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 22 

Summary  23 

Assessing the extent to which genomic alterations compromise the integrity of the 24 

proteome is fundamental in identifying the mechanisms that shape cancer 25 

heterogeneity. We have used isobaric labelling and tribrid mass spectrometry to 26 

characterize the proteomic landscapes of 50 colorectal cancer cell lines and to 27 

decipher the relationships between genomic and proteomic variation. The robust 28 

quantification of 12,000 proteins and 27,000 phosphopeptides revealed how protein 29 

symbiosis translates to a co-variome which is subjected to a hierarchical order and 30 

exposes the collateral effects of somatic mutations on protein complexes. Targeted 31 

depletion of key chromatin modifiers confirmed the transmission of variation and the 32 

directionality as characteristics of protein interactions. Protein level variation was 33 

leveraged to build drug response predictive models towards a better understanding 34 

of pharmacoproteomic interactions in colorectal cancer. Overall, we provide a deep 35 

integrative view of the molecular structure underlying the variation of colorectal 36 

cancer cells.  37 
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Highlights 43 

 The cancer cell functional “co-variome” is a strong attribute of the proteome.  44 

 Mutations can have a direct impact on protein levels of chromatin modifiers. 45 

 Transmission of genomic variation is a characteristic of protein interactions. 46 

 Pharmacoproteomic models are strong predictors of response to DNA 47 

damaging agents.  48 

Abbreviations 49 

COREAD, Colorectal Adenocarcinoma 50 

IMAC, Immobilized Metal ion Affinity Chromatography 51 

ROC, Receiver Operating Characteristic 52 

AUC, Area Under the Curve 53 

WGCNA, Weighted Correlation Network Analysis 54 

CNA, Copy Number Alteration 55 

SOM, Self-Organizing Map 56 

QTL, Quantitative Trait Loci 57 

MSI, Microsatellite Instability 58 

CPS, Colorectal Proteomic Subtypes 59 
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Introduction 60 

Tumours exhibit a high degree of molecular and cellular heterogeneity due to the 61 

impact of genomic aberrations on protein networks underlying physiological cellular 62 

activities. Modern mass spectrometry based proteomic technologies have now the 63 

capacity to perform highly reliable analytical measurements of proteins in large sizes 64 

of subjects and analytes providing a powerful tool in the quest for regulatory 65 

associations between genomic features, gene expression patterns, protein networks 66 

and phenotypic traits (Mertins et al., 2016; Zhang et al., 2014; Zhang et al., 2016). 67 

However, understanding how genomic variation leads to variable proteomic 68 

landscapes and distinct cellular phenotypes remains challenging due to the 69 

enormous diversity in the biological characteristics of proteins. Studying protein co-70 

regulation holds the promise to overcome the challenges associated with molecular 71 

complexity and is now gaining ground in the study of molecular networks as it can 72 

efficiently predict gene functions (Stefely et al., 2016; Wang et al., 2016). Colorectal 73 

cancer cell lines are widely used as a model that approximates cancer behaviour in a 74 

variety of cellular and biochemical assays however their proteome based 75 

characteristics and the genomic factors underlying protein variation remain largely 76 

unexplored.     77 

Here we leveraged the accurate quantification of a 12k total proteome obtained by 78 

the application of isobaric labelling and tribrid mass spectrometry analysis on a panel 79 

of 50 colorectal cancer cell lines, first to build de novo proteome-wide 80 

representations of biological functions inferred by protein co-variation, highly 81 

predictive of protein complexes and interactions, and second to rationalize the 82 
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impact of genomic variation in the context of the cancer cell co-variation protein 83 

interaction network. We selected to study the colorectal cancer cell lines panel as it 84 

has been extensively characterised by whole exome sequencing, gene expression, 85 

copy number and methylation arrays, and the frequency of molecular alterations is 86 

similar to that seen in clinical cohorts (Iorio et al., 2016). The cancer cell functional 87 

“co-variome” appeared to be a strong attribute of the proteome, revealing the 88 

interdependencies of protein complexes and assigning putative functions to 89 

uncharacterized gene products. Additionally, our proteomics data were 90 

complemented by protein phosphorylation measurements encompassing a total of 91 

27,000 phosphorylated sequences which demonstrated that co-variation of 92 

phosphorylation can also highlight known and novel biology. We assessed the direct 93 

effects of mutations on protein abundances and we integrated these effects with the 94 

cancer cell co-variome to uncover protein network vulnerabilities by the identification 95 

of possible collateral effects on protein complexes. Proteomic analysis of human iPS 96 

cells engineered with gene knockouts of key chromatin modifiers confirmed that 97 

genomic variation can be transferred from directly affected proteins to tightly co-98 

regulated distant gene products through protein interactions. A significant number of 99 

drug response predictive models were uniquely attributed to protein level variation 100 

leading to a better understanding of pharmacoproteomic interactions in colorectal 101 

cancer. Our results constitute a comprehensive in-depth resource elucidating the 102 

molecular organization of colorectal cancer cells widely used in cancer research. 103 

 104 
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Results 105 

Proteome and phosphoproteome coverage 106 

To assess the extent of variation in protein and phosphorylation abundances within a 107 

panel of 50 colorectal cancer cell lines (COREAD) we utilized isobaric peptide 108 

labelling (TMT-10plex) and MS3 quantification (Figure S1A). We obtained relative 109 

quantification between the different cell lines in a log2 scale for 12,306 unique 110 

proteins and 27,423 non-redundant phosphopeptides at FDR<1% (9,489 and 12,061 111 

in at least half of the samples respectively) (Figure S1B) (Table S1, Table S2). The 112 

average correlation between biological replicates was significantly higher than that of 113 

non-replicates (Pearson’s r=0.74 and -0.02 respectively, p-value=5.1e-69) which was 114 

also observed in the inter-laboratory comparison with previously published TMT data 115 

for six colorectal cancer cell lines (McAlister et al., 2014) (Figure S1F) confirming 116 

that subtle differences between the cell lines can be detected using our proteomics 117 

approach. Similar levels of global protein variation were observed across the cell 118 

lines with an average standard deviation of 1.7-fold denoting highly variable 119 

proteomes (Figure S1C). Correlation analysis between mRNA (publicly available 120 

data) and protein relative abundances across the cell lines indicated a significant, yet 121 

moderate concordance of the two molecular levels with an average Pearson 122 

correlation r=0.57 for matched cell line mRNA and protein data, and r=-0.015 for 123 

unrelated samples (Welch t-test, p-value < 2.2e-16) (Figure S1G). Overall, highly 124 

variable mRNAs tend to correspond to highly variable proteins (Spearman’s r=0.62) 125 

although with a wide distribution (Figure S1H). Notably, several genes including 126 
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TP53 displayed high variation at the protein level despite the low variation at the 127 

mRNA level, suggesting a significant contribution of post-transcriptional regulatory 128 

mechanisms to their total protein levels.  129 

To identify genomic variants at the protein level we also searched our MS/MS 130 

spectra against a customized protein database containing all amino acid 131 

substitutions encoded by 77k missense mutations (Iorio et al., 2016). We identified 132 

769 unique variant peptides mapped to 558 proteins (Table S3) (Figure S1D) 133 

including several mutated cell differentiation markers (CD44, CD46, ITGAV, ITGB1, 134 

ITGB4 and TFRC) that can be useful in targeted immunoaffinity based applications 135 

for discrimination of cancer cells as well as a range of mutated protein complexes 136 

(e.g spliceosomal, MCM, eIF3, CCT, Ksr1, Emerin). Two characteristic examples of 137 

mutant peptides for KRAS and CTNNB1 colorectal cancer genes are depicted in 138 

Figure S1E. Although the coverage in single amino acid variants is limited to 139 

proteins with medium to higher expression, it is concordant with the overall variant 140 

frequency and distinctly higher in hypermutated lines. Our proteogenomic search 141 

reveals the unique proteotypes of the COREAD cell lines. 142 

  143 

The subunits of protein complexes maintain tight stoichiometry of total 144 

abundance post-transcriptionally 145 

As a means of simplifying the complexity of protein abundance variation we 146 

examined whether protein co-variation patterns detected across the cell lines could 147 

help aggregate the thousands of single protein measurements into a much smaller 148 
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number of biologically meaningful clusters. The Spearman’s correlation coefficients 149 

between proteins with known physical interactions in protein complexes catalogued 150 

in the CORUM database (Ruepp et al., 2010) was bimodal-like and clearly shifted to 151 

positive values with mean 0.41. The respective distribution of all pairwise protein-to-152 

protein comparisons displayed a normal distribution with mean 0.09 (Figure S2A, left 153 

panel). Specifically, 388 partially overlapping CORUM complexes, representing the 154 

most significantly correlating set, showed a greater than 0.4 median correlation 155 

between their components (Table S4). In contrast, the distribution of Spearman’s 156 

coefficients between CORUM pairs based on mRNA co-variation profiles was only 157 

marginally shifted towards higher correlations (Figure S2A, right panel). This 158 

indicates that the subunits of the complexes are tightly regulated post-159 

transcriptionally. Indeed, comparative Receiver Operating Characteristic (ROC) 160 

curves showed that our proteomics data outperformed mRNA data in recapitulating 161 

protein complexes and STRING (Szklarczyk et al., 2015) interactions (CORUM ROC 162 

AUC: 0.77 vs 0.56, and STRING ROC AUC: 0.75 vs 0.58; for proteomics and gene 163 

expression respectively) (Figures 1A and 1B). The ability to also recapitulate any 164 

type of STRING interaction indicates that protein co-regulation also encompasses 165 

functional relationships beyond structural physical interactions. 166 

 167 
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Weighted correlation networks reveal the interdependencies of protein 168 

complexes and biological processes  169 

We have shown above that the co-regulation of protein abundance is a strong 170 

predictor of physical and functional associations. We therefore conducted systematic 171 

genome-wide analysis of the colorectal cancer cell protein-protein correlation 172 

network. To this end, we performed a weighted correlation network analysis 173 

(WGCNA) (Langfelder and Horvath, 2008) using 8,469 proteins quantified in at least 174 

80% of the cell lines. A total of 203 modules of co-regulated proteins ranging in size 175 

from 3 to 1,065 proteins (median = 9) were detected. A comprehensive description of 176 

the modules was devised based on enrichment analysis (Table S5) and the basic 177 

structure of the colorectal cancer network is depicted in Figure 1C. We found that 178 

approximately 60% of the modules displayed overrepresentation of protein 179 

complexes (Figure 1D) and that the largest modules were associated with RNA 180 

processing, plasma membrane, cytosolic ribosome, cell cycle, mitochondrial 181 

translation, mitochondrial respiratory chain, immune response and small molecule 182 

metabolic process (FDR<0.01). The full WGCNA network with weights greater than 183 

0.02 is provided in Table S6. 184 

To identify regulators of protein modules not explained by physical protein 185 

interactions we examined whether enriched transcription factors from ENCODE and 186 

ChEA databases in a given module were indeed co-expressed at the protein level 187 

along with their transcriptional targets. We found that the “small molecule metabolic 188 

process” module was enriched for the transcription factors HNF4A and CDX2 with 66 189 

and 22 transcriptional targets respectively (Benj. Hoch. FDR=0.00027 and 190 
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FDR=0.00012 respectively). HNF4A (Hepatocyte nuclear factor 4-alpha) is an 191 

important regulator of metabolism, cell junctions and the differentiation of intestinal 192 

epithelial cells (Garrison et al., 2006) and has been previously associated with 193 

colorectal cancer proteomic subtypes in human tumours analyzed by the CPTAC 194 

consortium (Zhang et al., 2014). The “plasma membrane” module included 60 195 

transcriptional targets of KLF5 (Benj. Hoch. FDR=0.00174) which itself was a 196 

member of this module. KLF5 is predominantly expressed in the proliferating cells of 197 

the crypt and appears to play a growth regulatory role in the intestine (Bateman et 198 

al., 2004). Interestingly, KLF5 was significantly correlated with HNF4A 199 

(Pearson=0.79, Benj. Hoch. FDR=4.17E-10) providing a potential link between cell 200 

communication and HNF4A regulated metabolic functions. Moreover, the “plasma 201 

membrane” module was enriched for an epithelial-mesenchymal transition (EMT) 202 

gene set and was characterized by the anti-correlation between the epithelial marker 203 

CDH1 and the mesenchymal marker Vimentin (VIM). STAT1 and STAT2 are master 204 

regulators of the “immune response” module with a total of 45 targets including 205 

several interferon-induced proteins (Benj. Hoch. FDR=5.06E-17 and FDR=2.05E-21 206 

respectively). The protein correlation modules clearly serve as unique attributes by 207 

which upstream regulatory events can be identified at the protein level. This 208 

approach leverages a greater number of proteomic features and extends our 209 

knowledge about cancer associated regulators beyond the use of profiles for single 210 

transcription factors.      211 

To better understand the interdependencies of protein complexes and biological 212 

processes of the colorectal cancer cells in a global way we plotted the module-to-213 
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module relationships as a correlation network. The nodes denote significant terms 214 

from each module and the edges represent pairwise correlations between the 215 

eigengenes (first principal component, Table S7) of the modules (Pearson>0.46, 216 

Benj. Hoch. FDR<0.01) (Figure S2B). The topology of this network revealed a 217 

strong coordination between the cytoplasmic ribosome and the RNA processing 218 

complexes that were further linked with protein processing complexes as well as with 219 

cell division and DNA repair protein complexes. Interestingly, the MCM complex, in 220 

contrast to the GINS complex, was better correlated with the cytoplasmic ribosome 221 

rather than the cell division processes coinciding with the proposed mechanisms 222 

which couple DNA and protein syntheses (Berthon et al., 2009). The 26S 223 

proteasome complex was directly associated with the RNA spliceosome generating 224 

the hypothesis of another un-expected interplay between RNA processing and 225 

protein turnover. In fact, the mechanistic connections between transcription and the 226 

Ubiquitin-Proteasome system have been previously discussed (Muratani and 227 

Tansey, 2003). The mitochondrial functions formed a distinct cluster comprised of 228 

mitochondrial translation and cellular respiration complexes. The HNF4A-metabolic 229 

related module is linked with the mitochondrial cluster as many of the HNF4A targets 230 

are involved in mitochondrial processes. Protein processing and trafficking 231 

complexes were grouped together and were associated with actin related complexes 232 

as well as with proteins involved in antigen presentation. The immune response 233 

signature was tightly correlated with focal adhesion, caveola proteins, septin 234 

complex and key proteins of the Hippo signalling pathway such as SAV1, STK3 and 235 

YAP1 revealing novel associations. Highlighting the modules with high mean mRNA-236 
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to-protein correlations on the network confirmed that the HNF4A, CDX2, KLF5, 237 

STAT1 and STAT2 modules were strongly driven by transcription, whereas nodes 238 

representing protein complexes corresponded poorly to mRNA levels (Figure S2B). 239 

The correlation of RNA to protein levels also appears to be modestly influenced by 240 

protein class (Figure S3A). Interestingly, proteins characterized by degradation that 241 

is best explained by a two-state model with two different degradation rates (non-242 

exponentially degraded, NED) present significantly lower mRNA-to-protein 243 

correlations compared to their exponentially degraded (ED) counterparts (McShane 244 

et al., 2016) that are explained by one-state model (Figure S3B).  245 

Examination of unannotated modules revealed correlation between tRNA 246 

methyltransferases and eukaryotic translation elongation factors (Figure S3C). This 247 

suggests that the maintenance of total stoichiometry is also a feature of interactions 248 

between protein complexes. We also mapped 66 uncharacterized proteins to 30 249 

modules that allowed them to be functionally annotated based on their associated 250 

module function. Some candidates for further investigation include: cell cycle 251 

(C1orf112, C14orf80, C12orf45, C9orf78, C10orf12, C1orf52), tRNA processing 252 

(C18orf21), mitochondrial translation (C6orf203, C2orf47), chaperonin-containing T-253 

complex (C12orf29), N-terminal protein amino acid acetylation (C8orf59), protein N-254 

linked glycosylation via asparagine (C20orf24), Oxidative phosphorylation (C8orf82), 255 

ribonuclease H2 complex (C8orf76) and BLOC-1 complex (C10orf32). Taken 256 

together, our protein correlations reveal a higher order of cellular functions in a well-257 

organized structure shaped by the compartmental interactions between protein 258 
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complexes and clearly divided into transcriptionally and post-transcriptionally 259 

regulated sectors.  260 

 261 

De novo prediction of phosphorylation networks reveals novel 262 

functional relationships 263 

The scale of global phosphorylation survey accomplished here offers the opportunity 264 

for the de novo prediction of kinase-substrate associations inferred by co-changing 265 

phosphorylation patterns that involve kinases (Ochoa et al., 2016; Petsalaki et al., 266 

2015). Phosphorylated proteins are highly enriched for spliceosomal and cell cycle 267 

functions and cover a range of cancer related pathways (Figure S3D). Notably, for 268 

about 450 partially overlapping CORUM complexes more than 60% of their subunits 269 

were found to be phosphorylated. To detect differential phosphorylation we 270 

regressed protein abundances from the respective phosphorylation profiles as the 271 

two levels of information are strongly correlated (Figure S3E). Pairwise correlation 272 

analysis among 213 variable phosphopeptides belonging to 144 kinases, and the 273 

787 most variable phosphopeptides from other protein types (Table S8) revealed a 274 

strong enrichment of nucleosome assembly proteins (mainly histones) (FDR=5.09E-275 

08) correlating with three kinases, namely CSNK1A1, CDK13 and VRK3 (Figure 276 

S4A). CSNK1A1 is a casein kinase that participates in Wnt signalling where it is 277 

essential for β-Catenin phosphorylation and degradation (Liu et al., 2002). CSNK1A1 278 

has also been implicated in the segregation of chromosomes during mitosis and may 279 

be cell cycle-regulated (Brockman et al., 1992). VRK3 has recently been shown to 280 
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be an active kinase as well as a signalling scaffold in cells, with a specific role in 281 

DNA replication and chromatin dissociation during interphase (Park et al., 2015). 282 

Interestingly, VRK3 phosphorylation status was strongly correlated with the 283 

phosphorylation of 7 histones of which H2AFX presented the strongest correlation in 284 

spite of poor correlation of their respective protein abundance profiles (Figure S4B, 285 

top panel). Strongly maintained co-phosphorylation was also observed between 286 

RAF1, MAPK1, MAPK3 and RPS6KA3 of the MAPK pathway (Figure S4C, left 287 

panel) as well as between CDK1 and CDK7 of the cell cycle pathway (Figure S4C, 288 

right panel). The correlation plots of MAPK1 and MAPK3 phosphorylation and total 289 

protein are depicted in Figure S4B, bottom panel. Overall, these examples 290 

demonstrate that functional relationships are encrypted in the patterns of co-291 

regulated phosphorylation events.     292 

 293 

Protein abundance and phosphorylation variation are associated with 294 

genomic alterations  295 

Assessing the impact of non-synonymous protein coding variants and copy number 296 

alterations on protein abundance is fundamental in understanding the link between 297 

cancer genotypes and the dysregulated biological processes. To investigate this, we 298 

first examined whether driver mutations in any of the 17 colorectal cancer driver 299 

genes (Iorio et al., 2016) with at least 5 occurrences across the cell lines could alter 300 

the levels of their protein products. Strikingly, for 7 such genes (PTEN, B2M, CD58, 301 

PIK3R1, ARID1A, BMPR2 and MSH6) we found that driver mutations had a 302 

significant negative impact on the respective protein abundances, in line with their 303 
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function as tumour suppressors, whereas missense mutations in TP53 were 304 

associated with elevated protein levels (ANOVA test, permutation-based FDR<0.05) 305 

(Figure 2A). Protein abundance variation of APC could not be systematically 306 

attributed to genomic variants although it is possible that extreme protein changes in 307 

individual cell lines could be the result of specific mutations. For example, the low 308 

relative abundance of APC protein in 5 out of 7 cell lines with log2Ratio<-0.8 could be 309 

explained by the presence of frameshift and nonsense mutations in these particular 310 

cell lines. Distinctly, for the majority of driver mutations in oncogenes, there was no 311 

clear relationship between the presence of mutations and protein expression. From 312 

these observations we conclude, that mutations in canonical tumour suppressor 313 

genes predicted to cause premature stop codons and ultimately nonsense-mediated 314 

decay of transcript were significantly associated with decreased protein abundance 315 

compared to driver mutations in oncogenes (Log2 mean protein abundance -0.65 vs 316 

+0.45 respectively) (Figure 2B), suggesting that these have distinct regulation or 317 

gain new function upon mutation. 318 

We extended our analysis to globally assess the effect of mutations on the protein 319 

abundances. For 5,498 genes harbouring any type of non-synonymous protein 320 

coding variants in at least three cell lines, 626 proteins exhibited lower (N=566) or 321 

higher (N=60) abundances in the mutated versus the wild-type cell lines at ANOVA 322 

p-value<0.05 (all 77 proteins with FDR < 0.1 were associated with decreased levels 323 

of expression) (Figure 3A). This high confidence subset was enriched for 324 

phosphatidylinositol signalling proteins (KEGG FDR=0.0307: PTEN, PIK3R1, 325 

PIK3C2A, MTM1 and PIK3C2B) and included 5 tumour suppressors (MLH1, MSH2, 326 
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NF1, PIK3R1, PTEN). Restricting the analysis to frameshift mutations only (the 327 

second most frequent mutation type), we found that 136 of the 389 genes presented 328 

lower abundances in the mutated cell lines with ANOVA p-value<0.05 of which 121 329 

passed the 10% FDR cut-off (Figure 3B). Notably, the significantly affected proteins 330 

were strongly enriched for chromatin modification proteins (FDR=2.66E-10, N=23) 331 

and included 10 oncogenes and 4 tumour suppressors. The STRING network of the 332 

most significant hits is depicted in Figure 3E. A less pronounced impact of frameshift 333 

mutations was found at the mRNA level where only 15% of the 349 genes (with both 334 

mRNA and protein data) exhibited altered mRNAs abundances in the mutated 335 

samples at ANOVA p-value<0.05, only 19 of these were below the 10% FDR (Figure 336 

3C). The overlap between the different analyses is depicted in Figure 3D. 337 

Considering all proteins negatively affected by mutations we found 338 

overrepresentation of proteins with certain domains (e.g. helicase) as well as 339 

enrichment of certain classes of enzymes such as kinases, transferases and 340 

hydrolases (Figure 3F) highlighting the protein classes that are subject to protein 341 

abundance reduction upon structural changes. Notably, 59 out of the 677 genes 342 

affected by genomic variants at p-value<0.05 are currently catalogued in the 343 

COSMIC Census list of genes for which mutations have been causally implicated in 344 

cancer.  345 

We also explored the effect of 20 recurrent copy number alterations (CNAs) using 346 

binary-type data on the protein abundances of 212 falling within these intervals. 347 

Amplified genes tended to display increased protein levels whereas gene losses had 348 

an overall negative impact on protein abundances although with several exceptions 349 
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(Figure 3G, top panel). The 51 significant genes with ANOVA p-value <0.05 (31 350 

genes at FDR<0.1) were mapped to 13 genomic loci. The 13q33.2 amplification 351 

encompasses the highest number of affected proteins (Figure 3G, bar plot). Losses 352 

in 18q21.2, 5q21.1 and 17p12 loci are associated with reduced protein levels of 353 

three important colorectal cancer drivers, SMAD4, APC and MAP2K4 respectively 354 

(FDR<0.1). Increased levels of CDX2 and HNF4A were modestly associated with 355 

13q12.13 and 20q13.12 amplifications (p-value<0.1, FDR<30%). Global correlation 356 

using normalized log2 copy number ratios obtained from the Cancer Cell Line 357 

Encyclopaedia showed median CNA to mRNA and protein correlations 0.35 and 358 

0.23 respectively (Figure 3H). To summarize the possible levels of regulation we 359 

trained a Self-Organizing Map (SOM) using the Pearson correlations coefficients 360 

between CNA and mRNA, CNA and protein, mRNA and protein (three vectors) for 361 

each protein, which indicated three main regulatory routes:  good concordance 362 

between the three levels (Figure 3I, left side cluster), CNAs corresponding to 363 

mRNAs but buffered at the protein level (Figure 3I, top-middle cluster) and 364 

proteins well corresponding to mRNA irrespective of CNAs (Figure 3I, bottom right 365 

cluster). Taken together, our results show that copy number alterations more often 366 

affect the mRNA levels than the protein levels, which needs to be taken under 367 

consideration when gene expression data are used as a proxy of the protein levels 368 

for the identification of actionable pathways. A summary of all proteins affected by 369 

mutations and recurrent CNAs is in Table S9.      370 

Next we assessed the direct impact of mutations on net protein phosphorylation. We 371 

found 72 differentially phosphorylated proteins in the mutated cell lines (Welch’s t-372 
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test, FDR<10%) with both positive and negative effects (Figure S5A). The SRC 373 

kinase and the RUNX1 transcription factor were among the top over-phosphorylated 374 

proteins while APC was among the top hypo-phosphorylated proteins. We then 375 

focused on eight colorectal cancer genes (APC, TP53, KRAS, BRAF, PIK3CA, 376 

PTEN, RNF43 and PIK3R1) to individually assess the extended effects of driver 377 

mutations on the phosphorylation status of the colorectal cancer pathway. We found 378 

that APC mutations were associated with decreased phosphorylation of APC and 379 

increased phosphorylation of AXIN1, and that PTEN mutations were related to 380 

increased TP53 phosphorylation at 10% FDR (ANOVA test) (Figure S5B). Mutations 381 

in PIK3CA were associated with increased inactivating phosphorylation of BAD, 382 

while BRAF V600E mutants exhibited increased AKT1 and decreased ARAF 383 

phosphorylation (Figure S5B). As expected, for all the associations the respective 384 

total protein levels were undifferentiated (Figure S5C). These observations indicate 385 

a sophisticated level of cross talk between cancer genes. 386 

Overall, we show that not all driver mutations have the same effect on protein 387 

abundance. We identify key mutations that significantly impact abundance levels of 388 

proteins, which converge in certain protein classes. We conclude that for only a 389 

small portion of the proteome the variation in abundance can be directly explained by 390 

mutations and that driver mutations also alter the phosphorylation status of colorectal 391 

cancer proteins. 392 
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 393 

The consequences of genomic alterations extend to protein complexes  394 

As tightly controlled maintenance of protein abundance appears to be pivotal for 395 

protein complexes and interactions, we hypothesize that genomic variation can be 396 

transferred from directly affected genes to distant gene protein products through 397 

protein interactions there by explaining another layer of protein variation. We 398 

retrieved strongly co-regulated interactors of the affected proteins and constructed 399 

mutation-vulnerable protein networks, comprised of 1,108 total protein nodes 400 

(Figure 4A) encompassing at least 25 protein complexes. One characteristic 401 

example was the BAF complex characterized by disruption of ARID1A protein 402 

abundance. Driver mutations in ARID1A were also significantly associated with 403 

decreased levels of the respective module (p-value = 0.01707) (Figure 4B) 404 

indicating a central role of ARID1A in the regulation of the profile of the complex. The 405 

WGCNA networks also revealed a correlation between the BAF complex and the 406 

functionally related PBAF complex containing the ARID2 and PBRM1 proteins which 407 

were however mapped to different modules (Figure 4C). We noticed that the 408 

PBRM1 sub-network displayed unusually poor overlap with STRING interactions, 409 

and the correlations were attributed to the effects of co-occurring mutations on the 410 

protein abundances, specifically in the hypermutated HT-115 cell line (Figure S6A). 411 

This indicates that in addition to functional relationships, protein co-regulation can 412 

also classify the effect of co-occurring genomic variants. These events are infrequent 413 

and observed on small modules, which lack functional connection between their 414 

components. To confirm whether the down-regulation of ARID1A, ARID2 and 415 
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PBRM1 can indeed affect the abundance levels of their interactors we performed 416 

proteomic analysis on the respective CRISPR-Cas9 knockout (KO) clones derived 417 

from human iPS cells (Table S10). Down-regulation of ARID1A coincided with 418 

diminished levels of 8 partners in the predicted interactome that were closer to the 419 

core of the network and were known components of the BAF complex whilst more 420 

distant interactors were not affected (Figure 4D). This provides an indication that the 421 

topology of the correlation network can predict the relative strengths of interactions. 422 

Reduced levels of ARID2 resulted in the down-regulation of all three direct 423 

interactors (BRD7, PHF10 and SCAF11) and the significant loss of PBRM1 protein. 424 

Four components of the BAF complex were also weakly compromised in the ARID2 425 

KO reflecting the overlap between the BAF and PBAF complexes. On the other 426 

hand, loss of PBRM1 had no effect on ARID2 or any of its interactors demonstrating 427 

that collateral effects transmitted through protein interactions can be directorial. 428 

Distinctly, loss of PBRM1 had no impact on the abundance of the constituents of its 429 

module confirming that the co-variation here is due to co-occurring genomic variation 430 

rather than direct interactions. Pathway enrichment analysis on the changing 431 

proteins detected in the KO cell lines, revealed the differential regulation of a number 432 

of biological processes reflecting the modulation of a wide range of target genes 433 

(Figure 4E). Notably, down-regulation of ARID2 specifically activated the MAPK 434 

pathway, actin cytoskeleton, ubiquitin proteolysis and immune related signalling 435 

pathways that were not affected by ARID1A and PBRM1 depletion. 436 

The above examples confirm that the loss of a subunit in a protein complex can 437 

diminish the protein abundance of its partners but not always to the same degree 438 
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and with subsequent changes in the total stoichiometry. We devised linear models to 439 

detect specific mutations that cause severe deviations from strongly correlating 440 

protein profiles across the cell lines, thus significantly compromising the 441 

maintenance of stoichiometry between the interacting partners. We detected 50 such 442 

mutations (p-value<0.05); mostly frameshift or nonsense alterations but also several 443 

single amino acid substitutions (Table S11). Two examples are provided in Figure 444 

S6B. The outlier points in the correlation plots of PIK3R1-PIK3CB and SEC31A-445 

SEC13 involved in the PI3K pathway and protein processing in endoplasmic 446 

reticulum respectively could be explained by a truncating mutation in PIK3R1 and a 447 

missense mutation in SEC31A that significantly disrupted the total abundance 448 

stoichiometry impairing their co-functionality in the associated biological processes. 449 

This analysis highlights a subset of specific mutations with the highest impact on 450 

protein abundance and reveals their cell line-specific consequences on protein 451 

interactions. Overall, our findings indicate that an additional layer of protein variation 452 

can be potentially explained by the collateral effects of mutations on tightly co-453 

regulated partners. 454 

 455 

Protein quantitative trait loci analysis of colorectal cancer drivers  456 

We performed Quantitative Trait Loci (QTL) analysis to systematically interrogate the 457 

distant effects of colorectal cancer driver genomic alterations on protein abundance 458 

(pQTL) and gene expression (eQTL). We identified 86 proteins and 196 mRNAs with 459 

at least one pQTL (Table S12) and eQTL respectively at 10% FDR (Figure 5A, 460 
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Figure S6C). To assess the replication rates between independently tested QTL for 461 

each phenotype pair we also performed the mapping using 6,456 commonly 462 

quantified genes and we found that 64% of the pQTLs (N=74) validated as eQTLs 463 

and 54% of the eQTLs (N=86) validated as pQTLs (Figure 5B). Ranking the pQTLs 464 

(FDR<30%) by the number of associations showed that mutations in BMPR2, 465 

RNF43 and ARID1A, as well as CNAs of regions 18q22.1, 13q12.13, 16q23.1, 466 

9p21.3, 13q33.2 and 18q21.2 loci accounted for 62% of the total variant-protein pairs 467 

(Figure 5C). The above-mentioned genomic events were also among the top 10 468 

eQTL hotspots (Figure S6D). High frequency hotspots in chromosomes 13, 16 and 469 

18 associated with CNAs have been previously identified in colorectal cancer tissues 470 

(Zhang et al., 2014). Enrichment analysis of the gene sets associated with each 471 

pQTLs showed overrepresentation of 12 distinct protein complexes and 36 partially 472 

redundant GO terms (Fisher’s test, Benj. Hoch. FDR<0.1). Interestingly, increased 473 

levels of the mediator complex were associated with FBXW7 mutations (Figure S6E, 474 

first panel), an ubiquitin ligase that targets MED13/13L for degradation (Davis et al., 475 

2013) and TP53 mutant cell lines were associated with up-regulation of cell division 476 

related proteins (Figure S6E, second panel). Examination of the pQTL for other 477 

functional relationships showed that driver mutations in RNF43, an E3 ubiquitin-478 

protein ligase that negatively regulates the Wnt signaling pathway, were positively 479 

associated with APC protein abundance (Figure S6E, third panel) and that BMPR2 480 

mutations were negatively correlated with TGFBR2 protein levels (Figure S6E, 481 

fourth panel), both being members of the TGF-beta superfamily (Massague, 2012). 482 

Our data clearly demonstrate that a large portion of genomic variation affecting 483 
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mRNA levels is not always transferred to the proteome. We see that distant protein 484 

changes attributed to variation in cancer driver genes can be regulated directly at the 485 

protein level and are not conspicuous at the mRNA level, with indication of further 486 

causal effects including enzyme substrate relationships.  487 

 488 

Protein complexes associated with microsatellite instability 489 

Loss of DNA mismatch repair activity is responsible for the microsatellite instability 490 

(MSI) observed in 15% of all colorectal cancers. MSI tumours are associated with 491 

better prognosis and differential response to chemotherapy (Boland and Goel, 2010). 492 

An improved understanding of the effect of MSI on cellular processes thus has the 493 

potential to explain some of these clinical features. We detected 10 differentially 494 

regulated modules between the MSI-high and MSI-low cell lines (Welch’s t-test, 495 

permutation based FDR<0.05). This encompasses 172 proteins (Figure 6A) that 496 

include a subset of 33 genes previously attributed to MSI events in colorectal tumors 497 

(Kim et al., 2013) such as MSH6, MSH3, PMS2, BAX and RAD50. The STRING 498 

interactions between the MSI associated proteins are depicted in Figure 6B, 499 

substantiating the functional relationships between this set of proteins. We 500 

additionally identified epigenetic dysregulation characterized by reduced levels of 501 

histone methyltransferase (KMT2D, PAXIP1, NCOA6, SETD1B, KMT2C, KMT2B 502 

and KDM6A). We also detect histone deacetylation (HDAC3 and NCOR1) protein 503 

complexes associated with these events. This network indicates the suppression of 504 

two members of the INO80 chromatin remodelling complex (INO80D and ACTL6A) 505 
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in MSI-high cells and can explain the down-regulation of the Arp2/3 protein complex 506 

by protein interactions with ACTL6A. Other distinct complexes we have identified 507 

negatively affected by MSI were the exocyst complex, which is implicated in 508 

targeting secretory vesicles to specific docking sites on the plasma membrane 509 

(Heider and Munson, 2012) and the SKI complex (SKIV2L, TTC37 and WDR61), 510 

which is involved in exosome-mediated RNA decay (Wang et al., 2005). Overall, this 511 

alludes to multiple epigenetic mechanisms playing a role in the MSI pathogenesis, 512 

and also suggests a new role for exocyst in this phenotype. The MSI up-regulated 513 

modules showed over-representation of proteins from the loci 8p21 and 18q21 514 

including SMAD4. Although high SMAD4 levels have been previously associated 515 

with MSI and better prognosis in colon cancer (Isaksson-Mettavainio et al., 2012), 516 

our data suggest that the observed differences stem from a mutually exclusive 517 

SMAD4 copy number alteration (loss) with MSI.  518 

 519 

Proteomic subtypes of colorectal cancer cell lines 520 

To explore whether our deep proteomes recapitulate tissue level subtypes of 521 

colorectal cancer and to provide insight into the cellular and molecular heterogeneity 522 

of the colorectal cancer cell lines, we performed unsupervised clustering based on 523 

the quantitative profiles of 7,330 proteins without missing values by class discovery 524 

using the ConsensusClusterPlus method (Wilkerson and Hayes, 2010). Optimal 525 

separation by k-means clustering was reached using 7 colorectal proteomic 526 

subtypes (CPS) (Figure S7A and Figure 7A).  527 
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Our proteomic clusters overlapped very well with previously published tissue 528 

subtypes (annotations from Medico et al., Figure S7B) (Medico et al., 2015), 529 

especially with the classification described by De Sousa E Melo et al. (De Sousa E 530 

Melo et al., 2013). Previous classifiers have commonly subdivided samples along the 531 

lines of ‘Epithelial’ (lower crypt and crypt top), ‘MSI-H’ and ‘Stem-like’, with varying 532 

descriptions (Guinney et al., 2015). In contrast, our high depth proteomic dataset not 533 

only captured the commonly identified classification features, but provides increased 534 

resolution to further subdivide these groups. The identification of unique proteomic 535 

features pointing to key cellular functions, gives insight into the molecular basis of 536 

these subtypes, and provides clarity as to the differences between them (Figure 7A). 537 

A detailed description of the unique proteomic features of our COREAD classification 538 

is provided in Table S13. 539 

Cell lines with a canonical epithelial phenotype (previously classified as CCS1 by De 540 

Sousa E Melo et al., 2013) clustered together, but are now divided into 3 subtypes 541 

(CPS1, CPS2, CPS3). These subtypes all displayed high expression of HNF4A, 542 

indicating a more differentiated state. While subtypes CPS1 and CPS3 contain 543 

Transit Amplifying cell phenotypes (Sadanandam et al., 2013), CPS2 is largely 544 

characterised by a Goblet cell signature (Figure S7B). CPS2 is also enriched in lines 545 

that are hypermutated, and while some are MSI-H, the MSI-negative/hypermutated 546 

lines (HT115, HCC2998, HT55) (Medico et al., 2015) all cluster in this group (Figure 547 

S7B). Transit Amplifying subtype CPS3 can be distinguished from CPS1 by lower 548 

expression of cell cycle proteins (eg. CCND1), and low histone phosphorylation 549 

(possibly mediated by VRK3), as well as higher activation of PPAR signalling and 550 
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amino-acid metabolism pathways. CPS3 also contains lines (DIFI, NCI-H508) that 551 

are most sensitive to the anti-EGFR antibody Cetuximab (Medico et al., 2015). 552 

Further, this group correlates with a crypt top description ‘Subtype A’ (Budinska et 553 

al., 2013) while subtypes CPS1 and CPS2 are associated with the lower crypt 554 

‘Subtype B’ (Budinska et al., 2013), (Figure S7B). 555 

The CPS4 subtype is the canonical MSI-H cluster, with a strong correlation with the 556 

CCS2 cluster identified by De Sousa E Melo et al.. These lines have also been 557 

commonly associated with a less differentiated state by other classifiers, and this is 558 

reinforced by our dataset; subtype CPS4 has low levels of the HNF4A-CDX2 559 

module, rendering this group clearly distinguishable from CPS2 (Figure 7A). The 560 

separation into two distinct MSI-H/Hypermutated classifications was also observed 561 

by Guinney et al., (2015), and may have implications for patient therapy and 562 

prognosis. Significantly, CPS4 displays low expression of ABC transporters, which 563 

may contribute to the better response rates seen in MSI-H patients (Popat et al., 564 

2005). 565 

The origin of CPS5 is less well defined, as it expresses intermediate levels of 566 

HNF4A. However, it is characterized by moderate down-regulation of cell cycle, 567 

ribosome and spliceosome modules, and displays low levels of MLH1 and AKT3 568 

proteins (Figure 7A). Interestingly, the phosphorylation landscape of CPS5 exhibits 569 

a global low phosphorylation, particularly in microtubule cytoskeleton and adherens 570 

junction proteins. 571 
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Lastly, we capture the commonly observed colorectal ‘Stem-like’ subgroup, which is 572 

represented in subtypes CPS6 and CPS7 (Figure 7A, S7B). Both subtypes exhibit 573 

stem-like expression profiles, with very low levels of HNF4A and CDX1 transcription 574 

factors (Chan et al., 2009; Garrison et al., 2006; Jones et al., 2015). Cells in both 575 

subtypes commonly exhibit loss of 9p21.3 including CDKN2A and CDKN2B, while 576 

this is rarely seen in other subtypes. Interestingly, while CPS6 displays activation of 577 

the Hippo signalling pathway and loss of 18q21.2 (SMAD4), CPS7 has a 578 

mesenchymal profile, with low expression of CDH1 and AXIN2, and high Vimentin. 579 

The overall strong suppression of cell adhesion and tight junction components may 580 

be influenced by low expression of KLF5 (Zhang et al., 2013).  581 

 582 

Pharmacoproteomic models are strong predictors of response to DNA 583 

damaging agents  584 

Although a number of recent studies have investigated the power of different 585 

combinations of molecular data to predict drug response in colorectal cancer cell 586 

lines, these have been limited to using genomic (mutations and copy number), 587 

transcriptomic and methylation datasets (Iorio et al., 2016). We have shown above 588 

that the DNA and gene expression variations are not perfectly mirrored in the protein 589 

measurements. As such one might expect to gain predictive power for some 590 

phenotypic associations when also using the protein abundance changes. To date 591 

there has not been a comprehensive analysis of the effect on the predictive power 592 

from the addition of proteomics datasets in colorectal cancer. All of the colorectal cell 593 
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lines included in this study have been extensively characterised by sensitivity data 594 

(IC50 values) for 265 compounds (Iorio et al., 2016). These include clinical drugs (n 595 

= 48), drugs currently in clinical development (n = 76), and experimental compounds 596 

(n = 141).  597 

We built Elastic Net models that use as input features genomic (mutations and copy 598 

number gains/losses), methylation (CpG islands in gene promoters), gene 599 

expression and proteomic datasets. We were able to generate predictive models 600 

where the Pearson correlation between predicted and observed IC50 >0.4 in 91 of 601 

the 265 compounds (Table S14). Importantly, using the proteomics data enabled the 602 

construction of more predictive models than with any other feature type (Figure 7B, 603 

top panel). Examples of the proteomics predictive models for etoposide are shown 604 

in Figure S7C. Response to most drugs was often specifically predicted by one data 605 

type, with very little overlap (Figure 7B bottom panel). Interestingly, when response 606 

to a drug was predicted by both gene expression and proteomics, the protein-RNA 607 

correlation for genes associated with response tended to be higher (Mann-Whitney U 608 

test, p-value: 0.006) (Figure S7D).   609 

Within the proteomics-based signatures found to be predictive for drug response, we 610 

frequently observed the drug efflux transporters ABCB1 and ABCB11 (8 and 7 out of 611 

43 respectively, 9 unique) (Table S14). In all models containing these proteins, 612 

elevated expression of the drug transporter was associated with drug resistance. 613 

Interestingly, ABCB1 and ABCB11 are very tightly co-regulated (Pearson’s r=0.94, 614 

FDR= 5.99E-21), suggesting a novel interaction. Notably, protein measurements of 615 
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these transporters correlated more strongly with response to these drugs than the 616 

respective mRNA measurements (mean Pearson’s r=0.68 and r=0.43 respectively, 617 

Wilcoxon test p-value=0.0005). This suggests that the protein expression levels of 618 

drug efflux pumps play a key role in determining drug response, and while predictive 619 

genomic biomarkers may still be discovered, the importance of proteomic 620 

associations with response should not be under-estimated.  621 

To detect whether any specific classes of drug might be best predicted by each of 622 

the 4 molecular features, we initially classified each of the 91 agents into 21 classes 623 

depending on target class and biological activity (Figure S7E), and subsequently 624 

further reduced the dimensionality of the data by then classifying into 4 groups 625 

(termed ‘kinase’, ‘DNA’, ‘chromatin’ and ‘other’). There was a significant enrichment 626 

for proteomics within the predictive models for the ‘DNA’ group of agents, which 627 

includes many chemotherapy agents and mitotic poisons (Mann-Whitney U test, 628 

nominal p-value: 0.01, FDR-corrected p-value: 0.0486) (Figure 7C). In contrast, 47% 629 

of the models specifically predicted using genomics features were for kinase 630 

inhibitors. This suggests that while the response to targeted kinase inhibitors can be 631 

modulated by point mutation (eg. BRAF mutations predict response to BRAF 632 

inhibitors), the response to broader DNA damaging agents is dependent on the 633 

expression levels of key proteomic subsets. Interestingly, NBEAL1 and PARD3B 634 

proteins that were found to be down-regulated by mutations were also among the top 635 

10 proteomics predictive models, were absent from the gene expression models, 636 

and 6 out of the 11 associated drugs were from the “DNA” category. Although the 637 

mechanism by which these proteins may affect drug sensitivity are unclear, it is 638 
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known that PARD3B is involved in asymmetrical cell division and cell polarization 639 

processes (Williams et al., 2014) and that both genes are located in chr2q33 and are 640 

associated with Amyotrophic Lateral Sclerosis 2 which suggests functional 641 

similarities. These examples also highlight the value of proteomics in better 642 

understanding the consequences of non-driver genomic alterations in drug sensitivity 643 

through the proteome.  644 

Discussion 645 

Our analysis of colorectal cancer cells using in-depth proteomics has yielded several 646 

significant insights into both fundamental molecular cell biology, and the molecular 647 

heterogeneity of colorectal cancer subtypes. Beyond static measurements of protein 648 

abundances, the quality of our dataset enabled the construction of a reference 649 

proteomic co-variation map with topological features reflecting the dynamic interplay 650 

between protein complexes and biological processes in colorectal cancer cells. 651 

Notably, identification of protein complexes and network topologies in such a global 652 

scale would require the analysis of hundreds of protein pull-downs and thousands 653 

hours of analysis (Hein et al., 2015) thus our approach can serve as a time effective 654 

screening tool for the study of protein networks. Another novel aspect that emerged 655 

from our analysis is the maintenance of co-regulation at the level of net protein 656 

phosphorylation. This seems to be more pronounced in signalling pathways where 657 

the protein abundances are insufficient to indicate functional associations. 658 

Analogous study of co-regulation between different types of protein modifications 659 

could also enable the identification of modification cross-talk (Beltrao et al., 2013).  660 
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We show that the subunits of protein complexes tend to tightly maintain their total 661 

abundance stoichiometry post-transcriptionally which forms the basis for the better 662 

understanding of the higher order organization of the proteome. The primary level of 663 

co-regulation between proteins allows for prediction of human gene functions and 664 

the secondary assembly of the co-variome reveals the interdependencies of protein 665 

complexes and biological processes and uncovers possible pathway interplays. 666 

Importantly, our data can be used in combination with genetic interaction screens 667 

(Costanzo et al., 2016) to explore whether gene essentiality meets the protein co-668 

regulation principles. Our catalogue of 210,000 weighted interactions can help the 669 

selection of protein hubs representing the best predictors of interactomes in pull-670 

down assays. Moreover, the identification of proteins with outlier profiles from the 671 

conserved profile of their known interactors, within a given complex, can point to 672 

their pleiotropic roles in the associated processes.  673 

The simplification of the complex proteomic landscapes enables a more direct 674 

alignment of genomic features with cellular functions and delineates how genomic 675 

variation is received by protein networks and how this is disseminated throughout the 676 

proteome. This framework also proved very efficient to identify upstream regulatory 677 

events that link transcription factors to their transcriptional targets at the protein level 678 

and explained the components of the co-variome not strictly shaped by physical 679 

protein interactions. To a smaller degree the module-based analysis was predictive 680 

of co-occurring genomic variants exposing paradigms of simple cause-and-effect 681 

proteogenomic features of the cell lines.  682 
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We show that mutations largely affect protein abundances directly at the protein level 683 

with a higher pressure on the chromatin modification protein class. Targeted 684 

depletion of key chromatin modifiers by CRISPR/cas9 followed by proteomic 685 

analysis confirmed that the effects of genomic variation on distant gene products, 686 

physically related with the directly affected proteins, can be explained by the 687 

mechanisms that define protein co-variation. The latter is supported by the 688 

observation that the severity of the distant effects is well predicted by the co-variation 689 

consistency and the topological features of the correlation networks. Additionally, this 690 

analysis indicated that directionality can be another characteristic of such 691 

interactions.  692 

We provide evidence that colorectal cancer subtypes derived from tissue level gene 693 

expression datasets are largely reproduced at the proteome level which further 694 

resolves the main subtypes into groups that reflect a possible cell type of origin and 695 

the underlying differences in genomic alterations. This robust functional 696 

characterization of the COREAD cell lines can be a useful resource to guide cell line 697 

selection in targeted cellular and biochemical experimental designs where cell line 698 

specific biological features can bias the results. Importantly, proteomics analysis 699 

highlighted that protein variation better predicts responses to drugs that interfere with 700 

cell cycle and DNA replication and that the expression of key protein components 701 

such as ABC transporters is critical to predicting drug response in colorectal cancer. 702 

While further work is required to establish these as validated biomarkers of patient 703 

response in clinical trials, numerous studies have noted the role of these channels in 704 

aiding drug efflux (Chen et al., 2016). Overall, our Elastic Net models suggest that 705 
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expression of a single protein alone may not be sufficient to predict drug resistance, 706 

and consideration of a panel of markers may be required. This study demonstrates 707 

that proteomics is the technology of choice for functional systems biology and 708 

provides a valuable resource for the study of regulatory variation in cancer cells.   709 
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Figure Legends 855 

Figure 1 856 

Protein co-variation networks in colorectal cancer cell lines. A) Receiver Operating 857 

Characteristic (ROC) curve illustrating the performance of proteomics and 858 

microarrays based correlations to predict known interactions from the CORUM 859 

protein complexes database and from B) the STRING database. C) The basic 860 

structure of the full WGCNA network. Protein modules are color-coded and 861 

representative enriched terms are used for the annotation of the network.  D) Protein 862 

abundance correlation networks derived from WGCNA analysis for enriched 863 

CORUM complexes. 864 

 865 

Figure 2 866 

The effect of colorectal cancer driver mutations on protein abundances. A) 867 

Association of driver mutations in colorectal cancer genes with the respective protein 868 

abundance levels (ANOVA test, permutation based FDR<5%). The cell lines are 869 

ranked by protein abundance and the bar on the top indicates the presence of 870 

mutations with brown mark. B) Volcano plot summarizing the effect of loss of 871 

function (LoF) and missense driver mutations on the respective protein abundances.  872 

 873 

Figure 3 874 

The global effects of genomic alterations on protein and mRNA abundances. A) 875 

Volcano plot summarizing the effect of all protein coding non-synonymous variants 876 

on the respective protein abundances (ANOVA test). B) Volcano plot summarizing 877 

the effect of all protein coding frameshift mutations on the respective protein 878 

abundances (ANOVA test). C) Volcano plot summarizing the effect of all protein 879 

coding frameshift mutations with both mRNA and protein measurements on the 880 

respective mRNA abundances (ANOVA test). D) Venn diagrams displaying the 881 
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overlap between proteins affected by all types of mutations and proteins affected by 882 

frameshift only mutations at different confidence levels (top panel) and the overlap 883 

between proteins and mRNAs affected by frameshift mutations at p-value<0.05 884 

(bottom panel). E) STRING network of the proteins down-regulated by frameshift 885 

mutations (permutation based FDR<0.1). F) Overrepresentation of Pfam domains 886 

(left panel) and PANTHER protein classes (right panel) for proteins negatively 887 

affected by mutations. G) Volcano plot summarizing the effect of recurrent copy 888 

number alterations on the protein abundances of the contained genes (binary data, 889 

ANOVA test). Red and blue points highlight genes with amplifications and losses 890 

respectively. Enlarged points highlight genes at FDR<10%. The bar plot (bottom 891 

panel) illustrates the number of affected proteins per genomic locus. Red and blue 892 

bars indicate amplifications and losses respectively. H) Distributions of the Pearson’s 893 

correlation coefficients for CNA to mRNA (red) and CNA to protein (green) 894 

correlations considering all genes across 38 cell lines with normalized log2 copy 895 

number values (source: Cancer Cell Line Encyclopedia). I) Self-Organizing Map 896 

trained on the Pearson correlation between CNA, mRNA and protein levels per gene 897 

across the cell lines. The fan plot within each neuron displays the magnitude of each 898 

one of the three vectors. Three main regulatory routes can be distinguished: good 899 

concordance between the three levels (left side cluster), CNAs corresponding to 900 

mRNAs but buffered at the protein level (top-middle cluster) and proteins well 901 

corresponding to mRNA irrespective of the presence of CNAs (bottom right cluster).   902 

 903 

 904 

 905 

 906 

 907 

 908 
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Figure 4 909 

The consequences of mutations on protein complexes. A) Correlations networks 910 

filtered for known STRING interactions of proteins affected by mutations at p-911 

value<0.05. The font size is proportional to the -log10(p-value) and the font colour 912 

displays the effect of the mutations on protein abundances (blue=negative, 913 

red=positive). CORUM interactions are highlighted as green thick edges and 914 

representative protein complexes are labelled. B) Boxplots illustrating the association 915 

of ARID1A driver mutations with lower levels of the ARID1A complex. C) Protein 916 

abundance correlation network of the ARID1A, ARID2 and PBRM1 modules. Green 917 

edges denote known STRING interactions and the edge thickness is increasing 918 

proportionally to the interaction weight. The node colour displays the mRNA-to-919 

protein Pearson correlation and the size of the nodes shows the protein variation. D) 920 

Heatmap summarizing the protein abundance log2fold-change values in the 921 

knockout clones compared to the WT clones for the proteins in the ARID1A, ARID2 922 

and PBRM1 modules. E) KEGG pathway and CORUM enrichment analysis for the 923 

proteomic analysis results of ARID1A, ARID2 and PBRM1 CRISPR knockouts in 924 

human iPS cells.  925 

 926 

Figure 5 927 

Proteome-wide quantitative trait loci (pQTL) analysis of cancer driver genomic 928 

alterations. A) Identification of cis and trans pQTLs in colorectal cancer cell lines 929 

considering colorectal cancer driver variants. The p-value and genomic coordinates 930 

for the most confident non-redundant protein-variant association tests are depicted in 931 

the Manhattan plot. B) Replication rates between independently tested QTL for each 932 

phenotype pair using common sets of genes and variants (N=6,456 genes). C) 933 

Representation of pQTLs as 2D plot of variants (y-axis) and associated genes (x-934 

axis). Associations with q<0.3 are shown as dots coloured by the beta value (red: 935 

positive association, blue: negative association) while the size is increasing with the 936 
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confidence of the association. Cumulative plot of the number of associations per 937 

variant is shown below the 2D matrix. 938 

 939 

Figure 6 940 

Protein complexes associated with MSI. A) Heatmap of MSI-high associated proteins 941 

(Welch t-test, permutation based FDR<0.05). Columns represent proteins sorted 942 

horizontally based on color-coded modules and rows correspond to cell lines. The 943 

modules are labelled by significantly enriched terms on the right panel. B) STRING 944 

network of interconnected MSI-high associated proteins. The nodes are color-coded 945 

by module and distinct complexes are highlighted. Nodes with black outline have 946 

been previously found with MSI events in colorectal cancer by Kim et al.  947 

 948 

Figure 7 949 

Proteomics subtypes of colorectal cancer cell lines and drug associations. A) Cell 950 

lines are represented as columns, horizontally ordered by seven color-coded 951 

proteomics consensus clusters and aligned with microsatellite instability (MSI), 952 

published colorectal cancer subtypes by DeMelo classification, HNF4A protein 953 

abundance, cancer driver genomic alterations, differentially regulated proteins, 954 

selected enriched KEGG pathways, differentially regulated colorectal cancer proteins 955 

and differentially regulated phosphopeptides. The heatmap of the differentially 956 

regulated proteome was divided into 50 color-coded clusters. Enriched terms for 957 

each cluster are shown on the left. B) The number of drugs for which predictive 958 

models (i.e. models where the Pearson correlation between predicted and observed 959 

IC50s exceeds r > 0.4) could be fitted is stratified per data type (top panel). 960 

Predictive models for more drugs are found by the use of proteomics data. A 961 

heatmap indicating for each drug and each data type whether a predictive model 962 

could be fitted (bottom panel). Drugs for which no predictive model could be fitted 963 

using any data type were omitted. Most drugs were specifically predicted by one 964 

data type. Examples of predictive models for each of the four data types are 965 
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highlighted. C) The number of drugs where response was specifically predicted by 966 

one molecular data type stratified by each of the four molecular data types and by 967 

four classes defined based on drug target and biological activity.  968 

 969 

 970 

Supplementary figures legends  971 

 972 

Figure S1 973 

Proteome and phosphoproteome coverage. A) Workflow for quantitative global 974 

proteome and phosphoproteome analysis. 50 colorectal cancer cell lines (COREAD) 975 

were analysed using TMT-10plex in seven multiplex sets. The SW48 cell line was 976 

used as the reference sample in each set. Biological replicates of MDST8 cell line 977 

were included in two different sets and the 7th set corresponds to a biological 978 

replicate of the 6th set. These were used to evaluate the normalization and the batch 979 

effect correction methods. B) Number of protein groups (left panel) and unique 980 

phosphopeptides (right panel) identified per multiplex set are depicted as blue bars 981 

and cumulative number of identifications shown as red lines. C) Box plots of 982 

normalized log2Ratio values per cell line. D) Heatmap of the TMT scaled S/N values 983 

of the identified mutant peptides shown as rows. The columns represent the 984 

COREAD cell lines sorted from the least mutated (left) to the most mutated (right) 985 

cell line. E) Two example identification spectra of mutant peptides from KRAS and 986 

CTNNB1 along with the TMT quantification profiles. F) Box plots of Pearson 987 

correlation coefficients between un-related samples (All), paired samples from the 988 

7th replicate batch, the MDST8 replicate samples and inter-laboratory replicates for 989 

six cell lines from McAlister et al. G) Box plots of the mRNA to protein Pearson 990 

correlation between unrelated and paired cell lines. H) Scatter plot of protein 991 

variation versus mRNA variation expressed as median-normalized standard 992 

deviation (SD) across the cell lines. 993 

 994 
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Figure S2 995 

Global distributions of gene-to-gene correlations. A) Distributions of Spearman’s 996 

correlation coefficients between protein-protein pairs (left panel) and mRNA-mRNA 997 

pairs (right panel) for all pairs and for pairs with known relationships in the CORUM 998 

database. B) Correlation network of the WGCNA modules using the eigengene 999 

profiles (Pearson>0.46, Benj. Hoch. FDR<0.01). Nodes represent WGCNA modules 1000 

labelled with enriched terms (GO-Slim, KEGG, CORUM, GSEA, ChEA, ENCODE 1001 

and Pfam) and are color-coded by ReactomeFI clusters. The size of the nodes is 1002 

proportional to the number of proteins in the module. Transcriptionally controlled 1003 

processes are highlighted with orange font and the processes with enriched 1004 

transcription factors are outlined. Black thick edges highlight examples of 1005 

associations between biological processes or protein complexes.  1006 

 1007 

Figure S3 1008 

Transcriptome-to-proteome correlation per protein class, protein modules correlation 1009 

plot and phosphorylated pathways. A) Gene-level mRNA-to-protein Pearson 1010 

correlations ranked by lowest to highest value. PANTHER protein classes with 1011 

negative or positive enrichment relatively to the mean of all mRNA-to-protein 1012 

correlations are displayed. B) Box plots illustrating the mRNA-to-protein correlation 1013 

for proteins characterized as exponentially degraded (ED) and non-exponentially 1014 

degraded (NED) by McShane et. al. 2016. C) Scatter plot illustrating the correlation 1015 

between tRNA methyltransferases and eukaryotic translation elongation factors. D) 1016 

Enriched KEGG pathways by DAVID analysis of all quantified phosphoproteins. E) 1017 

The distributions of Pearson coefficients for randomized and matched pairs of 1018 

phosphopeptide abundances versus protein abundances.  1019 
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 1022 

Figure S4 1023 

De novo prediction of phosphorylation networks. A) Correlation network of 213 1024 

variable phosphopeptides (with protein abundance regressed out) belonging to 144 1025 

non-redundant kinases and the 787 most variable phosphopeptides of all other types 1026 

of proteins (significant Pearson correlations displayed in the network were filtered for 1027 

Benjamini-Hochberg adjusted p-value<0.05). The nodes are enlarged proportionally 1028 

to the number of direct edges and are color-coded based on ReactomeFI clustering. 1029 

Protein kinases are highlighted with bold font. B) Scatter plots of two significantly 1030 

correlating phosphoprotein pairs (VRK3-H2AFX and MAPK1-MAPK3) for which the 1031 

respective protein levels displayed insignificant correlation. C) Snapshots of the 1032 

MAPK and cell cycle KEGG pathways highlighting (pink) significantly correlating 1033 

phosphorylations. The Pearson correlation for each association is shown below the 1034 

pathways.  1035 

 1036 

Figure S5 1037 

The effects of mutations on protein phosphorylation. A) Volcano plot summarizing 1038 

the direct effects of mutations on protein phosphorylation. B) Box plots illustrating the 1039 

differential phosphorylation between mutated and wild-type cells considering 1040 

colorectal cancer driver mutations. C) The respective un-differentiated protein 1041 

abundances.   1042 
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Figure S6 1048 

Identification of mutations that cause loss of correlation stoichiometry and expression 1049 

quantitative trait loci analysis of cancer driver genomic alterations. A) Line plot 1050 

displaying the abundance profile of the proteins in the PBRM1 module. The top bar 1051 

indicates the total number of mutated genes within the module across the cell lines. 1052 

B) Scatter plots of protein pairs in which specific mutation cause severe divergence 1053 

from highly correlating profiles. C) Identification of cis and trans eQTLs in colorectal 1054 

cancer cell lines considering cancer driver variants. The p-value and genomic 1055 

coordinates for the most confident non-redundant mRNA-variant association tests 1056 

are depicted in the Manhattan plot. D) Representation of eQTLs as 2D plot of 1057 

variants (y-axis) and associated genes (x-axis). Associations with q<0.3 are shown 1058 

as dots coloured by the beta value (red: positive association, blue: negative 1059 

association) while the size is increasing with the confidence of the association. 1060 

Cumulative of the number of associations per variant is plotted below the 2D matrix. 1061 

E) Selected examples of protein networks and individual proteins with pQTLs 1062 

functionally associated with the cancer variants.  1063 

 1064 

Figure S7 1065 

Consensus clustering of colorectal cancer cell lines and drug response models for 1066 

each drug target class and for each data type. A) Proteome clusters were derived 1067 

based on consensus clustering. Optimal classification of the cell lines based on the 1068 

proteome quantified across all cell lines (N=7,330) was derived by the application of 1069 

the ConsensusClusterPlus R package using 1,000 resampling repetitions in the 1070 

range of 2 to 10 clusters. The consensus matrices for target values k=5,6 and 7 are 1071 

visualized (top left panel) along with the empirical cumulative distribution function 1072 

(CDF) plot which indicates the k at which the distribution reaches an approximate 1073 

maximum (top right panel). Cluster-consensus plot displaying the mean of all 1074 

pairwise consensus values between a cluster’s members at each k. Balanced mean 1075 

consensus values are obtained at k=7. B) Overlap of the proteomics subtypes with 1076 
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tissue level classifications. C) Heatmap showing the proteomic signature associated 1077 

with response to Etoposide. D) Gene-level mRNA-to-protein Pearson correlation for 1078 

genes associated with drug response, for drugs that could be predicted by both gene 1079 

expression and proteomics data (overlapping) or for drugs that could only be 1080 

predicted gene expression or proteomics (non-overlapping). E) The number of drugs 1081 

where response was specifically predicted by one molecular data type, stratified by 1082 

each of the four molecular data types and by the 21 drug classes defined by Iorio et 1083 

al. (2016).  1084 

 1085 
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