coding RNA (lincRNA) genes, a class of genes known to function in cell 
differentiation and developmental regulation38.  

Given the physical proximity of these lncRNAs, we used multivariate conditional 
analyses to evaluate whether the regulation of these genes depends on a single or 
multiple independent eQTLs. For each lncRNA we designated a “lead SNP” (the SNP 
most significantly associated to its expression, Supplementary Table 7). For both 
LOC103222769 and LOC103222771, modeling expression as a function of both lead 
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SNPs results in diminished significance levels for both SNPs (Supplementary Table 
7), suggesting that one eQTL regulates both genes. Modeling LOC103222765 
expression as a function of its lead SNP and the lead SNP of the other two genes, the 
lead SNP for LOC103222765 remains significant, while the other two lead SNPs are 
non-significant, confirming the “distinctness” of this signal (Supplementary Table 7). 
This analysis suggests two eQTLs in this region; one associated to LOC103222765, 
and the second associated to LOC103222769 and LOC103222771.  

We observed a positive correlation between hippocampal expression of 
LOC103222765, LOC103222769 and LOC103222771, and hippocampal volume as 
assessed by MRI, in six monkeys for which both MRI and RNA-Seq data were 
available. To extend this observation, we assessed, using an independent platform, 
quantitative real-time PCR (qRT-PCR), LOC103222765, LOC103222769 and 
LOC103222771 hippocampal expression in these six monkeys and 10 additional 
monkeys for which both hippocampal RNA and MRI data were available. In this 
expanded sample set, we identified significant positive correlations (Fig. 5) between 
LOC103222765, LOC103222769 and LOC103222771 expression and hippocampal 
volume, suggesting that genetic variation regulating these lncRNAs has a strong 
impact on the MRI phenotype.  

Discussion  

The data presented here represent a first attempt to create an NHP resource for 
investigating the genetic contribution to inter-individual variation in gene 
expression across multiple tissues and across development. This vervet resource 
provides a complement to GTEx, which has become an essential tool for pinpointing 
the genes, and even the variants, underlying disease loci revealed by GWAS of 
human populations39,40. As with GTEx in humans, the sequenced multi-tissue vervet 
samples described here constitute a powerful asset, in a species closely related to 
humans, for investigating the genetic regulation of transcriptome variation.  

Several features, however, differentiate the vervet resource from GTEx, reflecting 
aspects of the study design that are infeasible in human research. Notably, the age-
based sampling design enabled us to delineate tissue-specific expression profiles in 
relation to developmental trajectories. Delineating these trajectories provides 
insights into biological processes that may be associated with the expression 
profiles of particular genes. For example, several genes that contribute to postnatal 
myelination of the central nervous system16,18,20,21 contribute to the near linear age-
related pattern observed in caudate, and suggest the possibility that the observed 
expression pattern at least partially reflects this process. So far we have only 
observed such a clear trajectory in this tissue. The tissues examined to date are, 
however, only a fraction of those available from the same set of monkeys. It will be 
possible to extend the investigations reported here to samples from an additional 60 
brain regions and 20 peripheral tissues.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/092874doi: bioRxiv preprint 

https://doi.org/10.1101/092874


12 
 

Three factors increased the relative signal-to-noise ratio of the vervet eQTL 
analyses: (i) the homogeneity of the vervet sample with respect to environmental 
exposures, such as diet; (ii) the greater control over necropsy conditions; and (iii) 
the restricted genetic background of the recently bottlenecked Caribbean vervet 
population. These factors enabled us to identify and validate a distant eQTL 
regulating expression of at least 14 distant genes. Furthermore, our data suggest 
that genetic variation regulating IFIT1B, one of a cluster of five IFIT genes, mediates 
this MRL.  

The function of IFIT1B is poorly understood. It is a paralog of IFIT1, which is 
involved in innate antiviral immunity in mammals, broadly41, and in regulation of 
gut microbiota in mouse42. Recent evidence indicates that in some mammalian 
species IFIT1B contributes to discrimination between “self versus non-self” 
transcripts based on the lack of 2’ O-methylation on mRNA 5’ caps in viruses, a so-
called cap0 structure34. Notably, vervet IFIT1B, like that of mouse and gibbon, 
recognizes and inhibits replication of viruses with cap0-mRNAs, while human 
IFIT1B lacks this function34. It has been suggested that this functional divergence of 
IFIT1B antiviral activity reflects the divergence of the human lineage from that of 
other primates, in exposures and adaptations to particular sets of pathogens, 
including the arboviruses which are responsible for diseases such as encephalitis, 
dengue, and yellow fever.  

Our results suggest that investigation of the genes regulated by IFIT1B in the vervet 
might help reveal mechanisms for its role in defense against viral pathogens. Recent 
evidence points to immune functions for the products of several of these genes. For 
example, RANBP10, a transcriptional coactivator, promotes viral gene expression 
and replication in HSV-1 infected cells43. SUGT1, a cell cycle regulator, is the 
homolog of SGT1, which plays an essential role in innate immunity in plants as well 
as mammals44,45, while TMEM57 has shown association in a human population, at a 
genome-wide significance threshold, to blood markers of inflammation46.  

Just as the human genetics field is increasingly employing GTEx data to refine the 
mapping information obtained by GWAS5, we used the hippocampal eQTLs 
discovered in the vervet to identify a set of lncRNAs as candidate causal genes for a 
higher order phenotype, hippocampal volume. The exceptional genetic and 
environmental homogeneity of the relatively small vervet study sample likely 
facilitated these findings, and supports the extension of multi-tissue vervet eQTL 
studies as a strategy for identifying loci with a large impact on higher-order 
phenotypes, generally. While expanding expression resources in other NHP species 
will create additional opportunities to identify eQTLs that are informative for 
various biomedical investigations8,47, the Caribbean vervet is unique among NHPs in 
having abundant natural populations available for such investigations, with an 
essentially identical genetic background to the samples studied here9,11. For 
example, the lead SNPs for the eQTLs contributing to hippocampal volume in the 
VRC each occur at a relatively high frequency in these island populations 
(Supplementary Information). We therefore anticipate that most, if not all, of the 
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findings presented here can be followed up through well-powered association 
studies in these populations.  

Methods 

Study Sample 

The vervet monkeys used in this study are part of the Vervet Research Colony 
(VRC), established by UCLA during the 1970’s and 1980’s from 57 founder animals 
captured from wild populations in St. Kitts and Nevis9. In 2008 the VRC was moved 
to Wake Forest School of Medicine; the MRI phenotypes included in this study were 
collected when the colony was in California (see Supplementary Information for 
more details). 

Gene Expression Phenotypes 

Two data sets of gene expression measurements were collected. Dataset 1 consisted 
of microarray (Illumina HumanRef-8 v2) assays of RNA obtained from whole blood 
in 347 vervets, while Dataset 2 consisted of RNA-Seq data from 58 animals, with six 
tissues (whole blood, cultured fibroblast, caudate, hippocampus, adrenal, and 
pituitary) assayed in each animal. 

Dataset 1: Microarrays From Whole Blood  

The microarray data set has been described in Jasinska et al.11 and is available at 
NCBI at the BioProject PRJNA115831. Details on RNA extraction, cDNA synthesis, 
and initial data processing are presented in Supplementary Information. To obtain a 
set of probes usable in vervet from the Illumina HumanRef-8 v2 microarray 
(originally developed for assaying gene expression in humans), we used the vervet 
reference sequence to select probes that contain no vervet indels and demonstrate < 
five mismatches, with a maximum of one mismatch in the 16 nt central portion of 
the probe. To prevent bias in the measurement of expression due to SNP 
interference with hybridization, we excluded probes targeting sequences with 
common SNPs identified in the VRC pedigree. A total of 11,001 probes passed these 
filters (Supplementary Table 1). Illumina provides a “detection p-value” for each 
subject and probe; p<0.05 indicates significant detection of a given probe in a 
specific individual. We retained for analysis 6,018 probes that were detected with 
detection p-values of p<0.05 in at least 5% of monkeys, and tested for association 
3,417 probes that were significantly heritable. 

Dataset 2: RNA-Seq Data from Six Tissues  

Tissues harvested during experimental necropsies were obtained from 60 monkeys 
representing 10 developmental stages, ranging from neonates (7 days), through 
infants (90 days and one year), young juveniles (1.25, 1.5, 1.75, 2 years old), 
subadults (2.5, 3 years old) to adults (4+ years old), with six monkeys (3 male and 3 
female) from each developmental time point. Two monkeys (a 1.75 year old female 
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and a 7 day old male) for which we did not have WGS data were excluded from the 
eQTL study. Altogether, in the eQTL study we included 11 vervets below one year 
old, 23 vervets between one to two years old, and 24 vervets between two and four 
years old, 29 males and 29 females. Details regarding tissue collection and RNA 
collection procedures are in Supplementary Information. 

We conducted RNA-Seq in six tissues: two brain tissues (caudate and hippocampus), 
two neuroendocrine tissues (adrenal and pituitary) and two peripheral tissues 
serving as a source of biomarkers (blood and fibroblasts). From purified RNA, we 
created two types of cDNA libraries, poly-A RNA (blood, fibroblasts, adrenal and 
pituitary) and total RNA (blood, caudate, hippocampus) cDNA libraries. Details on 
library preparation are in Supplementary Information. The RNA-Seq read data were 
made available through NCBI as BioProject PRJNA219198. 

RNA-Seq reads were aligned to the vervet genomic assembly Chlorocebus_sabeus 
1.1 http://www.ncbi.nlm.nih.gov/assembly/GCF_000409795.2 by the ultrafast 
STAR aligner48 using our standardized pipeline. STAR was run using default 
parameters, which allow a maximum of ten mismatches. Gene expression was 
measured as total read counts per gene. For paired end experiments, total fragments 
are considered. Fragment counts that aligned to known exonic regions based on the 
NCBI Chlorocebus sabaeus Annotation Release 100 were quantified using the HTSeq 
package49. The counts for all 33,994 genes were then combined, and lowly 
expressed genes, defined as genes with a mean of < 1 across all samples, as well as 
genes detected in fewer than 10% of individuals were filtered out. Finally, quantile 
normalization was applied to the remaining genes to obtain normalized gene counts.  

Quantitative real-time PCR (qRT-PCR) hippocampal expression data were generated 
by the following methods. 900ng of cDNA was generated from hippocampal mRNA 
using the SuperScript® III First-Strand Synthesis System (Life Technologies). 
Quantitative real-time PCR was performed in two steps using the SensiFAST™ 
SYBR® No-ROX Kit (Bioline) and the Roche LightCycler® 480 platform, with three 
technical replicates per assay, per animal. Specific primers (see Supplementary 
information for sequences) were designed using Primer3 software, and relative 
transcript abundance was calculated by the delta-delta Ct method, where results 
were first normalized to a housekeeping gene (glyceraldehyde 3-phosphate 
dehydrogenase; GAPDH). 

Hippocampal Volume Phenotype 

Estimates of hippocampal volume were measured in 347 vervets >2 years of age 
using MRI. Details of the image acquisition and processing protocol were described 
previously36 and are outlined in Supplementary Information. Prior to genetic 
analysis, hippocampal volume was log transformed, regressed on sex and age using 
SOLAR30, and residuals used as the final phenotype. 

Genotype Data  
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Genotype data were generated through whole genome sequencing of 725 members 
of the VRC13. Genotypes from 721 VRC vervets that passed all QC procedures can be 
directly queried via the EVA at EBI (www.ebi.ac.uk/eva) using the PRJEB7923 
accession number. Two genotype data sets were used in the current study13: (1) The 
Association Mapping SNP Set consists of 497,163 SNPs on the 29 vervet autosomes. 
In this set of ~500K SNPs, there were an average of 198 SNPs per Mb of vervet 
sequence, and the largest gap size between adjacent SNPs was 5 Kb. (2) The Linkage 
Mapping SNP Set consists of 147,967 markers on the 29 vervet autosomes. In this 
set of ~148K SNPs, there were an average of 58.2 SNPs per Mb of vervet sequence, 
and the average gap size between adjacent SNPs was 17.5 Kb. 

The software package Loki50, which implements Markov Chain Monte Carlo 
methods, was used to estimate the multipoint identical by decent (MIBD) allele-
sharing among all vervet family members from the genotype data. As long stretches 
of IBD were evident among these very closely related animals, a reduced marker 
density was sufficient to evaluate MIBD at 1cM intervals; we used a 9,752 subset of 
the 148K SNP data set. The correspondence between physical and genetic positions 
in the vervet was facilitated by a vervet linkage map51, constructed using a set of 
360 STR markers. Both the physical and genetic position of these markers was 
known, and genetic locations of SNPs were found by interpolation. 

Statistical Analysis 

Principal Components Analysis 

In Dataset 2, the top 1,000 most variable genes were selected for each tissue, and 
PCA applied to log2-transformed counts per million, using the singular value 
decomposition and the prcomp function in R (https://www.R-project.org, version 
3.2.3). Expression was mean-centered prior to analysis. 

Mapping of Gene Expression and Hippocampal Volume Phenotypes 

We expected greater power for association analyses of gene expression traits 
compared to more complex phenotypes. Therefore we applied genome wide 
association analyses to these traits. For the higher-order phenotype examined 
(hippocampal volume) we anticipated having power only to detect loci with a much 
stronger effect, and therefore utilized linkage analysis for this trait.  

Heritability and Multipoint Linkage Analysis We estimated familial aggregation 
(heritability) of traits using SOLAR, which implements a variance components 
method to estimate the proportion of phenotypic variance due to additive genetic 
factors (narrow sense heritability). This model partitions total variability into 
polygenic and environmental components. The environmental component is unique 
to individuals while the polygenic component is shared between individuals as a 
function of their pedigree kinship. If the variance in phenotype Y due to the 
polygenic component is designated as σg2 and the environmental component as σe2, 
then in this model Var(Y) = σg2 + σe2, and the covariance between phenotype values 
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of individuals i and j is Cov(Yi,Yj)=2 φij σg2, where φij is the kinship between 
individuals i and j. 

Whole genome multipoint linkage analysis of hippocampal volume was also 
implemented in SOLAR, which uses a variance components approach to partition 
the genetic covariance between relatives for each trait into locus-specific heritability 
(h2q) and residual genetic heritability (h2r). Linkage analysis was performed at 1cM 
intervals using the likelihood ratio statistic. 

Association Analysis Association between specific SNPs and gene expression 
phenotypes was evaluated using EMMAX52. EMMAX employs a linear mixed model 
approach, where SNP genotype is a fixed effect, and correlation of phenotype values 
among individuals is accounted for using an identity by state (IBS) approximation to 
kinship. Association analyses used the full set of 497,163 SNP markers, and included 
age and sex as covariates (both Dataset 1 and 2; where in Dataset 2 age, in days, 
corresponds to developmental stage), as well as batch (Dataset 1 only). It is common 
to try to account for unmeasured factors influencing global gene expression by 
including probabilistic estimation of expression residuals (PEER) factors as 
covariates53. We considered the controlled nature of the study environment and 
experimental design to preclude the need for this adjustment.  

Multiple Testing Considerations in eQTL 

We used a Bonferroni correction to account for multiple testing across genes, SNPs, 
and tissues as our primary error-controlling strategy for the identification of eQTL. 
Thresholds for Dataset 2 were more stringent, as more genes were tested than in 
Dataset 1 (~25K vs. ~3K) and multiple tissues were analyzed in Dataset 2. Dataset 1 
was analyzed association to 3,417 heritable probes. The local eQTL significance 
threshold (4.8 x 10-8) was corrected for the testing of SNPs within 1 Mb of 3,417 
probes, and the distant eQTL significance threshold (1.5 x 10-11) accounted for 
genome-wide testing of 3,417 probes. Dataset 2 significance thresholds were 
constructed in a similar fashion, but also accounted for testing of 163,770 gene-
tissue combinations (the number of genes tested per tissue is in Table 1). The RNA- 
Seq local eQTL threshold was 7.6 x 10-10, and the distant eQTL threshold was 6.1 x 
10-13. 

To identify multi-tissue eGenes and the tissues in which they are active, and the 
associated SNPs in each of these tissues, we used a hierarchical approach based on 
Peterson et al. (2016)31 which groups the hypotheses into a tree with three levels: 
genes in level 1, tissues in level 2, and SNPs in level 3. Testing proceeds sequentially 
starting from the top of the tree in a manner that accounts for each previous 
selection step. This method allows control of the FDR of local eGenes (defined as 
those genes whose expression is regulated in at least one tissue by some genetic 
variants located within 1 Mb of the gene) and of the expected average false 
discovery proportion of the tissues in which we claim this regulation is present 
across the discovered eGenes. P-values are defined by building up from the bottom 
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of the tree. Specifically, to obtain a p-value for the null hypothesis of no local 
regulation for a given gene in a given tissue (corresponding to a hypothesis in level 
2 of the tree), we applied Simes’ combination rule54 to the p-values obtained via 
EMMAX for the hypotheses of no association between the expression of the gene in 
the tissue and each of the SNPs in the local neighborhood (corresponding to the 
hypotheses in level 3 of the tree). To obtain a p-value for the null hypothesis of no 
local regulation for a given gene in any of the tissues under study (corresponding to 
a hypothesis in level 1 of the tree), we applied Simes’ combination rule to the gene x 
tissues p-values just described. We then tested the global null hypotheses of no local 
regulation in any tissue for all the genes in our study, applying the Benjamini 
Hochberg procedure55 to control the FDR at the 0.05 level. For those genes for which 
we were able to reject the null hypotheses of no local regulation, we examined the 
tissue-specific p-values, applying the Benjamini Bogomolov procedure that allows 
the identification of significant findings controlling for the initial selection56. Finally, 
the individual SNPs responsible for regulation of the gene in each tissue were 
identified, again using a selection-adjusted threshold. An R package implementing 
this procedure is available at http://www.bioinformatics.org/treeqtl/.57 

We compared the number of eGenes identified in each tissue using the above 
procedure with the results of GTEx (Analysis Release V6; dbGaP Accession 
phs000424.v6.p1), as presented on the GTEx portal web site. GTEx used a 
permutation strategy (described in the Analysis Methods section of the web portal) 
to identify eGenes. 

Association between eQTLs and genomic features 

We estimated the association of eQTLs to various genomic features (TSS/TES, 
functional genomic regions, human GWAS loci) by categorizing SNPs in two binary 
dimensions (eQTL and location in or near a specific genomic feature) and estimating 
the odds ratio from this contingency table. The significance of the association was 
evaluated using Fisher’s Exact Test. To account for LD between SNPs (which violates 
the assumption of independence of SNP counts), we selected 22,892 genome-wide 
SNPs based on LD pruning the entire set of 497,163 SNPs at r2<0.6 in 14 unrelated 
individuals. This SNP set included 1,663 eQTL SNPs (1,380 local eQTLs, 239 distant 
eQTLs, and 44 SNPs are both local and distant eQTLs). 
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Figure Legends 

Figure 1. PCA of 1,000 genes, for each tissue, with the most variable expression 
levels. Numbers in the labels for x and y axes indicate the proportion of total 
variance accounted for by that PC. 

Figure 2. Boxplot of log counts per million (CPM) expression in Caudate vs. 
timepoint, for four genes with a strong relationship between expression pattern and 
age. 

Figure 3. Master regulatory locus on vervet chromosome CAE 9. Upper panel: 
Ensemble view of the CAE 9 region. Lower panel: The minimum –log10(p-value) for 
each SNP in association analyses vs. expression of microarray probes on different 
chromosomes. The symbols are color-coded to represent the number of probes 
significantly associated to each SNP: 1-2 probes (black), 3-4 probes (yellow), 5-6 
probes (blue), 7-10 probes (green), 11-14 probes (red). 

Figure 4. Hippocampal volume QTL and local hippocampal volume eQTL in RNA-Seq 
analysis. Top panel: purple dotted line is the multipoint LOD score for hippocampal 
volume. Circles represent evident for association of SNPs to expression of 
LOC103222765 (red), LOC103222769 (blue) and LOC103222771 (green). Solid 
circles indicate genome-wide significant associations. The region between the black 
vertical lines is blown up in the middle and bottom panels. The horizontal dotted 
line represents the genome-wide significant threshold for local eQTL. Middle panel: 
SNPs with –log10(p-value)>8 for association to expression in hippocampus, color 
codes are as in the top panel. Bottom panel: Genes sited between 68.7 and 69 Mb 
(the eQTL region). Color codes are as in the top panel. 

Figure 5. Correlation of hippocampal volume (MRI) with hippocampal expression of 
LOC103222765 (left), LOC103222769 (middle) and LOC103222771 (right). The 
expression data are from qRT-PCR. Hippocampal volume measurements are 
residuals from a regression on covariates of age and sex. 

Supplementary Information is linked to the online version of the paper 
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Table 1. Gene expression data sets. The number of probes/genes with at least one significant local 
and distant eQTL (at Bonferroni corrected thresholds) are presented.   

Tissue 
 

Probes/genes 
analyzeda 

Local eQTLb 

 
Distant eQTLc 

 
Dataset 1: 
Microarray 

   

Blood 3,417 461 215 

Dataset 2:  
RNA-seq 

   

Adrenal Cortex 25,187 506 60 
Pituitary Gland 27,236 537 71 
Caudate 28,282 386 39 
Hippocampus 26,957 338 47 
Fibroblast 22,328 196 23 
Blood 33,780 70 4 

amicroarray dataset (Dataset 1) with an initial set of 22,184 probes on Illumina HumanRef-8 v2 (6,018 probes 
passed filters described in Supplementary Table 1, 3,417 were heritable); RNA-seq (Dataset 2) with an initial set of 
33,994 genes annotated in vervet 
bBonferroni threshold for Dataset 1: 4.8 x 10-8; Bonferroni threshold for Dataset 2: 7.6 x 10-10 

cBonferroni threshold for Dataset 1:1.5 x 10-11; Bonferroni threshold for Dataset 2: 6.1 x 10-13 
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Table 2. Comparison of the number of local eGenes by tissue in our study and GTEx 
 

Tissue GTEx 
number of 
individuals 

GTEx 
number of 
eGenes  

vervet 
number of 
individuals 

vervet 
number of 
eGenes  

Adrenal Cortex 126 3259 58 2759 
Caudate 100 2447 58 2863 
Hippocampus 81 1134 58 2350 
Pituitary Gland 87 2160 58 3169 
Blood 338 6784 58 609 
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