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Abstract.  13 

The problem of “missing heritability” in genome-wide analyses of complex diseases is thought to be 14 

attributable to some combination of: rare variants of moderate to large effect, common variants of very 15 

small effect, and epigenetic, epistatic, or shared environmental effects. Rare variants do not affect large 16 

numbers of people by definition, but identified genes and pathways frequently lead to important insights 17 

into pathogenesis, and become targets of chemoprevention or therapy. Family studies remain an efficient 18 

way to identify rare variants with sizable effects on disease risk. We present a genome-wide study of breast 19 

cancer in 22 large high-risk families including 154 women diagnosed with breast cancer. Appropriate marker 20 

spacing was achieved by simulation studies of  founder haplotypes to reduce the chance that linkage 21 

disequilibrium produced spurious linkage peaks. For each family, we generated 100  simulations of null 22 

linkage genome-wide to estimate the probability that individual results were due to chance. We identified a 23 

total of 12 putative susceptibility regions with per-family genome-wide probability < 0.05. These regions 24 

were located on 10 chromosomes; 10 of the 22 families showed linkage at these locations; two or more 25 

families showed linkage to 6 regions on 5 chromosomes (4q, 5q, 6p, 14q, 18p, and 18q). These results 26 

indicate that there is considerable heterogeneity among families in genomic regions and thus variants 27 

predisposing to breast cancer. Moreover, they suggest that uncommon high- or medium-risk genetic 28 

variants remain to be found, and that family designs can be an efficient way to identify them.29 
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Introduction.   30 

The genetic dynamics of complex traits have concerned population scientists for more than a century, but the  31 

quantity of data streaming from genomic studies in recent decades has drawn new focus to the prospect of identifying 32 

genes underlying complex phenotypes. Especially important targets for genetic characterization are human disease 33 

phenotypes that commonly plague us and frequently kill us such as cancer.  34 

Long before genome-wide data were available for complex trait analysis, family studies were the workhorses used to 35 

study the genetic basis of cancer because case clusters were originally observed in families. Examination of familial 36 

clusters of neoplastic disease led to the identification of the tumor suppressor role of TP53 [1] in Li-Fraumeni 37 

syndrome, retinoblastoma, and the role of the FANC gene complex in Fanconi anemia (FA). Family studies of breast 38 

cancer also provided the first plausible evidence that a few genes of at least moderate effect might account for excess 39 

risk and observed case aggregation in families. This result was established for BRCA1 and BRCA2 mutations in familial 40 

breast and ovarian cancers [2] [3], and as a result the two genes were dubbed “most important” for breast cancer 41 

predisposition in high risk families [4]. 42 

Although breast cancer is not the most common of FA’s neoplastic effects, it has been demonstrated fairly recently 43 

that the products of the FANC gene complex function in congress with BRCA1 and BRCA2 in DNA repair pathways and 44 

provisionally explains their concordant effects on breast cancer predisposition in some families [5].  Mutations in PTEN 45 

and STK11 may also exhibit relatively high penetrance effects [6-9] while other genes, such as ATM, CHK2, and PALB1, 46 

also account for excess breast cancer risk in some families with somewhat lower penetrance[10, 11]; however, 47 

families segregating these other mutations are rarer, and thus account for less of the total genetic risk estimated for 48 

large and heterogeneous case series. In fact, no other genes as commonly mutated, or of such high penetrance as 49 

BRCA1 and BRCA2, have been identified yet through family studies of breast cancer. Therefore, it has generally been 50 

concluded from numerous studies of familial cancer risk (breast and other) in multiple populations, that: 1) the same 51 

genes do not account for cancer incidence in all families with elevated risks of the same cancer; 2) the same genes are 52 
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not necessarily implicated in familial clusters and sporadic cases (without a family history), even in the same 53 

population; and 3) familial cancers are relatively rare, and thus do not account for more than approximately 25% of all 54 

cases in a population, or 20% of incident breast cancers [12]. For these reasons, much doubt has been expressed over 55 

the last decade that family studies had much future utility for resolving complex genotypes for diseases like breast 56 

cancer[reference?]. Instead, as genome-wide data rapidly became available, and with it an acute need for “high-57 

throughput” analyses, the focus of research quickly shifted to simpler association study designs to measure genetic 58 

differences between phenotypic classes, such as cases and controls. 59 

The genome-wide association study (GWAS) approach focuses on genotype-phenotype co-variation, usually for a 60 

densely distributed set of SNPs over the genome. Positive associations occur where genotype differences correspond 61 

to phenotype differences outside of what is expected under a null hypothesis, and their locations mark points in or 62 

near genetic variants that cause disease or contribute to its risk. Numerous GWAS have been done in search of genes 63 

that condition risk of breast cancer, and a list of genes and variants with modest effects on cancer risk has certainly 64 

developed as a result [13] [14]. However, the small fraction of breast cancers attributable to these relatively common 65 

but low-penetrance alleles suggests that a larger set of genetic factors, more of them reaching moderate effect, but 66 

occurring with low frequency in a population, might account for such common cancer phenotypes. 67 

This “heritability gap” has been considered a problem of statistical lack of power to resolve a potentially large number 68 

of genetic variants, some of them low in frequency (rare), and of only moderate or low risk effect for common but 69 

deadly disease phenotypes.  70 

For complex diseases in general, GWAS have generated many significant associations between particular SNPs and 71 

disease phenotypes, but again, these are often inconsistent across studies, populations, designs, and samples. After 72 

more than a decade of modeling and measuring complex genotype-phenotype associations by GWAS, it remains 73 

difficult to value the contributed effects of particular genes to a disease phenotype by this method, and today it is 74 

widely appreciated that the approach has a critical shortcoming. For many individual studies the methodology is 75 
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simply underpowered to sort high throughput data for a definitive set of genetic factors —unknown in number and 76 

varying in frequency and effect size--responsible for a complex disease phenotype. As a result, there is much 77 

uncertainty about what an association study really captures, and clarification is often sought by improving power and 78 

reliability—by increasing genome coverage, sample size, or by meta-analyses. In this regard, today’s study designs are 79 

ambitious, involving huge numbers of cases and increasingly narrow definitions of the phenotype[15]. Even so, GWAS 80 

of breast cancer have not resolved single genes of major effect comparable to BRCA1 and BRCA2; neither have they 81 

established a comprehensive predisposing genotype for the disease. 82 

Although it is now considerably easier and less expensive to collect genetic data for GWAS, it has remained elusive by 83 

association testing to capture enough genetic variants, or of sufficient effect, to account for what is manifestly familial 84 

and estimated as heritable. In this study we address the notion of “missing heritability” and compromised analytic 85 

power for detecting genetic factors contributive to breast cancer. In order to do this we have fashioned a “high-86 

definition” approach to linkage analysis using deep pedigree data, albeit sparsely genotyped, and for pairs related over 87 

a range of relationships. The approach is not designed primarily to address the matter of heritability; more 88 

importantly, it is designed to advance the train of evidence leading to the identification of genetic variants that are 89 

potentially rare—i.e., found at low population frequency—of moderate effect on risk, and likely larger in number than 90 

the class of single genes of major effect, such as BRCA1. 91 

 92 

Subjects and Methods.   93 

Study Sample: breast cancer cases from high risk families in Utah 94 

The Utah Population Database (UPDB) is a repository of longitudinal information originally constructed from 95 

genealogical data pertaining to Utahans and their families [16]. Through successive record linking efforts, the database 96 

integrates cancer registry data, medical records data, Utah State certified deaths and births, etc. Currently, the UPDB 97 
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captures information for approximately 7 million individuals, many of whom are members of extensive pedigree 98 

networks 2 to 14 generations deep [17].  Pedigree information from the UPDB, and Utah’s SEER cancer registry, were 99 

used to establish diagnosed breast cancer cases clustered in large multigenerational families. We then compared 100 

observed and expected breast cancer incidence in case families and recruited study subjects from “high risk” families, 101 

i.e., those with excess incidence having a probability of less than 0.01 of occurring by chance [18]. However, we 102 

excluded cases and families previously studied and known to be segregating BRCA1 or BRCA2 mutations as their 103 

primary genetic risk factors for breast cancer.  104 

Female members of high risk families who were diagnosed with breast cancer and alive at the start of the study were 105 

invited to join, as were unaffected women drawn from the same large families. Study participants were home visited, 106 

at which time individual and family health histories were documented and blood samples collected (by venous 107 

puncture) as the source of DNA for genome- wide SNP analyses. 108 

The genotyped study sample consisted of 154 women diagnosed with breast cancer, and 94 unaffected relatives. 109 

“Families” were defined after recruitment as the largest set of genotyped subjects, including a minimum of 3 cases, all 110 

descended from a common ancestor. By this method all participants (n=248) are members of 22 large families with 111 

evident excess risk of breast cancer. Cases (n=154) collectively form 1,011 affected relative (AA) pairs for linkage 112 

analysis; genotypes of unaffected subjects (94) were used to estimate allele frequencies and identity by descent 113 

probabilities. The families included in this study are pictured schematically in Figure 1. 114 

The University of Utah Health Sciences Institutional Review Board and the University of Louisville Biomedical 115 

Institutional Review Board approved the study protocol; all recruited subjects provided their written consent to be 116 

included in this study. 117 

Genotypes 118 
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Genotyping was performed with Illumina 370 Duo and 610 Quad arrays at deCODE Genetics, Reykjavik, Iceland. SNPs 119 

with low quality scores (GenCall[19] quality score < 0.15), and those with inconsistent allele frequencies between the 120 

two arrays (any absolute difference in minor allele frequency > 0.05), were eliminated. All alleles were called on the 121 

forward strand, and checked for consistency between arrays. After approximately 15% of the SNPs were eliminated by 122 

these quality control criteria, a total of 285,630 genotypes per subject were retained. Mendelian consistency checks 123 

were not performed because of the very small number of families with informative data.  124 

 125 

Evaluation of genetic vs. genealogical relatedness 126 

We examined the degree to which relatedness assessed by genome-wide genetic similarity corresponded to 127 

relatedness as reported in the UPDB genealogical data for pairs of relatives. For this study, we used genotypes on 429 128 

individuals, including the 248 subjects in the linkage study, as well as 181 women from families with fewer than 3 129 

genotyped breast cancer cases. A total of 91,806 pairs were evaluated, using coefficient of relatedness to characterize 130 

the genealogical data, and the genetic relatedness matrix computed by GCTA[20] to characterize relatedness from SNP 131 

data. To facilitate comparison, relatedness from each measure was grouped by rounding -log2(relatedness) to 132 

correspond to degree of relationship. 133 

Identity by Descent (IBD) estimation for linkage analysis 134 

Pairs formed from the sample set were used to generate Identity by Descent (IBD) matrices for linkage analysis. IBD 135 

was computed using PEDIBD software developed by Li and colleagues[21]. Their method employs a Viterbi algorithm 136 

[22] to find the most likely path of descent of an ancestral allele through a deep, but sparsely genotyped pedigree 137 

structure, via hidden Markov models of inheritance and recombination. The method efficiently parses the high-density 138 

genotype data of the Illumina arrays, permitting estimation of IBD matrices for 1,011 affected relative pairs at up to 139 

285,630 loci in approximately 24 hours of CPU time on current equipment (substantially less for thinned data sets). 140 

Allele frequencies were estimated by simple counting among all genotyped individuals, affected or unaffected. As 141 
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noted by Boehnke[23] and others, simple counting among family members does not introduce any systematic bias in 142 

the absence of allelic association, and any association would introduce a conservative bias as it would lead to 143 

overestimation of the frequency of a disease-associated allele. 144 

 145 

Test statistic for linkage  146 

We employed the IBDREG quasi-likelihood approach described by Schaid, et al. [24] to test for  concordant pair 147 

(affected only) linkage without covariates.  IBDREG has an important advantage in comparison to competing methods 148 

as it appropriately adjusts for between-pair covariance when multiple relative pairs are drawn from the same pedigree 149 

structure. Because the families studied vary considerably in size, and some have only a few affected members, the 150 

distributional properties (and hence the asymptotic p-values) of the test statistic were uncertain. Therefore, we used 151 

simulation to compute p-values and family-wise error rates. The approach is described below. 152 

 153 

Simulation of Identity by Descent  in the Absence of Linkage, but the Presence of Linkage DisequilibriumWe 154 

performed 100 full-genome simulations of identity by descent  using all 285,630 autosomal markers and all 22 families 155 

for three reasons: 1) to allow accurate estimation of error rates for IBD estimates across all family structures and all 156 

autosomes; 2) to give a reference against which different thinning strategies could be evaluated for their effects on 157 

both IBD accuracy and the distribution of the linkage test statistic; and 3) to provide distributions of the test statistic 158 

under the null hypothesis. 159 

Estimation of error rates 160 

It is well known that linkage analysis based on high-density SNP arrays is subject to potentially severe bias away from 161 

the null because of linkage disequilibrium (LD). LD between nearby markers will cause overestimation of the 162 

probability that two related individuals share marker alleles that are identical by descent (IBD) [25, 26]. Although in 163 
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principle, simultaneous modeling of LD among founders and IBD among descendants would be the most powerful 164 

approach to using all the genotype data at our disposal [27], the computational burden of such modeling in complex 165 

multigenerational families is not readily surmountable at present.  166 

Marker thinning intervals 167 

Marker thinning effectively varies the strength of LD by setting maximum R2 between SNPs at various thresholds (0.6, 168 

0.4, and0.2 here).  At each threshold SNPs were thinned by recursively finding the midpoint of a block of SNPs 169 

mutually correlated at R2  > the current threshold, then dropping all but the midpoint SNP, so that the maximum 170 

pairwise correlation could not exceed the selected level. Thinned marker sets were run against simulated (null) 171 

genotype data for chromosome 7 to establish error rates in the IBD estimates and thus, the contribution to false 172 

positive linkage scores for varying strengths of LD structure. 173 

 174 

For our simulations and analyses, we imputed an LD structure descending from founders by adapting the HapMap3, 175 

Phase 2 observed LD structure for 234 independent haplotypes estimated from 117 CEU subjects [28]. The HapMap 176 

sample series is appropriate as a reference set for this study because it too is a Utah family series [29]. HAPGEN2 177 

software [30] was used to generate 4000 random haplotypes with the desired LD characteristics for all 285,630 178 

autosomal loci. For each pedigree founder, two random haplotypes were chosen, from the 4000 randomly generated, 179 

by sampling with replacement. Alleles for each SNP marker were randomly generated in proportion to each marker’s 180 

allele frequencies. Haplotypes were descended through the study pedigrees, resetting random segregation indicators 181 

according to HapMap’s estimated recombination fractions. Recombination between markers was estimated by cubic 182 

spline interpolation using R [31]. 183 
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Pedigree information and simulated marker data were input to PEDIBD to obtain a full matrix of IBD estimates for all 184 

affected pairs. IBD estimates generated by PEDIBD were compared to the simulated “true” IBD states (0, 1, or 2 alleles 185 

known to be shared for each pair) to determine error rates. 186 

Distribution of test statistics under the null  187 

The IBD estimates generated by PEDIBD were input to IBDREG to calculate linkage statisticsAll simulated IBD states 188 

and marker allele data were generated under the null hypothesis of no linkage between marker loci and disease 189 

predisposition. Thus, the distribution of test statistics for each marker locus within each family can be taken to 190 

represent a sample from the null distribution for a whole genome scan of that family. In addition to the per-locus 191 

asymptotic p-value computed by IBDREG,  we report a family-specific per-locus Monte Carlo p-value, a family-specific 192 

per-genome Monte Carlo p-value, and a Monte Carlo composite false discovery rate (FDR) controlling for the whole-193 

genome analysis of 22 families[32]. 194 

Identification of linkage peaks and boundaries 195 

We defined a putative linkage peak as the chromosomal location of the smallest p-value over a run of consecutive 196 

SNPs with asymptotic p-values less than 0.001. The extent of the linked “peak” region was identified from the focal 197 

SNP (smallest p-value) to the nearest SNP either side with a p-value tenfold greater than the focal SNP, thus 198 

establishing the boundary maximum p. Overlapping peaks across multiple families were counted as a single peak. 199 

 200 

Results. 201 

An initial check for correspondence between coefficients of relatedness estimated from pedigree information and 202 

from SNP genotypes was made for all possible pairs of study subjects (see Methods). This information is plotted in 203 

Figure 2 for pairs of related individuals. The most distantly related pairs in the genealogical data were 13th degree 204 

relatives, so pairs unrelated by genealogy and pairs estimated to be genetically more distant than 13th degree were 205 
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plotted as though they were 14th degree relatives on either scale. There was generally very good agreement between 206 

genealogical and genetic distance up to about the 6th degree, and a gradual loss of precision past that point in this 207 

population.  208 

It is common that some members of large Utah families overlap in family membership in descending generations, and 209 

Table 1 gives counts of these individuals. Note that most subjects are members of only one family, and the majority of 210 

those who overlap in family membership do so as pedigree members, rather than genotyped study subjects. This is 211 

shown in Table 1. where counts are given for the number of individuals with membership in >1 of the 22 families, by 212 

disease status. Counts of individuals and affected pairs by family are given in Table 2. 213 

Simulations were done to depict the inflationary effect of LD on IBD and false positive linkage scores (see Methods). 214 

These results are shown in Figure 3 and Table 3. In order to control for this effect, and reduce false positive linkage 215 

signal, SNPs were thinned to various thresholds of correlation between them. At the threshold R2 ≤ 0.4, IBD over-216 

estimation due to LD was controlled fairly well, but positive linkage peaks still occurred. At R2 < 0.2, spurious linkage 217 

peaks disappeared. The results given in Figure 4 and Table 4 are based on the inter-marker threshold R2 < 0.2 for the 218 

thinned set of 19,609 SNPs.  219 

Table 4 gives linkage results for 1,011 affected relative pairs generated from a total of 154 genotyped breast cancer 220 

cases. The analysis identified 19 distinct peaks with asymptotic unadjusted within-family p < 0.001. More realistic 221 

estimates of the probability of these results under the null hypothesis are derived from the 100 per-family genome-222 

wide simulations, and presented in Table 4 as well. Monte Carlo per-locus p-values are generally considerably larger 223 

than the asymptotic p-values, particularly for smaller families. After further adjustment for genome-wide comparisons 224 

within families, 11 regions retained adjusted p-values below 0.05, and 17 regions retained adjusted p-values below 225 

0.1. However, when we adjusted for simultaneous whole-genome search across all 22 families, only the 3 peaks with 226 

the highest scores were large enough that a single random result under the null would not have been expected to 227 

exceed them 100% of the time.  228 
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Supplementary Table 1 lists all breast cancer- associated genes from DisGeNET 229 

[http://www.disgenet.org/web/DisGeNET/v2.1], TCGA [39] and Cancer Resource[40] located within peaks defined by a 230 

10-fold increase in asymptotic p-value. The large peak on chromosome 6 for family 1 includes multiple genes that have 231 

been associated with breast cancer risk and/or tumorigenesis, including members of the HLA complex, NOTCH4, and 232 

TNF, among others. Also noteworthy is that the chromosome 13 peak for family 10 includes BRCA2, while no family 233 

exhibited linkage to the TP53 or BRCA1 regions on chromosome 17. Figure 4 shows the relative locations and 234 

amplitudes of the linkage peaks by family. 235 

 236 

Discussion: 237 

It is low-frequency variants that are difficult to find in convincing association with a disease phenotype from genome-238 

wide association tests[41]. However, if we are to resolve this low frequency, moderate risk class of variants, then 239 

population-wide sampling from whole undifferentiated, or minimally structured populations, is perhaps not the most 240 

strategic sampling approach to use. Variants of this class occur de novo, are replicated and transmitted to 241 

descendants. For this reason, they will reach their highest frequencies within family lineages[42], the larger the better, 242 

while remaining at low frequency (rare) in any usual population sample, whether n = 100s or 100,000s. The moderate 243 

risk nature of this class of variants is likely due to the fact that their risk effects depend on participation in larger gene 244 

networks to account for increased cancer risk in particular families. In this sense, variants of smaller effect can alter 245 

disease risk in the context of gene networks that regulate the functional pathways involved in the onset and/or 246 

progression of the disease.  247 

The family study approach does not rest on anticipating “a new breast cancer genotype”, nor a “comprehensive 248 

genotype” to account for breast cancer risk in this population and by the usual purview of linkage analysis.  Instead, 249 

we tried to capture evidence of low frequency variants at the population level, but enriched at the level of very large 250 

high-risk families. Our approach yielded 17 genomic regions possibly linked (per-family per-genome Monte Carlo p < 251 
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0.1) to breast cancer for the 22 families studied, but with considerable variation among families: 15 of the 22 families 252 

(68%) showed possible linkage to at least 1 region by the criteria used here; 1 family showed possible linkage to 4 253 

regions; 1 family to 3 regions; 5 families to 2 regions; and 8 families showed linkage to 1 region. It is noteworthy that 254 

linkage to the BRCA2 region on chromosome 13 was observed in only one family (10), while no family exhibited 255 

linkage to the BRCA1 region on chromosome 17. 256 

The availability of high-density marker sets, efficient algorithms for estimating IBD in large families, and substantial 257 

computational resources permitted simulation of 100 null genome-wide results for each family. The simulation results 258 

then allowed us to compare Monte Carlo p-values with asymptotic p-values based on large sample theory. In Table 4 it 259 

is shown that the asymptotic estimates are frequently smaller than the Monte Carlo p-values by an order of 260 

magnitude or more. The genome-wide results for each family represent an appropriate basis for comparison to other 261 

published results based on linkage studies of one or a few families. Adjusting linkage estimates for all 22 families 262 

simultaneously, we find no linkage scores, or peaks, that could not have occurred by chance: the Z-score of 6.21 263 

observed for family 1 on 6p21-22 was exceeded in 90% of null simulations—for at least one family at some location 264 

over the genome. However, in the simulated data, anomalously high Z-scores were much more commonly observed in 265 

small families—and  never in family 1—so the adjustment across families is in some part size dependent, and 266 

therefore, less than perfect. For this reason, it might be more appropriate to consider the simulated probability of 267 

observing the result in 22 families just like family 1, which would be approximately 1-(1-0.0018)^22 = 0.039. Moreover, 268 

the existence of a possible linkage peak for family 5 in precisely the same location as family 1 on 6p21-22 strengthens 269 

the case for a susceptibility locus in this region. 270 

For heuristic purposes, we can combine multiple lines of evidence to rank the various linked regions by priority. First, 271 

regions that overlap across multiple families (e.g. 6p22-21, families 5 and 1; 18p11, families 5 and 16; 18q21-22, 272 

families 20 and 21) likely indicate either a shared disease-predisposing haplotype inherited from an unknown common 273 

ancestor, or multiple predisposing variants in the same gene in truly unrelated, or variably related, families. Next, per-274 
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family, per-genome Monte Carlo p-values well below 0.05  (e.g. 3p11-13, family 3; 12q21-24, family 22) warrant 275 

further investigation. Finally, linked regions in individual families (13q12-14, family 10) that overlap with known breast 276 

cancer-predisposing loci, i.e. BRCA2, have the potential to greatly simplify mapping variants associated with specific 277 

diseases. In addition, the other regions suggestive of linkage without known breast cancer associated variants, might 278 

provide useful new clues about the location of genetic variants that increase the risk of breast cancer in members of 279 

these families, and serve as evidence of residual heterogeneity in genomic regions responsible for familial cancer 280 

susceptibility. 281 

Although this linkage analysis was meant to identify regions of the genome that include putative genetic contributors 282 

to disease, there is still considerable distance between regions identified by linkage, and discovery of whether or what 283 

variants within them contribute to breast cancer risk (“true positives”).  Having identified segments of the genome 284 

smaller than the whole, there are still at least six to ten segments to consider, each spanning many genes, a large 285 

amount of information and a lot of variation. Depending upon the definition of peak region—whether 1Mb-5Mb 286 

surrounding the focal SNP, or the larger regions bounded by a tenfold change in p-value—many genes that have been 287 

associated with breast cancer risk in other studies are captured in the linkage regions (Table S1), including BRCA2. 288 

From functional annotation, the linked regions we have identified encompass many genes that “look good” as 289 

candidates for further analysis. However, in order to identify specific variants relevant to breast cancer phenotypes in 290 

this study, especially those that are rare and of obscure overall effect, it remains to further interrogate the linkage 291 

regions by sequencing. An efficient approach might begin with whole exome sequencing to address functional variants 292 

first. Regional, functional, family and pair-specific information can all be used to direct targeted evaluations of 293 

concordance between expected linkage (SNP-based probabilities of sharing IBD) generated by our model, and 294 

differences in sequence sharing per exome through the linked regions. By using the linkage-partitioned information 295 

thus far, sequencing should reveal more specifically the locations of rarer variants likely relevant to the disease. 296 

Linkage and sequencing techniques together should do much to clarify the genetic architecture of breast cancer in this 297 
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population, its heterogeneity among families[43], and importantly, give us a deeper understanding of the role of rare 298 

variants in conditioning risk differently among groups.  299 

For any novel variants that might be established, or candidate genes that might be confirmed with sequencing, the 300 

hope is that the information will advance knowledge of the genetic pathways involved and their interacting factors so 301 

essential to personalized therapies, management, and outcomes in the clinical setting. The developing field of 302 

Molecular Epidemiology and its unique integrative approach to medical research only begins with the address of large 303 

and growing quantities of data for translation to improved risk prediction. Studies of this type, that inform us about 304 

what specific genomic variation underlies risk variation in a population, lead to the identification of risk subgroups, 305 

and most importantly, high-risk families and individuals. New and abundant genetic information will no doubt lead us 306 

to understand important features of how genes—common, rare, and in multiplicity—contribute to disease spectra, 307 

from well to mortal, and the intermediate.  308 

Supplemental Table and Figures. 309 

 310 

1. Figure S1. Manhattan plots for each family. Families are labeled as per Figure 1 in upper right corner 311 

of each plot. 312 

2. Figure S2. Locations of genes within linkage peaks with unadjusted p-value < 0.001. Within peaks, 313 

cyan lines indicate genes, red lines indicate genes mutated in TCGA breast cancer specimens, black 314 

lines indicate boundaries of overlapping peaks. Coding strand is indicated by placement within box: 315 

genes coded on the forward strand are drawn above the midline, while genes coded on the reverse 316 

strand are drawn below.  317 

3. Table S1. Table of all genes in linked regions, ordered by bioinformatics resource scores (see text for 318 

references): tcga.mut = number of mutations observed in TCGA breast tumors; cr = cancer resource 319 

breast cancer associated (1) vs not associated (0); dg = disGeNet breast cancer association score; sum 320 

= sum((tcga.mut > 0)+(cr > 0)+(dg > 0)); tcga = TCGA breast tumor mutations/bp. 321 
 322 
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Figures. 442 

 443 

Figure 1. Schematic pedigrees of the 22 families studied.  444 

Affected subjects are indicated with enlarged green dots. Only lines of descent from common ancestors are 445 

shown. Crossing lines indicate inbreeding, although only one affected subject was herself inbred (family 18). 446 

Family numbers 2, 9, 15, 25 and 26 were assigned to families not used for this analysis, either because of overlap 447 

with another family (2), or insufficient number of usable samples from breast cancer cases.   448 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2016. ; https://doi.org/10.1101/092841doi: bioRxiv preprint 

https://doi.org/10.1101/092841
http://creativecommons.org/licenses/by-nd/4.0/


Heterogeneity of familial breast cancer risk     21 

449 
Figure 2. Genetic vs. genealogical relatedness.  450 

Relatedness estimated as global IBD from genetic data (SNPs) compared to genealogical relatedness (from 451 

pedigrees) for all possible pairs of study subjects (affected and unaffected). Red dots indicate pairs with 452 

substantial mismatch between genealogical and genetic distances; these pairs were dropped from the analysis by 453 

inspection and removal of one or both subjects from pedigree data.  454 
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456 
Figure 3. Null simulation results for chromosome 7 markers.  457 

False positive linkage peaks from simulation of null linkage at varying LD thinning thresholds on chromosome 7. 458 
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460 
Figure 4. Linkage peaks by chromosome and family.  461 

Only unadjusted p-values < 0.1 are displayed. Family numbers (legend) correspond to those shown in Figure 1.  462 
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Table 1. Number of individuals with membership in ≥1 of the 22 family groups, by disease status. 464 

Status 
How many Families? 

1 2 3 

Pedigree member only 1618 125 8 

Unaffected subject 76 17 1 

Affected subject 128 25 1 

Total 1822 167 10 

 465 

  466 
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Table 2. Total number of affected study subjects per family, and number of pairs per family for linkage analysis.  467 

 
Affected 

Familya  Individuals Pairs 

1 31 465 

3 16 120 

4 11 55 

5 11 55 

6 8 28 

7 10 45 

8 8 28 

10 7 21 

11 5 10 

12 8 28 

13 6 15 

14 7 21 

16 7 21 

17 6 15 

18 6 15 

19 6 15 

20 5 10 

21 5 10 

22 3 3 

23 6 15 

24 4 6 

27 5 10 

   Total 181 1011 

Countb 154 

  468 

aFamilies are numbered to 27, but 2, 9, 15, 25, and 26 were not included in the study; total families = 22. 469 

bThe total number of distinct individuals. Some subjects were members of more than one family (see Table 1). 470 
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Table 3. Summary of null simulation results for chromosome 7 at various thinning intervals. 472 

 473 

 

Max R2[a] 

 

0.2 0.4 0.6 Full (1.0) No LD 

Markersb 951 3031 6112 14008 14008 

Biasc 0.007 0.013 0.025 0.028 0.007 

MSEd 0.024 0.017 0.038 0.024 0.011 

FP ratee 0.142 0.147 0.271 0.274 0.044 

FN ratef 0.012 0.002 0.013 0.0003 0.001 

Called posg 118.6 150.9 120.0 188.7 132.7 

True posh 135.2 135.5 123.2 137.3 128.4 

-log10(min(p))i 1.17 5.32 23.1 35.8 

  474 

aMax R2 : maximum allowed pairwise R2 between adjacent SNPs (as thinning threshold).  475 

bMarkers: number of SNPs in map.  476 

cBias: average difference between estimated IBD state and true IBD state. 477 

dMSE: mean-squared error of estimated IBD probability. 478 

eFP rate: false positive IBD rate, assuming estimates of probability > 0.5 to be positive calls. 479 

fFN rate: false negative IBD rate, assuming estimates < 0.5 to be negative calls. 480 

gCalled pos: mean number of pairs called IBD at a given locus. 481 

hTrue pos: mean number of pairs simulated as IBD at a given locus. 482 

i-log10(min(p)): smallest linkage p-value across all markers. 483 
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Table 4. Linkage peaks with asymptotic p < 10-3.  485 

Region 

Chro
moso

me Family cM Mb Z 
per-locus 

asymptotic 

per-locus 
Monte 
Carlo 

per-family 
per-

genome 
Monte 
Carlo 

across 
families, 

per-
genome 

1p36.13-p36.11 1 10 43.52 20.39 3.10 0.000961 0.0220 0.1386 1 

1p34.3-p33 1 12 68.39 40.18 3.53 0.000210 0.0036 0.0464 1 

2p23.2-p21 2 18 65.84 40.09 4.07 0.000023 0.0038 0.0327 1 

3p11.2-q13.11 3 3 109.99 97.11 4.60 0.000002 0.0015 0.0155 1 

4q22.1-q28.1 
4 7 110.81 98.89 3.76 0.000087 0.0025 0.0291 1 

4 20 125.57 115.29 3.36 0.000390 0.0099 0.0855 1 

4q35.1-q35.2 4 6 205.52 186.97 3.66 0.000127 0.0080 0.0736 1 

5q33.2-q34 
5 3 165.04 159.59 3.55 0.000196 0.0057 0.0668 1 

5 16 167.31 161.86 5.20 0.000000 0.0016 0.0173 0.99 

6p22.2-p21.32 
6 5 48.67 30.01 3.23 0.000616 0.0060 0.0809 1 

6 1 48.67 30.04 6.21 0.000000 0.0003 0.0018 0.9 

7p22.2-p21.3 7 21 13.78 7.79 3.20 0.000699 0.0088 0.0832 1 

9p24.3-p22.2 9 7 23.37 10.02 3.09 0.000985 0.0083 0.0973 1 

10q24.31-q26.13 10 13 137.44 114.22 3.23 0.000625 0.0145 0.0964 1 

12q21.33-q24.11 12 22 114.02 97.68 5.81 0.000000 0.0059 0.0291 0.95 

13q12.3-q14.11 13 10 30.72 34.28 4.75 0.000001 0.0035 0.0286 1 

14q11.2-q22.1 

14 19 21.97 29.89 3.52 0.000218 0.0045 0.0523 1 

14 8 26.80 33.25 3.54 0.000197 0.0040 0.0514 1 

14 20 34.51 36.73 3.59 0.000165 0.0034 0.0409 1 

15q11.2-q14 15 13 34.32 29.69 3.18 0.000729 0.0159 0.1023 1 

18p11.32-p11.23 
18 7 5.97 2.31 3.45 0.000278 0.0041 0.0495 1 

18 5 11.56 3.99 3.80 0.000072 0.0026 0.0405 1 

18q21.1-q22.3 

18 16 83.12 60.03 4.32 0.000008 0.0056 0.0432 1 

18 20 85.31 61.23 3.44 0.000287 0.0081 0.0736 1 

18 21 96.32 68.83 3.26 0.000550 0.0077 0.0727 1 

19p13.2-q12 19 7 45.08 18.47 3.21 0.000667 0.0063 0.0741 1 

19q13.41-q13.42 19 10 92.39 53.91 3.76 0.000084 0.0083 0.0682 1 
 486 

 487 

 488 
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