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Landraces (traditional varieties) of crop species are a reservoir of useful genetic 1 

diversity, yet remain untapped due to the genetic linkage between the few useful alleles 2 

with hundreds of undesirable alleles1. We integrated two approaches to characterize the 3 

genetic diversity of over 3000 maize landraces from across the Americas.  First, we 4 

mapped the genomic regions controlling latitudinal and altitudinal adaptation, identifying 5 

1498 genes. Second, we developed and used F-One Association Mapping (FOAM) to 6 

directly map genes controlling flowering time across 22 environments, identifying 1,005 7 

genes. In total 65% of the SNPs associated with altitude were also associated with 8 

flowering time. In particular, we observed many of the significant SNPs were contained in 9 

large structural variants (inversions, centromeres, and pericentromeric regions): 29.4% 10 

for flowering time, 58.4% for altitude and 13.1% for latitude. The combined mapping 11 

results indicate that while floral regulatory network genes contribute substantially to field 12 

variation, over 90% of contributing genes likely have indirect effects. Our strategy can be 13 

used to harness the diversity of maize and other plant and animal species. 14 

Maize (Zea mays subsp. mays) is a model organism with a legacy of a hundred years of 15 

cytological, genetic, and biomolecular characterization2. Maize displays high levels of genetic 16 

diversity with low linkage disequilibrium (LD)3,4, low population differentiation5, prevalent 17 

migration6 and occasional introgression from wild relatives7–9. More recently, experimental 18 

populations like the Nested Association Mapping (NAM) populations 10,11, and large association 19 

panels4,12 have allowed mapping and deployment of useful alleles for several quantitative 20 

traits13–16. However, most of the founder lines from these panels correspond to highly inbred 21 

improved lines, many from temperate regions, capturing only a modest fraction of the total 22 

diversity present in the species. In contrast, maize landraces span numerous ecogeographic 23 

areas and harbor most of the diversity of the species. Nevertheless, maize landraces like many 24 

other crops traditional varieties remain largely uncharacterized by genomics. 25 
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This study maps genes controlling flowering with two distinct methods: (1) Each of these 26 

landraces come from environments to which they are well adapted. We used this adaptation as 27 

the trait to identify genes driving large scale adaptation.  (2) We mapped flowering time variation 28 

in controlled field experiments through a novel, rapid, experimental design called F-One 29 

Association Mapping (FOAM) (Figure 1). Briefly, FOAM consists of sampling single individuals 30 

across numerous populations, which are genotyped and crossed to one or a small number of 31 

common parents to derive F1 families. Subsequently GWAS is performed from multi-trial F1 32 

progeny evaluation. Major advantages for this design are (a) capturing thousands of alleles 33 

across populations, (b) maintaining the tractability of two alleles per loci per individual, (c) ample 34 

replication of alleles increasing the power and accuracy for genetic effect estimation. The main 35 

limitation of FOAM is that the nested evaluation of different subsets of F1 progeny by ecological 36 

zone limit the ability to accurately estimate genotype by environment interaction effects.  37 

Our maize landrace FOAM population used individuals from 4,471 accessions from 35 countries 38 

in the Americas (Figure 2) grouped into three adaptation classes to account for altitude 39 

adaptation (low, middle and high elevation). Similarly, the common parents and evaluation sites 40 

were nested within adaptation class (methods, supplemental figure 1) 17,18. Landrace parents 41 

were genotyped for close to one million SNPs using Genotyping by Sequencing19, and missing 42 

data was imputed using BEAGLE420. Of the 4,471 accessions, 3,552 yielded F1 families 43 

containing both genotypic profiles and sufficient progeny, 3,633 contained detailed passport 44 

information which was used for mapping large scale adaptation, and 2,603 were present in both 45 

mapping studies. 46 

We first explored the effects of recombination frequency and geography-driven limited dispersal 47 

on the distribution of genetic diversity in the landrace parents. Using Multidimensional Scaling 48 

(MDS, Methods), we observed the first axis and second axes explained only 6.1% and 1.7% of 49 

of the variance respectively, consistent with the low FST in maize landraces5. The first axis 50 

separates among Mexican landraces, consistent with Mexican landraces having a deeper 51 

coalescent and greater representation in the panel. The second axis was associated to a 52 

latitudinal North to South gradient across Latin America representing isolation by distance 53 

(Supplemental Figure 2). In addition, a Mantel test21 revealed a significant correlation between 54 

geographic and genetic distances (Pearson's r= 0.46, P-value<0.001), with most of the 55 

association driven by altitude. Despite this, phylogenetic analysis (Methods, Supplemental 56 

Figure 3) revealed that adaptation class does not drive clade membership, which indicates that  57 
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alleles segregate across adaptation classes, with highland adaption being polyphyletic, 58 

consistent with recent reports22.  To study recombination, we estimated an approximate LD 59 

statistic (Methods) which shows a distribution consistent with previous recombination 60 

estimates23,24, with higher recombination in gene-rich regions, and lower around centromeres. 61 

Each chromosome displayed a unique recombination landscape, with the presence of half a 62 

dozen high LD regions (Supplemental figure 4), which together encompassed 6.1% of the base 63 

pairs of genome, accounting for 2.8% of the annotated coding genes. Together, these results 64 

suggest that although at large scale geography and adaptation contribute to the distribution of 65 

diversity, even with the large effective population size of landraces at the genomic scale a 66 

complex recombination landscape limits the free segregation of alleles through increased LD. 67 

Flowering time generally plays a crucial role in local adaptation of plants, and in maize flowering 68 

time is a complex trait controlled by hundreds of small effect loci, many with rich allelic series 69 
4,14,25–30.  We used altitude and latitude from sampling location as traits for mapping local 70 

adaptation, and the significance thresholds were chosen to maximize genic overlap rate 71 

between flowering, altitude, and latitude (Methods, supplemental figure 5). For altitude, we 72 

observed 58.4% of the significant SNPs corresponded to regions with higher LD. In particular, 73 

INV4m, the 13Mb adaptive introgression from highland teosinte into maize8,31 was highly 74 

significant. We also observed significance for the centromeres of chromosomes 2,5,6,8 and a 75 

large region upstream of the centromere on chromosome 3. Outside this low recombination 76 

regions, 366 genes showed significant association with altitude. For Latitude, we observed 77 

13.1% of the significant markers were contained within low recombination regions, particularly 78 

the centromere of chromosomes 5. In total across all Latin America, 1498 genes showed 79 

significant association with latitude, of which 395 of were shared with altitude. The minor allele 80 

frequency distribution of the significant alleles indicated that many are shared across clades and 81 

landraces, which was very distinct from the neutral distribution (Figure 3).  These 1498 genes 82 

appear to be the main contributor to large scale environmental adaptation to altitude and latitude 83 

– the key drivers of flowering time.   84 

To study the genetic basis of flowering time, we conducted field evaluation on F1 progeny 85 

across 22 trials and 2 years in 13 locations across Mexico, with each trial containing a different 86 

subset of the collection to maximize number of accessions evaluated (Methods, supplemental 87 

table 1). Phenotypic data was analyzed independently for each trial using a mixed linear 88 

(Methods), yielding 18,797 accession parent-environment estimates for each male and female 89 
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flowering time. We performed genome wide association for days to male and female flowering 90 

using a mixed linear model (Methods). In total 72% of the associated SNPs were significant for 91 

both male and female flowering, as expected from the overlapping genetic control14. There was 92 

a significant contribution of low recombination regions in flowering time variation, parallel to that 93 

of latitude and longitude, with a 20-fold enrichment for significant SNPs at high LD regions 94 

(Pearson's chi-squared, p-value < 2.2e-16). In particular, significant variants included the 95 

centromeres of chromosomes 3, 5, and 6, INV4m, and a 6Mb region on chromosome 3 96 

beginning at 79Mb. The 6Mb region on chromosome 3 has a segregation similar to INV4, and 97 

together with its increased LD suggests it might be an inversion. In NAM this putative inversion 98 

and the centromere comprise a single QTL for flowering time14. For the centromere of 99 

chromosome 5 there were 3 distinctive alleles segregating in the landraces, all present in the 100 

NAM population (supplemental figure 6). The inverted allele of INV4m, although absent in 101 

temperate material, segregates at high frequency in highland landraces (supplemental figure 7), 102 

where it has very large additive effect advancing flowering by three days, the largest effect for 103 

flowering time in maize to date. Both homozygous alleles from the putative inversion on 104 

chromosome 3 segregate across our maize landrace panel and the NAM population. Compared 105 

to INV4m, this locus displays a more modest effect on flowering time. The heterotic effect of the 106 

centromere of chromosome 5 on yield32,potentially product the complementation of deleterious 107 

mutations23, suggests that the significant inversions and centromeres may similarly affect 108 

flowering time through heterotic effects leading to more vigorous plants, which in maize 109 

generally results in earlier flowering. 110 

Outside the structural variants, we observed 881 and 883 genes (around 2.2% of genes) with 111 

significant association for days to female and days to male flowering respectively (Supplemental 112 

Tables, Figure 4). To further characterize the regions associated with flowering time, we looked 113 

for gene ontology enrichment and gene expression using the maize transcription 114 

atlas33(Methods), and compared the significant genes to a candidate gene list containing genes 115 

characterized in other populations, known to interact in the maize flowering time regulatory 116 

network34 as well as the 25 members of the Zea mays CENTRORADIALIS (ZCN) gene family 35. 117 

Overall the associating genes tended to be expressed in anthers, and enriched in general 118 

metabolic processes, with the genes known to be part of the regulatory network being more 119 

expressed in immature cob and the tip of the leaf at V5 stage and enriched for regulatory 120 

processes (Supplemental figure 8). We observed a significant enrichment in flowering time 121 
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candidate genes compared to the rest of the genome (Fisher's Exact Test p-value = 4.3 x 10-7). 122 

In total 10 and 12 candidate genes representing the circadian clock, photoperiod, gibberellin 123 

acid, and circadian clock pathways displayed significant associations with male and female 124 

flowering respectively. Out of these, nine were common for both types of flowering. The most 125 

significant hits corresponded to VGT136,37, one of the largest known G×E QTL, and ZCN835,38, 126 

the maize florigen and homolog to FT in Arabidopsis (Figure 5). ZmCCT, the largest 127 

photoperiod QTL29 was only modestly significant for latitude, and significant only for days to 128 

female flowering, probably a result of non-inducing sampling and trial locations. In particular for 129 

the gene d8, a locus with cryptic association with flowering time34, we observed significance for 130 

this gene around 50 and 100kb up and downstream the coding region for latitude, altitude, and 131 

both male and female flowering, overlapping with the region previously observed to display 132 

divergent selection associated with climate adaptation39. In addition, the distribution of the 133 

flowering time associating genes displayed a significant geography effect, with 56 and 52 genes 134 

in common with altitude and latitude respectively. In general, the minor alleles for flowering time 135 

tended to be associated with high elevation, and northwest coordinates, however the minor 136 

allele frequency distribution of the significant SNPs was different to that of the alleles significant 137 

for altitude and latitude, having a significant shift towards low frequency polymorphisms (Figure 138 

3). Together, these results support the model of infrequent variants in recurrent regulatory 139 

genes underlying the genetic control of flowering time variation in maize, with adaptive alleles 140 

segregating across populations, and their distribution matching the fitness optimum according to 141 

geographic variation. In particular, the high overlap between significant SNPs for altitude and 142 

flowering time suggests that for tropical maize flowering time adaptation is very relevant for 143 

changes in elevation, which affects among others spectral composition and intensity of incident 144 

light, as well as the incidence of heat and cold stress. In contrast, the lower overlap between 145 

latitudinal and flowering time associating SNPs could be to the sampling from non-photoperiod-146 

inducing latitudes, potentially leading to latitudinal flowering time adaptation being relevant for 147 

other biotic (disease pressure) and abiotic (soil pH, precipitation) stresses.  148 

We assayed the potential for predicting flowering time in the landraces using either all our high 149 

density genetic markers or just the markers significantly associated with the trait.  We performed 150 

genome wide prediction using gBLUP independently for each trial (Methods). The average 5-151 

fold cross-validated prediction accuracy was 0.45 across trials for both male and female 152 

flowering time and, and as high as 0.7 for some trials (Supplemental figure 9). Genomic 153 
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prediction accuracy between the top genes from GWAS was equivalent to that of 30,000 154 

random evenly distributed SNPs, highlighting their potential use for breeding of the significant 155 

markers. Intriguingly prediction accuracy was not correlated with our other heritability estimate 156 

(Pearson cor=0.22), which could be an effect of the differences in the genetic variances and 157 

sample sizes across all trials. Together the good predictive ability of the significant regions for 158 

genomic selection shows the potential to greatly speed the breeding of new adapted varieties 159 

with exotic beneficial alleles. 160 

Crop landraces are an incredible source of diversity that will be necessary to adapt our crops to 161 

next century of climate change.  However, their tremendous diversity and genetic load prevent 162 

them from being efficiently tapped without a genomic index.  This research lays out two 163 

complementary strategies for tapping this diversity.  The geographic associations are powerfully 164 

identifying the adaptive loci, which appear to be common and shared, and are unlikely to be 165 

deleterious given their high frequency. This extensive sharing is probably the result of 166 

outcrossing and extensive migration throughout Latin America in last several millennia.  The 167 

limitation of this approach is that correlated traits and adaptations are being co-mapped.  The 168 

novel FOAM field trial associations, while substantially overlapping, are showing the impacts of 169 

deleterious and private mutations and their complementation in these hybrid trials.  These 170 

deleterious alleles have been the bane of breeders wanting to tap landrace diversity.  The 171 

strategy for tapping this diversity should be use the overlapping genes and alleles of the two 172 

separate approaches– as these have proven to be adaptive and target the trait of interest.  The 173 

breeding could use standard genomic selection or genome editing.  This provides an efficient 174 

strategy to tap landraces diversity and allow our crops to adapt to faster changes than ever had 175 

in the past. 176 
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Methods 

Mating design and phenotypic evaluation  

The mating design for the maize landrace FOAM population consisted of crossing each 

accession male to single cross hybrid females of matching adaptation. Leaf tissue of the 

landrace individual was collected for genotyping. The progeny evaluation trials were performed 

across 2 years in 13 locations across Mexico using an augmented row-column design, which 

includes systematic checks in field rows and columns40.  There were between 288 and 1928 

accessions per trial, with an average of 834 (Supplemental table 1). Over half of the accessions 

were replicated in 5 or more trials, with a maximum value of 13 trials per accession and a 

minimum of 1. For each trial, each experimental row contained between 10 and 25 progeny 

plants. The replication across trials together with the use of systematic checks across 

experimental fields provides sufficient allelic replication for accurate estimation of genetic 

effects. Flowering time was measured in each trial following the maize standard, i.e. the number 

of days from planting until half of the individuals within a plot displayed silks for female flowering 

or anthers in half of the central spike for male flowering.   

Genotyping 

Accessions used as male parents were genotyped using GBS19, with ApeKI as the restriction 

enzyme to a replication level of ~96 individuals per sequencing plate. Approximately 8x109 

sequencing reads were generated using an Illumina HiSeq for the landrace accessions and 

sequence reads were analyzed jointly with another 40,000 maize lines as part of the GBS Build 

2.7 using TASSEL41. For association analyses, missing data was imputed using BEAGLE420, 

which has been shown to yield the best current accuracies in maize heterozygous material 

(R2=0.68)42. After imputation, SNPs were filtered for minor allele frequency greater than 1% 
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resulting in approximately 500,000 biallelic markers across the genome. GBS non-imputed 

markers can be accessed at http://hdl.handle.net/11529/10034 and imputed GBS markers at 

http://hdl.handle.net/11529/10035 

Diversity Assessment 

For the Mantel test21, we calculated the pairwise Euclidean distance matrix based on the 

geographical data from the accessions (latitude, longitude, and altitude, 

http://mgb.cimmyt.org/gringlobal/search.aspx). The genetic distance matrix was estimated from 

a genome wide random sample 30,000 non-imputed markers using TASSEL. The distance 

matrix was used for estimating the Neighbor-Joining tree using TASSEL. Multidimensional 

Scaling (MDS) was performed on the genetic distance matrix using the cmds function in R. 

Recombination 

Our LD statistic consisted in estimating the correlation between markers across the genome at 

100 site windows using all homozygote and heterozygote non-imputed markers with the LD 

function on the software TASSEL. For comparing the LD and recombination values, we 

estimated the correlation at 1Mb sliding windows between (1) the log10 median LD estimate (2) 

the log median crossover probabilities estimated using the American and Chinese Nested 

Association Mapping populations23, and (3) the log median population recombination rates (rho) 

estimated both for improved lines and landraces Hapmap2 project24. Our LD estimates 

displayed a negative correlation with gene density (r=-0.57) and NAM crossover probability23 

(r=-0.45). We observed a modest negative correlation (r=-0.33) with a population genetic 

estimate of historical recombination (rho) 23,24. High-LD regions were defined based on the 

change in slope of global median LD (Figure 5- Figure supplement 1) as those segments that 
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had a median LD greater than 0.01. In total, there were 256 high LD regions encompassing 

7.8% of the genome. 

Genome wide association with altitude and latitude 

We performed Genome Wide Association using a generalized linear model with altitude and 

latitude as response variables and markers filtered at 1% frequency as explanatory variables. 

Altitude and Latitude were recorded during field sampling of the original accessions. In order to 

establish a significance threshold to avoid excess of false positives, we estimated the overlap 

rate using the most significant flowering time GWAS SNPs. Overlap Rate was defined as the set 

of overlapping SNPs between the top flowering time SNPs and either altitude or latitude, divided 

by the union of the sets across significance thresholds from 0.001 to 0.01. Significance 

thresholds chosen were 0.005 for altitude and 0.01 for altitude (Supplemental figure 4). 

Heritability estimates were 0.88 for altitude and 0.85 for latitude, estimated LDAK43 with a single 

Kinship matrix, estimated with all the Beagle4 imputed markers, and the matrix was estimated 

from the algorithm implemented in GCTA44. 

Analyses of structural variants 

In order to infer the underlying haplotypes for the centromeres of chromosomes 3,5,6, as well as 

INV4 and the high-LD region on chromosome 3, we first estimated a genetic distance matrix for 

each locus using the non-imputed markers. The distance matrices were then analysed using 

multidimensional scaling. The centromere of chromosome 5 segregates in the landraces with 

three distinct homozygous haplotypes and their corresponding heterozygote pairs. The region 

around the centromere of chromosome 6 was 12 Mb in size, includes the centromere and a 

large pericentromeric region that expands out in both directions; it displayed a similar pattern to 

the centromere of chromosome 5 however distinct alleles were not called due to the excess of 
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heterozygous individuals between the homozygous classes, probably reflecting recombinant 

haplotypes. The centromere of chromosome 3 displayed a more complex pattern of distance 

than the other two associating centromeres, likely due to the presence of more than three 

segregating haplotypes. For INV4, we observe two distinct alleles and the heterozygote. We 

observed the allele is fixed in many of CIMMYT improved lines (Table 3), including those used 

as parents for the highland test crosses in the present experiment.  

 

Analysis of phenotypic data  

To estimate the breeding values of the landrace accession parent, for each trial a mixed linear 

model was fitted using restricted maximum likelihood method, in ASREML (V 3.0), using the 

progeny’s calendar days to male or female flowering as a response variable. Of the 23 trials 

planted, one was excluded because flowering time data was not collected according to protocol. 

The models included fixed effects for checks, tester, and hybrid and a random effect of 

accession in a complete nested model. Including in the model the random effect of row and 

column and using an autoregressive model of order 1 in row and columns controlled 

experimental noise product of field variation. All the random effects were considered 

independent one from each other. The model used can be expressed as follows: 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2016. ; https://doi.org/10.1101/092528doi: bioRxiv preprint 

https://doi.org/10.1101/092528
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

 

 

 

 

 

 

 

Genome wide association with flowering time 

Association analysis was performed in two steps for all trials using a linear mixed model. For 

each trait (days to male and female flowering) two models were fitted, one with the trait BLUPs 

as response variable and another one with the standardized values of the same BLUPs. This 

was done in the absence of growing degree units, to verify the consistency of the results given 

the uneven variances for the trait across the various trials. The first step models included the 

fixed effects for trial (categorical); population structure in the form of 10 MDS weights 
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(numerical) that together explained around 13% of the genetic and 10.6% of the phenotypic 

variances; and the effect of the hybrid used as parent for each accession’s cross. The random 

effect of relatedness was added to both models in the form of a kinship matrix. The kinship 

matrix was estimated using the same subset of SNPs as the MDS weights. The mixed model 

was fit using the R package EMMREML (http://cran.r-

project.org/web/packages/EMMREML/index.html). Residuals were obtained from those models 

and fitted in the second step models as a response variable for the single marker analysis using 

R, with marker nested within trial. 

The model equation used was 

 

 

In the second step of the association model, the residuals from the first model were fitted as a 

response variable in the following model 
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Where Y is the residual, S is the SNP effect and is nested within trial t. The model tests the null 

hypothesis that the effect of each SNP is 0 in all trials. 

 

 The alternative hypothesis is that the SNP has an effect on any trial. The reason for testing this 

hypothesis is that the effect of each SNP can, and often does, change on value and direction 

depending on its segregation on the population and its phase with the causal polymorphism. We 

consider as significant the top one percent of the SNPs based on p-value, which all had –log10 

p-values greater than 18. 

Code availability 

R implementation of the ASREML code used for estimation of breeding values can be found at 

http://data.cimmyt.org/dvn/dv/cimmytswdvn;jsessionid=c1de29cab7c37b41098fd8ad6684 

The mixed model was fit using the R package EMMREML 

(http://cran.rproject.org/web/packages/EMMREML/index.html) 

All other additional scripts are available through github user jar547@cornell.edu 

Significance at genic regions  

We reasoned that significance at candidate genes would depend on local LD and genotype 

coverage, therefore a higher proportion of significant SNPs around candidate genes would be 

indicative of association at the gene itself rather than at the entire LD block or because of higher 

genotype coverage. On that account, we looked at significant associating SNPs within 50 kb up 

and downstream of candidate genes. Of all the candidate genes, only PhyB1, GL15 and ZCN13 

are in the high-LD set and therefore were excluded from this analysis. 
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Genome wide prediction was performed with using the software GAPIT43. The models were run 

for each trial, and accuracy was measured from performing 5 fold cross validation in 10 

replicates for each trial. Two models were run for each trait/trial. One model used a kinship 

matrix estimated 1 SNP for each of the associated genomic regions, while the other used 

30,000 random SNPs for the estimation of the kinship matrix. All models included 10 MDS 

weights to account for population structure. 

Expression across tissues 

We used the transcription data from the maize atlas33 for the following 11 tissues: 16 days after 

pollination embryo, 16 days after pollination endosperm, 6 days after silking primary root, tip of 

stage 2 leaf at V5 plant stage, base of stage 2 leaf at V5 plant stage, 13th leaf at V9 stage, 13th 

leaf at R2 stage , silk, anthers, Immature cob at V18 stage, 4th internode at V9 stage, and stem 

and shoot apical meristem at V4 stage. We used the standardized expression values, and 

estimated for each gene what tissue it was most expressed at. We then performed a chi-

squared test for each tissue to test if there were more genes expressed at the candidate or 

associating genes than expected under the null model of equal levels of the global expression 

pattern.  
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Figures 

 

Figure 1. Experimental design. One individual from each of up to thousands of individuals is 
genotyped and used as parent. Progeny are then evaluated for multiple years/locations to 
estimate the genetic contribution of the original individual and phenotypic and genotypic data 
are used for Genome Wide Association 
 

  Populations	of	interest	   

One	
individual	

per	
population 

 Genotyping   Imputation	 

 
Crossing	and	
generation	of	

F1 
 

Evaluation	of	
progeny	
(multiple	
trials) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2016. ; https://doi.org/10.1101/092528doi: bioRxiv preprint 

https://doi.org/10.1101/092528
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 

Figure 2.  Geographic coordinates of original sampling sites of landrace accessions. Color 
gradient corresponds to altitude  
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Figure 3. Minor Allele frequency distribution for all segregating SNPs, as well as the most 
significant SNPs for each trait. 
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Figure 4. a) Manhattan plot for Days to silking. b) Local Manhattan plot for chromosome 4 for 
days to silking and c) Altitude. The large region with significance corresponds to INV4m, the 
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adaptive introgression from highland teosinte to highland maize d) Overlap between significant 
SNPs for flowering time and latidue and e) altitude 

 

 

Figure 5. Flowering time pathway from Dong, et al34, showing the genes involved in flowering 
time at the leaf and Shoot Apical Meristem (SAM). The genes highlighted in red displayed 
significant association with flowering time in our study. 
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Supplemental Figures 

 
Supplemental figure 1. FOAM design with crossing and evaluation nested within adaptation. 
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Supplemental figure 2. First 2 Principal Coordinates from Multidimensional scaling of the genetic 
distance among accessions  
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Supplemental figure 3. Neighbor-joining tree. Adaptation classes are colored green for low 
elevation, blue for mid elevation and orange for high elevation 
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Supplemental figure 4   Genome wide view of the LD empirical threshold. Red shaded areas 
represent the centromeres, gray shaded areas represent inversions on chromosomes 3 and 4, 
and the dashed horizontal line represents the empirical LD threshold 
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Supplemental figure 5 Overlap rate between the top associating SNPs with flowering time and 
altitude, latitude at various p-value thresholds.  
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Supplemental figure 6. MDS of centromere of chromosome 5 for the FOAM landrace 
accessions and the NAM founders: Topright: Il14H. Bottom: P39. Middle: CML333 
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Supplemental figure 7. Frequency of INV4m according to accessions’ adaptation class 
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a) 

b) 

 

Supplemental figure 8. Ontology of genes for a) regulatory network genes and b) all associating 
gene 
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 Supplemental figure 9. Genomic Prediction accuracy by trial  
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Year/Cycle TrialCodeName Location Adaptation Accessions 
2011B m2011BAFnn Agua	Fria,	Puebla LOWLAND 1707 
2011B m2011BCL Celaya,	Guanajuato SUBTROPICAL 783 
2011B m2011BMO Tarimbaro,		Michoacan SUBTROPICAL 481 
2011B m2011BNY San	Pedro	Lagunillas,	Nayarit SUBTROPICAL 551 
2011B m2011BTLnn Tlaltizapan,	Morelos SUBTROPICAL 1140 
2011B m2011BTO Torreon,	Coahuila SUBTROPICAL 1403 
2012A m2012AAFca Agua	Fria,	Puebla LOWLAND 1921 
2012A m2012AAFtu Agua	Fria,	Puebla LOWLAND 1923 
2012A m2012AIGrn Iguala,	Guerrero LOWLAND 749 
2012A m2012AOBrn Obregon,	Sonora LOWLAND 452 
2012B m2012BAFnn Agua	Fria,	Puebla LOWLAND 717 
2012B m2012BAL Amoloya	de	Juarez,	Mexico HIGHLAND 428 
2012B m2012BBAca El	Batan,	Mexico HIGHLAND 817 
2012B m2012BBAef El	Batan,	Mexico HIGHLAND 759 
2012B m2012BBAnn El	Batan,	Mexico HIGHLAND 817 
2012B m2012BCH Guadalupe-Victoria,	Chiapas LOWLAND 671 
2012B m2012BCL Celaya,	Guanajuato SUBTROPICAL 805 
2012B m2012BEB m2012BEB SUBTROPICAL 658 
2012B m2012BMO Numaran,	Michoacan SUBTROPICAL 282 
2012B m2012BNY San	Pedro	Lagunillas,	Nayarit SUBTROPICAL 805 
2012B m2012BOBrn Obregon,	Sonora LOWLAND 523 
2012B m2012BTOrn Torreon,	Coahuila SUBTROPICAL 338 

Supplemental Table 1. Trials location, adaptation class, and number of accessions planted 
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