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Abstract

Although genetic correlations between complex traits provide valuable insights into

epidemiological and etiological studies, a precise quantification of which genomic re-

gions contribute to the genome-wide genetic correlation is currently lacking. Here, we

introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to

genetic variation at a small region in the genome. Our approach only requires GWAS

summary data and makes no distributional assumption on the causal variant effects

sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples.

We analyzed large-scale GWAS summary data across 35 complex traits, and identified

27 genomic regions that contribute significantly to the genetic correlation among these

traits. Notably, we find 7 genomic regions that contribute to the genetic correlation

of 12 pairs of traits that show negligible genome-wide correlation, further showcasing

the power of local genetic correlation analyses. Finally, we leverage the distribution

of local genetic correlations across the genome to assign putative direction of causality

for 15 pairs of traits.
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Introduction

Genomic regions that harbor variants contributing to multiple traits provide valuable

insights into the underlying biological mechanisms with which genetic variation impacts

complex traits1,2,3,4,5,6,7. Therefore, both the identification of new such regions as well as

quantifying the correlation in causal effects at known shared regions, is of great importance

in epidemiological and etiological studies. For example, genetic variants associated with

multiple traits in genome-wide associations studies (GWAS), can be used as instrumental

variables in Mendelian randomization analyses to identify causal relationships among com-

plex traits7,8,9,10. Unfortunately many risk variants are left undetected by existing GWAS

due to a combination of high polygenicity (i.e. many variants of small effects) and sample

sizes which limits the power to detect genetic variants of small effect11. To improve accuracy

at sub-GWAS significant loci, recent works1,2 proposed to utilize the posterior probability

of two traits sharing a causal variant at each locus to detect genetic overlap. Although

powerful in detecting shared genetic risk variants, the posterior probability does not convey

the direction or magnitude of the genetic effect at the overlapped loci1,2. Alternative ap-

proaches have used genetic correlation (i.e. the correlation between the causal effects), that

summarizes both direction and magnitude of effects, to gain insights into genetic overlap

of complex traits12,13. Due to polygenicity assumptions, genetic correlation has been only

investigated in genome-wide context by aggregating information across all variants in the

genome14,15. In this work, we investigate local genetic correlation (i.e. correlation between

a pair of traits only due to genetic variants from a small region in the genome) as means to

dissect the genetic sharing between pairs of traits.

Traditional methods to estimate genetic correlation between a pair of traits rely on

pedigree or family data, requiring phenotype measurements of the traits on the same set of

individuals13,14. While more recent bivariate-REML15 and HE-regression16 methods provide

the convenience to estimate genetic correlation from genotype and phenotype data of unre-

lated individuals, they are hindered by the lack of availability of large-scale individual-level

data due to privacy concerns12,14,17,18. A recently proposed method, cross-trait LD score re-

gression (LDSC) circumvented this hindrance by estimating genetic correlation from GWAS
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summary data, which are publicly available from most large GWAS consortia19,20, and cre-

ated an atlas of genetic correlation across multiple human complex traits and diseases14.

However, due to model assumptions on trait polygenicity, cross-trait LDSC has been only

applied for estimating genome-wide genetic correlation12,14, which quantifies the direction

and magnitude of genetic sharing across the entire genome14.

In this work we introduce ρ-HESS, a method to estimate the local genetic correlation

between a pair of traits at each region in the genome from GWAS summary data, while

accounting for overlapping GWAS samples and linkage disequilibrium (LD). Our method

estimates the contribution to the genetic correlation of typed variants for each LD block in

the genome; we utilize approximately independent LD blocks of roughly 1.5Mb in size on the

average21. We make no distributional assumption on the causal effect sizes by treating them

as fixed quantities, which allows for a broad range of causal genetic architectures at small

regions in the genome. Our approach can be viewed as a natural extension to pairs of traits of

recently proposed methods that quantify local SNP-heritability from GWAS summary data

under a fixed effects model18. Through extensive simulations, we demonstrate that given in-

sample LD, ρ-HESS yields unbiased estimates of local genetic covariance, and approximately

unbiased estimates of local genetic covariance and correlation when LD is estimated from

external population reference panels such as the 1000 Genomes data22.

We analyzed GWAS summary data across 35 complex traits and identified 234 pairs

of traits with significant genome-wide genetic correlation; these include previously reported

correlations (e.g., lipid traits) as well as correlations between traits not reported before (e.g.,

blood related traits). Second, we identify 27 genomic regions that show significant local

genetic covariance as well as local SNP-heritability across 29 pairs of traits. For example,

ρ-HESS estimates a local genetic correlation of -0.95 (s.e. 0.16) for the region chr2:21-23M,

which harbors the APOB gene for HDL and TG. Notably, 7 (out of the 27) significantly

correlated genomic regions across 12 pairs of traits are significant in local analyses, although

the genome-wide genetic correlation is not significantly different from 0. For example, when

considering genetic correlation between mean cell volume (MCV) and platelet count (PLT),

region chr6:134-136M shows a local genetic correlation of 1.0 (s.e. 0.16), whereas the genome-

wide genetic correlation is negligible (0.01 s.e. 0.04). This shows that these traits harbor
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genetic overlap at a local level (e.g., due to pleiotropy and/or shared pathways) and empha-

size the power of local correlation analysis.

Having estimates of local genetic correlation at every region in the genome allows us to

perform bi-directional analyses to assign putative direction of causality for a pair of traits.

Intuitively, all loci that harbor variants that contribute to one trait will have a consistent

direction of effect on the second trait under a causal model, whereas under no causal model

we expect no consistency in the direction of genetic effects (see Figure 1). This extends

previously proposed works2 from individual variant effects to local genetic covariances. We

assign putative direction of causality for 15 pairs of traits. Reassuringly, our analyses show

that height causally decreases body mass index (BMI), and that BMI causally increases

triglyceride (TG), consistent with expectation and previous works2,3. We also identify pu-

tative causality between previously unreported traits. For example, our analyses suggest

that schizophrenia (SCZ) causally increases the risk for ulcerative colitis (UC), providing

possible explanation to why prevalence of UC is higher in SCZ patients but not vice versa23.

Interestingly we also find evidence of age at menarche (AM) causally decreases the level of

triglyceride (TG). Overall, our results motivate further work in confirming putative causality

direction among these traits.

Results

Overview of methods

Genetic correlation measures the similarity between a pair of traits driven by genetic

variation (e.g., correlation on causal effect sizes), and enjoys wide applications in understand-

ing relations between complex traits12,24,25. Genetic correlation is traditionally estimated as

a single measure across the entire genome to capture the contribution of genetic variation

across the entire genome to the correlation between phenotypes. Here, we introduce local

genetic correlation, the similarity between pairs of traits driven by genetic variation localized

at a specific region in the genome (e.g., one LD block), as a principled way to dissect the

genome-wide genetic correlation between traits. For example, a high genome-wide genetic
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covariance can be driven by one or a few genomic regions containing a shared risk variant, or

by a large number of regions each with a small contribution (see Figure 1). The distribution

of local genetic covariances reflects causality relations (where all risk variants for one trait

are risk variants for the other trait) and/or pleiotropic regions (risk variants contributing to

both traits through different pathways).

Under the assumption that true causal effects of genetic variants on the two traits are

known, the local genetic covariance between the two traits is simply βᵀV γ, where β and γ

are the causal effect vectors and V is the pairwise correlation between variants (i.e. linkage

disequilibrium, LD) (see Methods). A traditional GWAS estimates marginal effect sizes at

each variant that contain statistical noise due to finite sample size and are confounded by

LD19. We deconvolute LD and account for the statistical noise to estimate the local genetic

covariance as:

ρ̂g,local “
n1n2β̂

ᵀ

gwasV
:γ̂gwas ´ nsqρ

n1n2 ´ nsq
. (1)

Here, β̂gwas and γ̂gwas are the vectors of standardized marginal GWAS effect sizes, n1 and

n2 the sample size of each GWAS study, ns the number of samples shared across the two

GWASs, q the rank of the LD matrix V , ρ the total phenotypic correlation between the two

traits and V : is Moore-Penrose pseudoinverse of the LD matrix (V ). The variance of the

estimator follows from bilinear form theory, and has magnitude approximately on the order

of q
n1n2

(see Methods). To obtain local genetic correlation, we standardize the covariance as

ρ̂g,local{
b

ĥ2φ,g,localĥ
2
ψ,g,local , where ĥ2˚,g,local are the local SNP-heritability18 estimates for the

two traits.

When in-sample LD matrix (V ) is available, Equation (1) yields an unbiased estimator of

local genetic covariance (see Results). When individual-level genotype data is not available,

we use LD matrix (V̂ ) estimated from external reference panels (e.g., 1000 Genomes Project).

The small sample size of external reference panels creates statistical noise in the estimated

external reference LD matrix V̂ and results in biased estimates of local genetic covariance

and correlation. To account for the statistical noise, we apply truncated-SVD regularization

(see Methods).
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Accuracy of local correlation estimation in simulations

We evaluated the performance of ρ-HESS through extensive simulations across various

disease architectures. First, we assessed the performance of our approach across varying

simulated local genetic covariances. As expected, when in-sample LD matrix is available,

ρ-HESS provides an unbiased estimate of local genetic covariance (see Figure 2). For com-

pleteness, we also adapted cross-trait LDSC14 for local estimation and observed biased re-

sults; this is expected as cross-trait LDSC is not designed for local estimation under fixed

effects at causal variants. For example, for simulated local genetic covariance of 1.7ˆ 10´4,

ρ-HESS yields an estimate of 2.0ˆ10´4 ps.e. 4.3ˆ10´5q, whereas cross-trait LDSC yields an

estimate of 6.0ˆ 10´4ps.e. 3.4ˆ 10´5q. Second, we assessed the performance of local genetic

correlation (i.e. the local genetic covariance divided by the square root of their respective lo-

cal heritability estimates). Overall, the local genetic correlation estimates are approximately

unbiased; e.g., for a simulated local genetic correlation of 0.35 ρ-HESS yielded an estimate

of 0.22 (s.e. 0.19) (see Figure 2). Third, we quantified the performance of our approach in

the case when in-sample LD is unavailable and needs to be estimated from external reference

panels. We observe that the ρ-HESS estimates of local genetic covariance and correlation are

still approximately unbiased (see Figure 2) when truncated-SVD is used for regularizing the

LD matrix (see Methods). Noticeably, the standard errors of ρ-HESS estimates also decrease

due to the truncated-SVD regularization. Finally, we compared the performance of local ge-

netic correlation estimation in simulations with different degrees of polygenecity. Overall,

we observe that ρ-HESS is not sensitive to the underlying polygenicity of the trait, and

provides nearly unbiased and consistent estimates of local genetic covariance and correlation

(see Figure 2).

Partitioning the genetic correlation across local genomic regions

We analyzed GWAS summary data of 35 complex traits to obtain local genetic covari-

ances/correlations at 1,703 approximately LD-independent regions in the genome („1.5Mb

on the average)21. First, we aggregated the local estimates into genome-wide estimates of

genetic correlation (see Methods, Supplementary Figure 2-8) and found a high degree of
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concordance with genetic correlation estimated by cross-trait LDSC regression (R “ 0.74,

see Figure 3, Supplementary Figure 1). We note that our estimator provides consistently

lower estimates than LDSC for pairs of traits from the same consortium where our approach

assumes full sample overlap and therefore is more conservative (see Discussion). We report

234 pairs of traits with significant genome-wide genetic correlation after correcting for 595

pairs investigated (p ă 0.05{595). These include previously reported genetic correlations,

e.g. body mass index (BMI) and triglyceride (TG), as well as complex traits that have not

been studied before using genetic correlation, e.g. type 2 diabetes (T2D) and ulcerative

colitis (UC).

Next, we searched for genomic regions that disproportionately contribute to the ge-

netic correlation of the 35 analyzed traits; we excluded the HLA region due to complex

LD patterns. We identify 27 genomic regions that show significant local genetic correla-

tion (two-tailed p ă 0.05{1703{595) as well as significant local SNP-heritability (one-tailed

p ă 0.05{1703{35) (see Figures 4, 5, Supplementary Figure 9, Supplementary Table 1 and 2).

22 out of 27 regions contain GWAS significant SNPs for both traits, whereas 5 of these loci

contain GWAS significant hits for only one or none of traits and can be viewed as new risk

regions for these traits. For example, the estimate of local genetic correlation between HDL

and TG at chr11:116-117Mb is -0.82 (s.e. 0.07), suggesting highly shared genetic architecture

at this locus for HDL and TG. Indeed, the locus chr11:116-117M harbors the APOA gene,

which is known to be associated with multiple lipid traits26.

Since genetic correlation is an aggregated manifestation of local genetic covariance, for

pairs of traits with highly positive or negative genetic correlation, we expect the distribution

of local genetic covariances to be shifted towards the positive or negative side; whereas for

pairs of traits with low genetic correlation, we expect the distribution of local genetic co-

variances to be centered around zero (see Figure 6,7,8). Indeed, pairs of traits with higher

genome-wide genetic correlation tend to harbor more loci with significant local genetic covari-

ance (see Figure 4). For instance, only one locus exhibits significant local genetic covariance

for the pair of traits age at menarche (AM) and height (rg “ 0.13, s.e. 0.01), whereas four

loci show significant local genetic covariance for the pair of traits LDL and TG (rg “ 0.44,

s.e. 0.02).
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Local correlations for pairs of traits with negligible genome-wide

correlation

Although many complex traits are known to share risk loci, some pairs of traits show

negligible genome-wide genetic correlation. For example HDL and LDL share several GWAS

risk loci26 but the genome-wide genetic correlation is negligible (-0.05, s.e. 0.02)14(see Figure

3). The absence of significant genome-wide genetic correlation between these pairs of traits

can be attributed to either symmetric distribution of local genetic covariance (positive local

genetic covariance cancels out negative local genetic covariance, see Figure 1) and/or lack of

power to declare significance for genome-wide genetic correlation. Thus, we hypothesize that

at the locus-specific level, many loci may manifest significant local genetic covariance even

if the genome-wide genetic correlation between a pair of traits is not significant. Indeed,

9 genomic regions show significant local genetic correlation (two-tailed p ă 0.05{1703) for

HDL and LDL (see Figure 7). Some of these loci, e.g. chr2:21M-23M, chr11:116M-117M, and

chr19:44M-46M, harbor genes (APOB, APOA, and APOE, respectively) that are well known

to be involved in lipid genetics26,27,28. Across all pairs of traits with non-significant genome-

wide correlation, we identify 7 regions across 12 pairs of traits with significant local genetic

covariance (two-tailed p ă 0.05{1703{595) as well as significant local SNP-heritability (one-

tailed p ă 0.05{1703{35) (see Figure 5, Supplementary Table 2). Most of these loci also show

significant local genetic correlation, suggesting high similarity in the effects of genetics on

traits at these loci (see Figure 5, Supplementary Table 2). For example the region chr6:134-

136M harbors the blood-trait-associated gene HBS1L29,30, and contributes to local genetic

covariance across many blood traits (MCH, MCV, RBC, and PLT).

Putative causal relationships between complex traits

The distribution of local genetic correlations across the genome can be leveraged to infer

putative direction of causality across pairs of traits. We illustrate this approach through 4

examples of putative causality directions (see Figure 9). First, consider the example of

BMI and TG, genetically correlated genome-wide (r̂g=0.53, s.e. 0.02). The local genetic

correlation restricted only to loci that harbor a GWAS hit for BMI (and no GWAS hit for
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TG) is significant r̂g,local,BMI=0.52, s.e. 0.05 and consistent with genome-wide correlation. In

contrast, the local genetic correlation estimated at loci that harbor GWAS hits for TG (and

no GWAS hits for BMI) is not significantly different from 0 (r̂g,local,TG=-0.020, s.e. 0.053).

This shows that genetic variants that contribute to BMI have a consistent effect on TG

whereas genetic variants associated to TG do not have a consistent effect on BMI. These two

observations provide evidence favoring the model in which BMI causally increases TG (see

Figure 9). Second, the pattern where one of the conditional correlations is not significant

needs not be just in the positive direction. For example, BMI and height are genome-wide

genetically correlated at (r̂ = -0.08, s.e. 0.01), whereas r̂g,local,height is significantly negative

(-0.15, s.e. 0.02), and r̂g,local,height close to zero (-0.01, s.e. 0.04). This supports a model

where height causally decreases BMI (as expected, see Figure 9). We note, however, that

local genetic correlations between can also be induced by shared biological pathways driven

by genetic variations at these loci and/or an unobserved confounder; for example, shared

genetic variants impacting a sub-phenotype that is pleiotropic for both traits could induce

local genetic correlations consistent with a causal model. Thus, we exercise caution when

utilizing the local genetic correlations to identify putative causality. Finally, the conditional

correlation approach cannot distinguish between putative causality (or other complex model

that includes unobserved phenotypes) when both conditional correlations are significant or

when both correlations are not significantly different from 0 (e.g., AM-BMI and MCH-SCZ,

see Figure 9)

Through our bi-directional analyses (see Methods), we identified a total of 15 pairs of

traits that support a causal directional effect (see Figure 10, Supplementary Figure 10-13).

As an example, our bi-direction analyses provide evidence favoring the model, in which age

at menarche (AM) causally decreases triglyceride (TG) level (r̂g,local,AM “ ´0.28 s.e. 0.06,

r̂g,local,TG “ 0.04 s.e. 0.05), suggesting that the association observed between AM and TG

is likely induced by the effect of AM on TG31,32. Previous work also shows that association

exists between schizophrenia (SCZ) and ulcerative colitis (UC), however, the direction of

causality is uncertain23. Our bi-directional analyses favors a model in which SCZ causally

increases the risk of UC (r̂g,local,SCZ “ 0.30 s.e. 0.05, r̂g,local,UC “ ´0.02 s.e. 0.07). This result

may provide insights into the previous observations of no increase in prevalence of SCZ in UC
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patients33. However, our result does not rule out other causal models, for example, it could

be that shared genetic variants drive an immune system phenotype that is pleiotropic for both

SCZ and UC, inducing the relationship between r̂g,local,SCZ and r̂g,local,UC
34,35. Interestingly,

we also observe that our bi-directional analyses support a model in which years of education

(EY) causally decreases hemoglobin level (HB), LDL, TG, and the risk for rheumatoid

arthritis (RA) (see Figure 10). We note that these results are consistent with previous

conclusions on the causal effect of education on health36,37. However, we emphasize that

education attainment (or other studied traits) may be confounded by other factors such as

social status and that one should exercise caution when interpreting these results. Finally,

our bi-directional analyses over local genetic correlation also suggest that BMI likely causally

increases triglyceride (TG) and that height causally decreases BMI, consistent with our

expectations and previous findings2,3.

Discussion

We have described ρ-HESS, a method to estimate local genetic covariance and corre-

lation from GWAS summary association data. Through extensive simulations, we demon-

strated that our method is approximately unbiased and provides consistent results irrespec-

tive of causal architecture. We then applied our method to large-scale GWAS summary

association data of 35 complex traits. Compared with cross-trait LDSC, our methods identi-

fied considerably more pairs of traits displaying significant genome-wide genetic correlation

likely because of the truncated-SVD regularization of the LD matrix, which decreases the

standard error of the estimates. We identify genomic regions that are significantly correlated

across pairs of traits regardless of the significance of genome-wide correlation. Finally, we

performed bi-directional analyses over the local genetic covariances, and report plausible

causal relationships for 15 pairs of traits.

We conclude with several limitations of our methods highlighting areas for future work.

First, our estimator requires phenotype correlation between two traits, as well as the number

of shared individuals between the two GWASs. We estimate the phenotype correlation

through cross-trait LDSC assuming full sample overlap between GWAS within the same
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consortium and no sample overlap between GWAS across two consortium. Although we

believe this is supported by the data we analyzed in this study, mis-specifications in the

overlapping sample sizes could introduce biases. Second, we emphasize that our bi-directional

analyses only identify putative causality and is not proof of causality relations; exact inference

of causal relations is complicated by unobserved confounders such as socioeconomic status

and/or biological pathways. Furthermore, most of the GWAS summary association data

are adjusted for covariates such as age, gender, to increase statistical power38, and previous

works have shown that adjusting for covariates can potentially lead to false positives39.

In the bi-directional analyses over local genetic correlation, covariate-adjusted summary

association data can potentially lead to false inference of causality. However, the extent

to which covariate-adjusted summary association data lead to false discovery of causality

remains unclear, and we leave detailed investigation of this issue as future work. Third,

in our real data analyses, we made the assumption that the loci are independent of each

other. In reality however correlations may exist across adjacent loci due to long range LD,

and can lead to biased estimates. Nevertheless, we note that previous works have indicated

the effect of LD leakage to be minimal, and we conjecture that this statement still hold in

estimating local genetic covariance. Lastly, we uses truncated-SVD to regularize LD matrix

and to reduce standard error in the estimates of local genetic covariance, at the cost of

introducing bias. Currently, we use a fixed number of eigenvectors in the truncated-SVD

regularization, across all the loci. However, this approach may not be optimal for genomic

regions with different LD structure, and leave a principled approach of estimating the number

of eigenvectors as future work.
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Methods

Local genetic correlation under fixed-effect model

Let φ “ xᵀβ` ε and ψ “ xᵀγ` δ be two traits measured at an individual, standardized

so that Erφs “ Erψs “ 0 and Varrφs “ Varrψs “ 1, where β,γ P Rp are the fixed effect

size vectors for the two traits; x P Rp, the genotype vector of the individual at p SNPs,

standardized so that Erxs “ 0, and Varrxs “ V , the LD matrix; and ε, δ, environmental

effects independent of x, β, γ, with Erεs “ Erδs “ 0, Varrεs “ σ2
ε , Varrδs “ σ2

δ , and

Covrε, δs “ ρe. Under these assumptions, one can decompose the phenotypic covariance, ρ,

between φ and ψ as

ρ “ Corrφ, ψs “ Covrφ, ψs “ Erφψs ´ ErφsErψs

“ Erpxᵀβ ` εqpxᵀγ ` δqᵀs “ βᵀ Erxxᵀ
sγ ` Covrε, δs “ βᵀV γ ` ρe,

(2)

where ρg “ β
ᵀV γ is the genetic covariance between the two traits. For standardized traits,

phenotypic covariance coincides with phenotypic correlation. Thus, given the true effect size

vectors, β, γ, and the LD matrix V , one can easily obtain ρg. We define genetic correlation,

rg, as rg “
ρg?
h2gφh

2
gψ

, i.e. genetic covariance standardized by square root of SNP-heritability

of the two traits.

Estimating local genetic covariance from GWAS summary data

In two GWASs involving n1 individuals for trait 1 (φ), n2 individuals for trait 2 (ψ),

and ns shared individuals, we assume

»

–

φ

φs

fi

fl “

»

–

Y

Xs

fi

flβ `

»

–

ε

εs

fi

fl ,

»

–

ψ

ψs

fi

fl “

»

–

Z

X 1
s

fi

flγ `

»

–

δ

δs

fi

fl , (3)

where pφ,φsq P Rn1 and pψ,ψsq P Rn2 are the standardized trait values of all individuals

in each GWAS; pY ,Xsq P Rn1ˆp, pZ,X 1
sq P Rn2ˆp, column standardized genotype matrices

of all individuals in each GWAS, where Xs and X 1
s represent the genotype matrices for the

same set of individuals and SNPs but standardized differently in each GWAS; pε, εsq P Rn1 ,
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pδ, δsq P Rn2 , environmental effects of all individuals in each GWAS. We use the subscript

‘s’ to represent individuals shared by both GWASs. We further assume that Erεs “ Erδs “

Erεss “ Erδss “ 0, Varrεs “ Varrεss “ σ2
εI, Varrδs “ Varrδss “ σ2

δI, Covrε, δs “ 0, and

Covrεs, δss “ ρeI.

In a traditional GWAS, we obtain marginal effect size estimates, β̂gwas and γ̂gwas, as

β̂gwas “
1

n1

rY ᵀ Xᵀ
ss

»

–

φ

φs

fi

fl “
1

n1

pY ᵀY `Xᵀ
sXsqβ `

1

n1

pY ᵀε`Xᵀ
sεsq

γ̂gwas “
1

n2

“

Zᵀ X 1ᵀ
s

‰

»

–

ψ

ψs

fi

fl “
1

n2

`

ZᵀZ `X 1ᵀ
sX

1
s

˘

γ `
1

n2

`

Zᵀδ `X 1ᵀ
sδs

˘

.

(4)

Assuming individuals in both GWASs are drawn from the same population with LD matrix

V , we have β̂gwas „ N
´

V β, σ
2
ε

n1
V
¯

, γ̂gwas „ N
´

V γ,
σ2
δ

n2
V
¯

. We also find

Covrβ̂gwas, γ̂gwass “ Erβ̂gwasγ̂
ᵀ
gwass ´ pV βqpV γq

ᵀ
“

ρe
n1n2

ErXᵀ
sX

1
ss “

ρens
n1n2

V , (5)

where the last equality follows from Isserlis’ theorem40.

Under infinite sample sizes, Varrβ̂gwass “ Varrγ̂gwass “ Covrβ̂gwas, γ̂gwass “ 0, and we

have β “ V ´1β̂gwas, γ “ V
´1γ̂gwas. Thus, local genetic covariance, ρg,local, can be computed

as

ρg,local “ pβ̂
ᵀ

gwasV
´1
qV pV ´1γ̂gwasq “ β̂

ᵀ

gwasV
´1γ̂gwas. (6)

However, when sample sizes are finite, from bilinear form theory41, the covariance between

β̂gwas and γ̂gwas creates bias, resulting in

Erβ̂
ᵀ

gwasV
´1γ̂gwass “ β

ᵀV γ `
ρe
n1n2

tr pV q “ βᵀV γ `
ppρ´ ρg,localqns

n1n2

, (7)

Correcting for bias, we arrive at the unbiased estimator

ρ̂g,local “
n1n2β̂

ᵀ

gwasV
´1γ̂gwas ´ nspρ

n1n2 ´ nsp
. (8)

For rank-deficient LD matrix V , one replaces V ´1 with the pseudo-inverse (V :) and p with
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q “ rankpV q, yielding the unbiased estimator

ρ̂g,local “
n1n2β̂

ᵀ

gwasV
´1γgwas ´ nspρ

n1n2 ´ nsp
. (9)

Thus, in order to obtain an unbiased estimate of genetic covariance between a pair of traits,

one needs to know their phenotypic correlation. When phenotypic correlation is not available,

one can obtain an estimate from genome-wide summary data using the LD score regression

equation14,

Erzφ,jzψ,j|ljs “

?
n1n2ρg
p

lj `
ρns
?
n1n2

, (10)

where zφ,j, zψ,j are the Z-scores of SNP j in the two traits, and lj the LD score of SNP j.

In the special case when β̂gwas and γ̂gwas are obtained for the same trait on the same

set of individuals (i.e. β̂gwas “ γ̂gwas, n1 “ n2 “ ns, ρ “ 1) Equation (8) reduces to the

local SNP-heritability estimator18. When ns “ 0 (i.e. no shared individuals between the

GWASs), the unbiased estimator is simply ρ̂g,local “ β̂
ᵀ

gwasV
´1γ̂gwas. An interpretation for

this simple formula is that in the absence of sample overlap, the covariance in the noise, ε

and δ, is 0 and does thus not introduce bias into the estimate of ρg,local.

Following bilinear form theory41, we obtain the variance of ρ̂g,local,

Varrρ̂g,locals “

ˆ

n1n2
n1n2 ´ nsp

˙2
«

ˆ

pρens
n1n2

˙2

`
σ2εσ

2
δp

n1n2
`
σ2δh

2
gφ,local

n2
`
σ2εh

2
gψ,local

n1
` 2

nsρeρg,local
n1n2

ff

(11)

For rank deficient LD matrix with rankpV q “ q, one replaces p with q in Equation (11).

Accounting for statistical noise in LD estimates

Limited sample size of external reference panels creates statistical noise in the estimated

LD matrix that biases our estimates. Following our previous work18, we apply truncated-

SVD regularization to remove noise in external reference LD. We note that β̂
ᵀ

gwasV
:γ̂gwas “

řq
i“1 si “

řq
i“1

1
wi
pβ̂

ᵀ

gwasuiqpγ̂
ᵀ
gwasuiq, where wi, ui are the eigenvalues and eigenvectors of

the LD matrix V , and q “ rankpV q. We use ŝi “
1
ŵi
pβ̂

ᵀ

gwasûiqpγ̂
ᵀ
gwasûiq, to denote the

counterpart obtained from external reference LD matrix V̂ . We show through simulations

that the bulk of β̂
ᵀ

gwasV
:γ̂gwas comes from si where i ! q and that si « ŝi for i ! q,
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thus justifying truncated-SVD as an appropriate regularization method when only external

reference LD (V̂ ) is available.

Let gpβ̂gwas, γ̂gwas, kq “
řk
i“1 ŝi “

řk
i“1

1
ŵi
pβ̂

ᵀ

gwasûiqpγ̂
ᵀ
gwasûiq, be the truncated-SVD

regularized estimates for β̂
ᵀ

gwasV
:γ̂gwas, then it can be shown that

Ergpβ̂gwas, γ̂gwas, kqs “
nskpρ´ ρgq

n1n2

`

k
ÿ

i“1

ŵipβ
ᵀûiqpγ

ᵀûiq. (12)

Assuming ŵi “ wi and ûi “ ui for i ! k, Equation (12) is a biased approximation of ρg,local,

with bias nskpρ´ρgq

n1n2
. Correcting for the bias, we arrive at the estimator

ρ̂g,local “
n1n2gpβ̂gwas, γ̂gwas, kq ´ nsρk

n1n2 ´ nsk
, (13)

which has variance

Varrρ̂g,locals “

ˆ

n1n2

n1n2 ´ nsk

˙2
«

ˆ

kρens
n1n2

˙2

`
σ2
εσ

2
δk

n1n2

`
σ2
δh

2
gφ,local

n2

`
σ2
εh

2
gψ,local

n1

` 2
nsρeρg,local
n1n2

ff

(14)

Extension to multiple independent loci

For genome partitioned into m loci, let

φ “ xᵀ
1β1 ` ¨ ¨ ¨ ` x

ᵀ
mβm ` ε

ψ “ xᵀ
1γ1 ` ¨ ¨ ¨ ` x

ᵀ
mγm ` δ,

(15)

denote the phenotype measurements of two traits at an individuals, where we assume that

SNPs in different pairs of loci are independent, i.e. Erxikxils “ 0 for all i ‰ j, k P t1, ¨ ¨ ¨ , piu,

and l P t1, ¨ ¨ ¨ , pju, where pi and pj are the number of SNPs in locus i and j. Under these

assumptions, we decompose the phenotypic covariance, ρ, between φ and ψ,

ρ “ Erpxᵀ
1β1 ` ¨ ¨ ¨ ` x

ᵀ
mβm ` εqpx

ᵀ
1γ1 ` ¨ ¨ ¨ ` x

ᵀ
mγm ` δq

ᵀ
s “

m
ÿ

i“1

βᵀ
iV iγi ` ρe, (16)
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where ρg,local,i “ βᵀ
iV iγi is the genetic covariance between the pair of traits attributed to

genetic variants at locus i. Following strategies outlined in previous sections, we arrive at

the estimator for genetic covariance at the i-th locus,

ρ̂g,local,i “
n1n2gpβ̂gwas,i, γ̂gwas,i, kq ´ nspρ´

řm
j“1,j‰i ρ̂g,local,jqki

n1n2 ´ nski
, (17)

which defines a system of linear equation involving m unknown variables and m equa-

tions. In the special case where there is no sample overlap, ns “ 0, and ρ̂g,local,i reduces

to gpβ̂gwas, γ̂gwas, kq, and can be estimated independent of all other windows. Following

bilinear form theory, we obtain variance estimate for ρ̂g,local,i as,

Varrρ̂g,local,is “

ˆ

n1n2

n1n2 ´ nski

˙2
«

ˆ

kiρens
n1n2

˙2

`
σ2
εσ

2
δki

n1n2

`
σ2
δh

2
gφ,local,i

n2

`
σ2
εh

2
gψ,local,i

n1

` 2
nsρeρg,local,i

n1n2

ff

`

m
ÿ

j“1,j‰i

ˆ

nskj
n1n2 ´ nski

˙2

Varrρ̂g,local,js

(18)

which also defines a system of linear equations with m equations and m variables.

When k1 “ ¨ ¨ ¨ “ km “ k, i.e. all loci use the same number of eigenvectors in the

truncated-SVD regularization, summing over i on both sides of Equation (17) yields

ρ̂g “
ÿ

i“1

ρ̂g,local,i “
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq ´
kns

n1n2 ´ nsk

m
ÿ

i“1

˜

r ´
m
ÿ

j“1,j‰i

ρ̂g,local,j

¸

“
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq ´
kns

n1n2 ´ nsk

m
ÿ

i“1

pρ´ ρ̂g ` ρ̂g,local,iq

“
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq `
knsm´ kns
n1n2 ´ nsk

ρ̂g ´
knsmρ

n1n2 ´ nsk
.

(19)

Solving for ρ̂g yields

ρ̂g “
n1n2

řm
i“1 gpβ̂gwas,i, γ̂gwas,i, kq ´ knsmρ

n1n2 ´ knsm
, (20)
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which has variance

Varrρ̂gs “

ˆ

n1n2

n1n2 ´ knsm

˙2 m
ÿ

i“1

Varrgpβ̂gwas,i, γ̂gwas,i, kqs. (21)

Thus, if k is chosen such that pn1n2 ´ knsmq is small (i.e. n1n2

n1n2´knsm
large), the estimate

of total genetic covariance will have large standard error. To reduce standard error in the

estimates (at the cost of some bias), we recommend choosing k such that n1n2

n1n2´knsm
is less

than 2. When testing for statistical significance, we assume that the estimates of local and

genome-wide genetic covariance and correlation follow a normal distribution.

Standardizing local genetic covariance

Standardizing local genetic covariance between a pair of traits by the square roots of

the local heritability of the two traits yields the local genetic correlation (rg,local). Whereas

genetic covariance takes into account the magnitude of the effect sizes, genetic correlation

provides a measure of similarity between the effects of SNPs on traits comparable across

different magnitudes of effect sizes. To estimate local genetic correlation for the i-th locus,

we apply the formula

r̂g,local,i “
ρ̂g,local,i

b

ĥ2gφ,local,i

b

ĥ2gψ,local,i

, (22)

where ĥ2gφ,local,i and ĥ2gψ,local,i denote the local SNP-heritability of trait φ and ψ at the i-th

locus. In simulations, we show that r̂g,local,i is approximately unbiased when both traits are

heritable at the i-th locus. In practice, however, the terms, ĥ2gφ,local,i and ĥ2gψ,local,i, can be

close to zero, greatly inflating the standard error of r̂g,local,i. Thus, we recommend estimating

local genetic correlation only at loci with significant local SNP-heritability. One can also

estimate local genetic correlation at a set of loci. For example, to estimate genetic correlation

at loci indexed by the index set C, one applies the following formula,

r̂g,C “

ř

iPC ρ̂g,local,i
b

ř

iPC ĥ
2
φ,g,local,i

b

ř

iPC ĥ
2
ψ,g,local,i

, (23)
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We estimate standard error of local genetic correlation at a single locus through a parametric

bootstrap approach42 and local genetic correlation at a set of loci through jackknife.

Simulation framework

Starting from half (202 individuals) of the EUR reference panel from the 1000 Genomes

Project22, we simulated genotype data for 50,000 individuals at HapMap343 SNPs with

minor allele frequency (MAF) greater than 5% in a 1.5Mb locus on chromosome 1 using

HAPGEN243. We used the other half of the EUR reference panel (203 individuals) to obtain

external reference LD matrices.

We simulated phenotypes from the genotypes according to the linear model φ “Xβ`ε

and ψ “Xγ`δ, whereX is the column-standardized genotype matrix. We drew the effects

of causal SNPs (βC , γC) from the distribution

N

¨

˝

»

–

0

0

fi

fl ,

»

–

h2gφ
|C|
I ρe

|C|
I

ρe
|C|
I

h2gψ
|C|
I

fi

fl

˛

‚, (24)

where C is the index set of causal SNPs, and set the effects of all other SNPs to be zero.

Here, for the convenience of simulation, we assume both traits have the same causal SNPs,

although this assumption doesn’t need to hold for ρ-HESS to be unbiased. We then drew

(ε, δ) from the distribution

N

¨

˝

»

–

0

0

fi

fl ,

»

–

p1´ h2gφqI ρeI

ρeI p1´ h2gψqI

fi

fl

˛

‚. (25)

Finally, we simulated GWAS summary statistics using methods outlined in previous sections.

For each β and γ drawn from the normal distribution, we simulated 500 sets of summary

statistics by varying ε and δ, and applied ρ-HESS to estimate genetic covariance and genetic

correlation for each set of the simulated summary statistics.
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Inferring direction of causality

We systematically search for plausible causal directions (see example 1 and 2 in Figure

9 ) across all 234 pair of traits that show significant genome-wide correlation. First, we test

whether the 95% confidence intervals, defined as 1.96 times standard error on each side of the

estimates, of r̂g,local,trait1 and r̂g,local,trait2 overlap. Then we test whether one of the confidence

intervals overlaps with 0 and the other does not. Since we employed jackknife to estimate

standard errors, for the robustness of the standard error, we restricted our bi-directional

analyses to pairs of traits for which the number of loci ascertained for GWAS risk variants

specific to both traits is greater than 10. We mark pairs of trait, for which the confidence

intervals of local genetic correlations do not overlap, as pairs of traits having putative causal

relationships, and designate the trait, for which the local genetic correlation is significantly

non-zero, as the causal trait.

Empirical data sets

We obtained GWAS summary data for 35 complex traits and diseases from 11 GWAS

consortia (see Table 1), all of which are based on individuals of European ancestry, and

have sample size greater than 20,000. We used approximately independent loci defined

in21 to partition the genome, and restricted our analyses on HapMap3 SNPs with minor

allele frequency (MAF) greater than 5% in the European population in the 1000 Genomes

data22. We also removed stand-ambiguous SNPs prior to our analyses. We follow the method

outlined in18 to estimate and re-inflate λgc, and to choose the number of eigenvectors to

include in estimating local genetic covariance and SNP-heritability. We note that although

adjustment factors are needed to correct for ascertainment bias in the estimation of local

SNP-heritability and local genetic covariance18, they are not needed in the estimation of

local genetic correlation14.
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Trait Name Abbreviation Consortium # gen corr a

within
consortium

# gen corr b

outside
consortium

Approx.
sample size

Body Mass Index44 BMI GIANT 23 (16) 19 (13) 231K
Height45 HEIGHT GIANT 17 (2) 13 (0) 241K
Hip Circumference46 HIP GIANT 21 (14) 17 (10) 144K
Waist-to-hip Ratio46 WHR GIANT 22 (16) 18 (13) 143K
Waist Circumference46 WC GIANT 23 (17) 19 (13) 153K
Haemoglobin30 HB HaemGen 15 (9) 12 (8) 51K
Mean Cell Haemoglobin30 MCH HaemGen 7 (1) 6 (1) 44K
MCH Concentration30 MCHC HaemGen 6 (4) 1 (1) 47K
Mean Cell Volume30 MCV HaemGen 10 (3) 8 (1) 49K
Packed Cell Volume30 PCV HaemGen 15 (10) 11 (8) 45K
Red Blood Cell Count30 RBC HaemGen 17 (10) 14 (8) 46K
Number of Platelets47 PLT HaemGen 10 (1) 6 (1) 67K
Fasting Glucose48 FG MAGIC 18 (10) 15 (9) 46K
Fasting Insulin48 FI MAGIC 18 (12) 16 (12) 46K
HBA1C49 HBA1C MAGIC 18 (14) 16 (13) 46K
HOMA-B48 HOMA-B MAGIC 16 (9) 13 (9) 46K
HOMA-IR48 HOMA-IR MAGIC 16 (13) 16 (13) 46K
High Density Lipoprotein26 HDL GLGC 18 (11) 16 (10) 96K
Low Density Lipoprotein26 LDL GLGC 15 (6) 13 (4) 91K
Total Cholesterol26 TC GLGC 15 (4) 12 (2) 96K
Triglycerides26 TG GLGC 22 (13) 19 (10) 92K
Education Years50 EY SSGAC 25 (8) 22 (6) 294K
Depressive Symptoms51 DS SSGAC 10 (4) 7 (1) 161K
Neuroticism51 NEURO SSGAC 5 (3) 2 (0) 171K
Subjective Well-being51 SWB SSGAC 7 (2) 4 (0) 298K
Forearm BMD52 FA GEFOS 3 (1) 1 (0) 53K
Femoral Neck BMD52 FN GEFOS 4 (2) 2 (0) 53K
Lumbar Spine BMD52 LS GEFOS 5 (1) 3 (0) 53K
Age at Menarche53 AM ReproGen 17 (3) 17 (3) 133K
Rheumatoid Arthritis54 RA RACI and GARNET 3 (0) 3 (0) 58K
Schizophrnia55 SCZ PGC 13 (4) 13 (4) 75K
Crohn’s Disease56 CD IIBD 5 (4) 3 (2) 52K
Inflammatory Bowel Disease56 IBD IIBD 5 (4) 3 (2) 66K
Ulcerative Colitis56 UC IIBD 4 (4) 2 (2) 48K
Type 2 Diabetes57 T2D DIAGRAM 20 (13) 20 (13) 62K

Table 1: A summary of the 35 GWAS summary data sets analyzed. aTotal number of traits
with significant non-zero genome-wide genetic correlation (two-tailed p ă 0.05{595). bTotal
number of traits outside the consortium with significant non-zero genome-wide genetic corre-
lation. Number of traits for which the magnitude of genetic correlation is both significantly
non-zero and greater than 0.2 is shown in parentheses.
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Figure 1: Examples of two different distributions of local genetic covariances (with effect
sizes shown at the bottom) that result in the same total genetic covariance (ρg,total = 0.05).
In the left example, the total genetic covariance is a summation of a large positive local
genetic covariance at SNP1 and two smaller negative local genetic covariances at SNP2 and
SNP3 (e.g, SNPs 2 and 3 impact traits through a different pathway than SNP1). In the right
side the total genetic covariance is a summation of small positive local genetic covariances
(e.g., all three SNPs impact both traits through the same pathway). Positive local genetic
covariance can be interpreted as a locus driving a pathway that regulates two traits in the
same direction, and negative local genetic covariance the opposite direction.
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Figure 2: ρ-HESS provides unbiased estimates of covariance when in-sample LD is available
(top left) and nearly unbiased estimates of correlation/covariance when LD is estimated from
a reference panels (bottom and top right) Mean and standard errors are computed based on
500 simulations. Error bars represent 1.96 times the standard error on each side.
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Figure 3: Genetic correlation across the 35 complex traits obtained by ρ-HESS (top half) and
cross-trait LDSC14 (bottom half). The magnitude of the correlation is represented by the
color and the size of the square. Among the 595 pairs of traits, ρ-HESS (LDSC) identified
234 (99) pairs showing significant genetic correlation (marked with dots)
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Figure 4: Local genetic correlation at loci displaying significant local genetic covariance
and SNP-heritability for pairs of traits with significant genome-wide genetic correlation.
To simplify presentation, we excluded all pairs of traits involving TC (see Supplementary
Figure 9). We obtain standard error estimates through parametric bootstrapping. Error
bars represent 1.96 times the standard error on both sides. Here, triangle represents loci
that lack GWAS risk variant for both traits; diamond represents loci that harbor GWAS risk
variants for one of the traits; and circle represents loci that contain GWAS risk variants for
both traits.
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Figure 5: Local genetic correlation at loci displaying significant local genetic covariance and
SNP-heritability for pairs of traits without significant genome-wide genetic correlation. We
obtain standard error estimates through parametric bootstrapping. Error bars represent 1.96
times the standard error on both sides. Here, triangle represents loci that lack GWAS risk
variant for both traits; diamond represents loci that harbor GWAS risk variants for one of
the traits; and circle represents loci that contain GWAS risk variants for both traits.
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Figure 6: Distribution of standardized local genetic covariance (local genetic covariance
standardized by the square roots of heritability of two traits) for the pairs of traits BMI
and TG, SCZ and MCH, AM and BMI. Pairs of traits with positive (negative) genome-wide
genetic correlation show a shift in the distribution of standardized local genetic covariance
away from 0.
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Figure 7: Manhattan-style plots showing the estimates of local genetic covariance for the
pairs of traits HDL and LDL. Although the genome-wide genetic correlation between HDL
and LDL does not reach the significance level (p ă 0.05{595), 9 loci exhibit significant local
genetic covariance.
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Figure 8: Manhattan-style plots showing the estimates of local genetic covariance for the
pairs of traits BMI and TG. That the local genetic covariance between BMI and TG is
mostly one-sided implies plausible causal relationship between the two traits
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Figure 9: Putative causal relationships between pairs of traits. Example 1: BMI causally
increases TG. Local genetic correlation estimate ascertained for loci harboring BMI risk
variants is significantly greater than 0. Example 2: Height causally decreases BMI. Local
genetic correlation estimate ascertained for loci harboring height risk variants is significantly
less than 0. Example 3: More complicated relationships exist between AM and BMI. Local
genetic correlation estimates ascertained for loci harboring risk variants for both traits are
significantly less than 0. Example 4: Evidence does not support a model in which there is
any causal relationship between MCH and schizophrenia (SCZ).
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Figure 10: Estimates of local genetic correlation at loci ascertained for GWAS risk variants
for each one of 15 pairs of traits that show plausible causal relationship. We obtained
standard error using a jackknife approach. Error bars represent 1.96 times the standard
error on each side. Here, “Ò” means the trait on the left hand side may causally increase
the trait on right hand side, whereas “Ó” means the trait on the left hand side may causally
decrease the trait on the right hand side.
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