bioRxiv preprint doi: https://doi.org/10.1101/092478; this version posted December 8, 2016. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: 2 April 2015
Applications Note

Genome analysis

Detection and characterization of low and high
genome coverage regions using an efficient
running median and a double threshold approach.

Dimitri Desvillechabrol 1-*, Christiane Bouchier 2, Sean Kennedy !, and
Thomas Cokelaer3*

nstitut Pasteur — Pole Biomics
2|nstitut Pasteur — Genomic Platform — Pole Biomics
3|nstitut Pasteur — Bioinformatics and Biostatistics Hub — C3BI, USR 3756 IP CNRS - Paris, France

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Next Generation Sequencing (NGS) provides researchers with powerful tools to investigate
both prokaryotic and eukaryotic genetics. An accurate assessment of reads mapped to a specific genome
consists of inspecting the genome coverage as number of reads mapped to a specific genome location.
Most current methods use the average of the genome coverage (sequencing depth) to summarize
the overall coverage. This metric quickly assess the sequencing quality but ignores valuable biological
information like the presence of repetitive regions or deleted genes. The detection of such information
may be challenging due to a wide spectrum of heterogeneous coverage regions, a mixture of underlying
models or the presence of a non-constant trend along the genome. Using robust statistics to systematically
identify genomic regions with unusual coverage is needed to characterize these regions more precisely.
Results: We implemented an efficient running median algorithm to estimate the genome coverage trend.
The distribution of the normalized genome coverage is then estimated using a Gaussian mixture model.
A z-score statistics is then assigned to each base position and used to separate the central distribution
from the regions of interest (ROI) (i.e., under- and over-covered regions). Finally, a double threshold
mechanism is used to cluster the genomic ROIs. HTML reports provide a summary with interactive visual
representations of the genomic ROls.

Availability: An implementation of the genome coverage characterization is available within the
Sequana project. The standalone application is called sequana_coverage. The source code
is available on GitHub (http:/github.com/sequana/sequana), and documentation on ReadTheDocs
(http://sequana.readthedocs.org). An example of HTML report is provided on http:/sequana.github.io.
Contact: dimitri.desvillechabrol@pasteur.fr, thomas.cokelaer@pasteur.fr

1 Introduction discovery of somatic mutations, or the sequencing of complete genomes of
cancer samples to name a few examples [Meyerson et al., 2010, Iorio et al.,
2016]. The emergence of the second generation sequencing, which is also
known as Next-Generation Sequencing or NGS hereafter, has dramatically

Sequencing technologies allow researchers to investigate a wide range
of genomic questions [Goodwin et al., 2016], covering research fields

such as the expression of genes (transcriptomics) [Wang et al., 2009], the
reduced the sequencing cost. This breakthrough multiplied the number of

genomic analyses undertaken by research laboratories but also yielded vast
*to whom correspondence should be addressed amount of data. Consequently, NGS analysis pipelines require efficient
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algorithms and scalable visualization tools to process this data and to
interpret the results.

Raw data generated by NGS experiments are usually stored in the
form of sequencing reads (hereafter simply called reads). A read stores
the information about a DNA fragment and also an error probability vector
for each base. Read lengths vary from 35-300 bases for current short-read
approaches [Goodwin et al., 2016] to several tens of thousands of bases
possible with long-read technologies such as Pacific Biosciences [Eid et
al., 2009, Lee et al., 2014] or Oxford Nanopore [Eisenstein, 2012].

After trimming steps (quality, adapter removal), most NGS
experiments will require mapping the reads onto a genome of reference [Li,
2013]. If no reference is available, a de-novo genome assembly can be
performed [Bankevich et al., 2012]. In both cases, reads can be mapped
back on the reference taking into account their quality. We define the
genome coverage as the number of reads mapped to a specific position
within the reference genome. The theoretical distribution of the genome
coverage has been thoroughly studied following the seminal work of
Lander-Waterman model [Lander and Waterman, 1988, Wendl et al.,
2005]. A common metric used to characterize the genome coverage is
the sequencing depth: the empirical average of the genome coverage. Its
unit is denoted X. An example of a genome coverage with a sequencing
depth of about 450 X is shown in Fig.1.

The required sequencing depth depends on the experimental
application. For instance, to detect human genome mutations, single-
nucleotide polymorphisms (SNPs), and rearrangements, a 50 X depth is
recommended [Goodwin et al., 2016] to be able to distinguish between
sequencing errors and true SNPs. In contrast, the detection of rarely
expressed genes in transcriptomics experiments often requires greater
sequencing depth. However, greater sequencing depth is not always
desirable. Indeed, in addition to a higher cost, ultra-deep sequencing (large
sequencing depth in excess of 1000 X) may be an issue for de-novo genome
assembly [Mirebrahim et al., 2015].

The Lander-Waterman model also provides a good theoretical estimate
of the required redundancy to guarantee that for instance all nucleotides
are covered at least NV times. This is, however, a theoretical estimate
that does not take into account technological and biological limitations :
some regions are indeed difficult to efficiently map (e.g., repetitive DNA).
Furthermore, the genome coverage may also contain a non-constant trend
or additional sequence not present in the reference. The genome coverage
example in Fig. 1 demonstrates these different features.

While the sequencing depth metric provides a quick understanding
about the quality of the mapping, the genome coverage can be further used
to identify regions that are significantly under- or over-covered. Hereafter,
these regions of interest (ROI) are denoted low-ROIs and high-ROIs,
respectively.

In order to detect low and high-ROIs, a simple and fast approach
consists in setting two arbitrary thresholds bounding the sequencing depth.
There are two major drawbacks with this approach. First, as shown in
Fig. 1A, with a fixed threshold, one may detect numerous false signals (type
Terrors) or fail to detect real events (type II errors). Secondly, the threshold
is fixed manually and lacks a robust statistics. An alternative is to estimate
the genome coverage profile histogram [Linder et al., 2013] from which a
z-score statistics can be used to identify outliers more precisely. Yet, since
the genome coverage may contain low and high frequency fluctuations,
the statistics will also suffer from Type I and II errors.

In this paper, we describe an approach that first estimates the genome
coverage trend using a running median in place of a running mean. It can
be employed to normalize the genome coverage vector and calculate a
robust statistic (z-score) for each base position. This allows us to obtain
robust low and high thresholds at each base position.

In section 2, we describe the data sets used throughout the paper as
test-case examples. In section 3, we describe (i) the running median used
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Fig. 1. Example of a genome coverage series (in black in both panels). The genome
coverage corresponds to the bacteria test case (see text). It contains a deleted region
(around 2.2 Mbp) and various under- and over-covered regions (from 100 bp to several
Kbp). Although the sequencing depth is about 500 X, there is non-linear trend from 500 X
on both ends to 400 X in the middle of the genome. The top panel shows the sequencing
depth (blue horizontal line) and two arbitrary fixed thresholds (dashed red lines) at 400 X
and 500 X. Due to the non-linear trend, the fixed thresholds lead to an increase of Type
I and Type II errors. On the contrary, in the bottom figure, the trend is estimated using a
running median (red line) and adaptive lower and upper thresholds (dashed red lines) can
be derived.

to detrend the genome coverage and (ii) the statistical method used to
characterize the central distribution from which outliers can be identified
and (iii) we propose a double threshold method to cluster ROIs. Finally, in
section4, we describe the standalone application, sequana_coverage, and
its potential applications for NGS research projects.

2 Material

Three test-cases of genome coverage are presented here, covering
representative organisms and sequencing depths. The genome coverage
data sets are in BED (Browser Extensible Data) format, a tabulated file
containing the coverage, reference (e.g. chromosome number, contig) and
position on the reference. BED files can be created using bedtools
(http://bedtools.readthedocs.io), in particular the genomecov tool.

We first considered a bacteria from a study about methicillin resistant
Staphilococcus aureus [Tong et al., 2015]. One circular chromosome
of 3 Mbp is present. The sequencing depth is 450 X and the genome
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coverage exhibits a non-constant trend along the genome (see Fig.1).
This pattern, often observed in rapidly growing bacteria, is the result
of an unsynchronized population where genome replication occurs bi-
directionally from a single origin of replication [Bremer et al., 1977,
Prescott et al., 1972]. The proportion of outliers (see Sec 3.2 for a
formal definition) is about 2.5 % of the total bases. The original data
sets (Illumina sequencing reads, paired-end, 100bp) are available at the
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/) under
study accession number ERPO00130 (ERR036019). The reference is
FN433596. A genome coverage in BED format is available on Synapse
(https://www.synapse.org) under number syn7211116.

The second organism is a virus with a sequencing depth of
1000 X [Combredet et al., 2003]. The circular plasmid sequencing, which
contains the virus chromosome, is 19 795 bp-long. About 14 % of the
genome coverage contains large or low coverage regions (outliers). It also
contains two large under-covered regions (one partially under-covered and
one not covered at all) as shown in Fig. 2. A genome coverage BED file
is available on Synapse under number syn7211115. The reference can be
found on ENA website (http://www.ebi.ac.uk/ena/data/view/JB409847).

The third test case is the fungus (Schizosaccharomyces pombe) [Wood
et al., 2002]. The genome coverage has a sequencing depth of 105 X. It
has three non-circular chromosomes of 5.5 Mbp, 4.5 Mbp and 2.5 Mbp.
The references from ENA are CU329670.1, CU329671.1 and CU329672.1
(X54421.1). Although we will look at the first chromosome only (1% of
outliers), the tools presented hereafter handles circular chromosomes and
multiple chromosomes. A genome coverage file in form of a BED file is
available on Synapse (syn7561732).

3 Methods
3.1 Detrending the genome coverage

The genome coverage function is denoted C'(b) where b is the base
(nucleotide) position on the genome of reference. The genome coverage
and reference lengths are denoted N. For simplicity, we drop the
parentheses and refer to the genome coverage as Cj. The empirical
sequencing depth (average of genome coverage) is denoted § = C.
Ideally, C} is made of a continuous homogeneous central region. In
practice, however, this may be interrupted by a succession of under- and
over-covered regions: the genomic ROIs that we want to detect.

A naive classifier consists in setting two fixed thresholds §~ and
&1 whereby low and high ROIs are defined as Cy =Cp <6 and
C;’ = Cp > &7, respectively. If Cl? denotes the remaining data such
that 6~ < C,? < &1, then the genome coverage can be written as
C, ={CP,Cf,Cy )

The advantage of the fixed-thresholds method is that it is conceptually
simple and computationally inexpensive. However, there are two major
drawbacks manifest. First, as shown in Fig.1-A, false negatives and false
positives will increase as soon as there is a non-constant trend present in the
data. It may be a low frequency trend as shown here but high frequency
trend are also present (see e.g., Fig 2). Also of importance is that an
arbitrary choice of threshold(s) is unsatisfactory from a statistical point
of view since we cannot associate any level of significance to a genomic
region.

In order to account for a possible trend in the genome coverage series
(and remove it), a standard method consists in dividing the series by a
representative alternative such as its moving average or running median.

The moving average (MA) is computed at each position, b, as the
average of W data points around that position and defined as follows:

1 A%
MAw (b) = W > Cb+1i), e
i=—V

where W is the length of the moving window (odd number) and V' =
(W —1)/2. Note that the first and last V' values are undefined. However,
in the case of circular DNA (e.g., virus case), then the first and last V'
points are defined since CY, is now a circular series.

Similarly, the running median (RM) is computed at each position, b,
as the median of W data points around that position:

RMw (b) = median({C(b — V),..,C(b+ V)}), 2)

where W and V' are defined as before and the median function is defined
as the middle point of the sample set (half of the data is below the median
and half is above). A mathematical expression of the median and running
median are given in the Appendix section (Eq. 8).

The mean estimator is commonly used to estimate the central tendency
of a sample, nevertheless it should be avoided in the presence of extraneous
outliers, which are common in NGS genome coverage series (see e.g.,
Fig. 1). Fig. 2 shows the impact of outliers when using a moving average
or a running mean. We will use the running median only and define the
normalized genome coverage as follows:

~ c,

= Rt (5 @

We will use the tilde symbol for all metrics associated with the normalized
genome coverage, Cy,. For instance, Cp, = {C’g7 C;’, C,}
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Fig. 2. Comparison of the running median and moving average estimators (virus case). The
sequencing depth is 930 X and the genome coverage has a deleted region situated around
b = 4 000 as well as an under-covered region at b = 6 000. The moving average is less
robust to outliers or deleted regions. For instance, the region around b = 5000 is biased
due to the presence of a deleted region, which increases the rate of false alarms.

The running median is used in various research fields, in particular
in spectral analysis [Percival, 1993] to estimate the noise floor while
ignoring biases due to narrow frequency bands (e.g., [Balasubramanian et
al., 2005]). Here, the goal is to avoid narrow peaks but also to be insensitive
to long deleted regions. This can be a major issue in NGS as the running
median estimator complexity is a function of the window length. Indeed
the running median algorithm involves the sorting of a sample of length
W at each position of the genome. So, the running median estimator must
be efficient and scalable. This is not an issue in spectral analysis and most
fields where running median are used but is a bottleneck for NGS analysis.
As explained in the Appendix section, the complexity of the sorting part
is in O(n?2) in the worst case but similarly to the moving average, one can
take advantage of the rolling window and the fact that the previous block
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is already sorted. We report a Python implementation with a complexity
as low as O(log n) (see Appendix). Briefly, it takes advantage of (i) a
bisection method to insert new elements inside an already sorted block
of data and (ii) an efficient Python data structure optimised to insert and
delete elements in a list. In our implementation, both the moving average
and running median have the ability to account for circular DNA data,
which is essential to handle circular series.

If we normalize the genome coverage from the bacteria example
(Fig.1), we obtain the results shown in Fig.3. Finally, note that the genome
coverage being discrete, the running median is also discrete as well as
the normalized genome coverage. The discreteness will become more
pronounced as sequencing depth decreases.

35 - - - -
— Normalised genome coverage
30l == Threshold at 23 |
Threshold at z=4
25F 8

Normalized coverage

1 1.5 2
Base position (bp)

Fig. 3. Normalized genome coverage Cj, (bacteria test case). The outliers present in the
original genome coverage C', (see Fig. 1) are still present as well as the deleted regions. The
distribution is now centred around unity (blue line). Since the distribution is normalized,

constant thresholds can be used (dashed lines). See section 3.2 for details.

3.2 Building a statistics

Since the reads are randomly generated (uniform distribution over the
genome), when reads are mapped to the genome, the per-base coverage
follows a Poisson distribution. It is discrete and has one parameter that
corresponds to the sequencing depth (mean of the distribution). Yet,
the Poisson distribution is often too narrow, as can be observed in the
three test cases considered. This is due to biological over-dispersion.
In order to account for over dispersion, the Poisson parameter can be
distributed according to a second distribution. For instance when the
Poisson parameter is distributed according to a Gamma distribution, we
obtain a negative binomial, which has two shape parameters [Linder et
al., 2013]. For large sequencing depth, we can approximate the negative
binomial or Poisson distributions with a Gaussian distribution. We will use
the mathematical notation A (u, 02) hereafter where 1 is the average of
the genome coverage (9 in an ideal case) and o is its standard deviation.
Let us start with an ideal scenario where (i) there is no outliers, (ii)
the running median window W is fixed and (iii) 6 > 1. The latter
means that Cj, distribution exhibits a Gaussian distribution ~ N (u, o2).
Can we derive the distribution of the normalized genome coverage éb
knowing that it is a ratio distribution? By definition, the numerator follows
a N (u, 02) distribution while the denominator’s distribution is the running
median’s distribution. The latter is generally not known, especially in the
case of large W. Even if we knew the running median distribution, the
ratio distribution is only known for two Gaussian distributions X and Y
(Cauchy distribution) when (i) the two distributions are centred around

zero, which is not the case, and (ii) when they are independent, which is
also not the case. Further, the scenario we considered (no outliers, W fixed,
& > 1) is too restrictive since we are interested in identifying outliers and
may encountered cases where ¢ is small (for which C}, follows a negative
binomial, not a Gaussian distribution).

Our first hypothesis is that éb can be decomposed into a central
distribution, 53, and a set of outliers, 6,31 = {5;r , 6,: } where the
central distribution is predominant: ‘5’2‘ > ’5& , and where vertical
bars indicate the cardinality of the sets.

Our second hypothesis is that the mixture model that represents éb
is a Gaussian mixture model of £ = 2 models: 6’5 ~ N(fio,52)
and ébl ~ /\N/(ﬁh 52). The Gaussianity hypothesis about the central
distribution, C’g is valid as long as the raw sequencing depth is large
(i.e., at least 10X). The Gaussianity of the outliers may be questioned,
especially for the low-sampling case. However, in the context of a null
hypothesis where the central distribution represents the background and
the outliers the signal to detect, we can consider that the outliers population
is a mix of samples and that we are in the limit of the central theorem.
Similarly to the method deployed in [Linder et al., 2013] to identify a
mixture model of negative binomials (on the raw genome coverage), we
will use an Expectation Minimization (EM) [Dempster et al., 1977] method
to estimate the parameters fip,1 and oo 1 (on the normalised genome
coverage).

The EM algorithm is an iterative method that alternates between two
steps: (i) an Expectation step that creates a function for the expectation of
the log-likelihood using the current estimate of the parameters, and (ii) a
Minimization step that computes parameters maximizing the expected log-
likelihood found in the first step. The likelihood function and the maximum
likelihood estimate (MLE) can be derived analytically in the context of
Gaussian distributions. Note that in addition to the means and standard
deviations, the mixture parameters also need to be estimated. These are
denoted 7o and 71. The EM algorithm is standard and can be found in
various scientific libraries. Note, however, that the normalized genome
coverage may contain zeros in the presence of deleted regions and the
estimation of the mixture model should ignore them.

We have applied the EM algorithm on the normalized genome coverage
vector on various real NGS data sets including the three test cases Fig. 4.
The EM retrieves the parameters of the central distribution (in particular
fio = 1) and the outliers. Note that the choice of the running median
parameter, W, does not significantly affect the parameter estimation. In
each case, the mean of the central distribution is very close to unity. The
standard deviation varies significantly and is a function of the sequencing
depth only (since the outliers are now incorporated in C,} ). Finally, we can
confirm that the proportion of outliers is small as compared to the central
distributions by inspection of parameters 7o and 71: 7o >> 7.

Once we have identified the parameters of the central distribution 5‘0,
we can assign statistics for 51, in terms of z-score:

_ C(b) —fio
70 '

2(b) @)

Since the z-score corresponds to a normal distribution, we can now set a
threshold in terms of tolerance interval within which a specified proportion
of the genome coverage falls. For instance, with a threshold of 3, we know
from the normal distribution that 99.97% of the sample lies in the range
-3 and +3. The exact mathematical value is given by the complementary
error function, erfc(z), where z = n/ﬂ Note that forn = 3, 4 and 5,
the tolerance interval is 99.73%, 99.993% and 99.999942%, respectively.
Thus, for a genome of 1 Mbp, by pure chance we should obtain about
2700, 70 and 1 outlier(s), respectively.
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Fig. 4. Probability density functions (PDFs) of the normalized genome coverage function
concerning the three test cases. The distributions were fitted with a Gaussian mixture models
with k& = 2 models. The first model (black line) fits the central distribution’s PDF and the
second model (red line close to y = 0) fits the outliers’ PDF. The dashed lines (close to
the black lines) indicates the mixture distribution. In each panel, we report the parameters
of the two Gaussian distributions, the proportions g, 71 and the © parameter introduced

in the text that gives the centralness of the data for each test cases.

If we now replace éb in Eq.4 using its expression from Eq. 3, we can
express the original genome coverage as a function of the running median,
the z-score and the parameters of the central distribution:

C(b) = (pro + z(b)go) RMw (b). ®)

We can now set a fixed threshold z(b) = =n in the normalized space.
This is much easier to manipulate. Moreover, we can derive a variable
threshold in the original space that is function of the genome position:

6% () = (fio + nt x G0) RMw (b). (©)

Examples of variable upper and lower threshold functions are shown in
Fig. 1 and Fig.2 (red dashed lines). This manipulation results in a robust
statistical estimate of the presence of outliers in the genome coverage. The
z-score, computed earlier, provides a precise level of confidence.

Using the normalization presented above, we can define the
centralness as one minus the proportion of outliers contained in the
genome coverage:

A1 Al

enzl—ﬂzl—ﬂ, @)

@ ¢
where G is the length of the genome, and vertical bars indicate the
cardinality. This necessarily depends on how the threshold n is set in the
normalized space. In the case of an ideal Gaussian distribution and n = 3,
the centralness should equal the tolerance interval of a normal distribution
N (0, 1) thatis the error function, erf(n/+/2). The centralness equals unity
when there are no outliers i.e., n — oo. Finally, note that the centralness
is meaningless for values below 0.5 (meaning that the central distribution
is not central!). As shown in Table.1, ©3 equals 0.974, 0.99 and 0.86 in
the three cases considered (bacteria, fungus, virus). So the proportion of
outliers in the virus case is higher than in the two other test cases, which is
not obvious at first glance given the very different lengths of the genome
considered.

3.3 Genomic ROIs

Let us now consider the sub-set of outliers élj . From the previous section,
it is defined by positions that are above the fixed threshold nt in the
normalized space; it is a list of continuous or non-continuous positions;
the list may be quite extensive for low threshold (e.g., for nT = 2.5,
the bacteria has 35 Kbp such positions). However, many positions belong
the same event (i.e., same cluster). Considering the short genome region
in Fig. 5, which is made of 2000 base positions. It contains 5 different
regions that cross the threshold nt. However, only one is well above.
Ideally, the 5 events should be clustered together. To do so, we proceed
with a double-threshold approach [Balasubramanian et al., 2005] where a
second fixed threshold m™ is defined as m*™ = atnt where o™ < 1
and usually set to 1/2.

1400 - -
— Genome coverage
— Running median
1200 - - First threshold
Second threshold

1000

Coverage

200
0

560 1060 1560 2000
Base position (bp)

Fig. 5. Example of a genomic region of interest (ROI) clustered using a double threshold
method. The genome coverage (black line) and its running median (red) on a short genome
location of 2kbp. The first threshold (top dashed gray line) alone identifies many short ROIs
(dark blue areas). Using a second threshold (bottom dashed gray line), the short ROIs are
clustered and identified as a single ROI (coloured areas). Yellow vertical lines indicates the

beginning and end of the cluster.

In the normalized space, the double threshold method works as follows;
We scan the entire genome coverage vector starting from the first position
b = 0. As soon as a per-base coverage value crosses the threshold m*, a
new cluster starts. We then accumulate following bases until the per-base
coverage crosses m-+ again (going down). If the maximum of the cluster
is above the first threshold, n™, then the cluster is classified as a region
of interest. The process carries on until the end of the vector is reached.
We repeat this classification for the lower case (with m™ = a™n7).
This method dramatically reduces the number of short ROIs. Finally, we
can characterize each region with various metrics such as the length of the
region, maximum coverage, mean coverage, mean and maximum z-scores.

4 Applications

Although the algorithm described is quite simple, each of the three steps
need optimised implementation. We provide an implementation within
the Sequana project [Desvillechabrol et al., 2016] as a standalone
and as part of an original pipeline dedicated to variant calling. The
standalone application is called sequana_coverage and is further
described in the Appendix 6.2. Users can provide a BAM or a BED
file [Quinlan, 2010] as input. Once the processing of the data is completed
(running median, Gaussian mixture model, clustering of ROIs), a HTML
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Metric Bacteria Fungus Virus
Genome length | 3 Mbp 5.5Mbp 19795
BOC 0.985 1.0 0.966
mean & 448.5 105.47 931.3
median & 454 105 988
o 87.0 19.7 237.2
Ccv 0.19 0.19 0.25
w 5001 /(20001) | 5001 /(20001) | 5001
1o 1.001 /(1.000) | 1.002/(1.003) | 1.011
50 0.089/(0.090) | 0.161/(0.158) | 0.069
O3 0.974/(0.983) | 0.990/ (0.990) | 0.873

Table 1. Metrics derived from the genome coverage of the three test cases
considered (Bacteria, Fungus, Virus). The top part of the table contains metrics
derived from the genome coverage only, while the bottom part contains metrics
derived from the normalized genome coverage, 5;,. All metrics are defined in
the text; BOC stands for breadth of coverage, § for sequencing depth, CV for
coefficient of variation. The standard deviation is denoted o. In the bacteria and
fungus cases, the running window W is set to 5001 or 20 001 while for the
virus we used 5 001 only. The parameters of the central distribution, 11 and o
and the centralness, ©3 are reported.

report is created and users can browse the results. ROIs are provided
as HTML tables that are downloadable as CSV files. If a reference is
provided (it can be downloaded automatically via BioServices [Cokelaer
etal.,2013]using sequana_coverage --download-reference
<reference name>), then the GC content of the reference versus the
coverage along the reference is also calculated. With this material, users
can use sequana_coverage in many different ways. Here is a non

exhaustive list of applications.

e Associate a statistic (z-score) on the genome coverage.

e Automatic detection of under or over covered ROIs. The CSV files
provided may be used for further classification using machine learning
tools. For instance the width of the ROIs and/or the maximum
amplitude may be used as features.

o Effect of the GC content on the coverage using the reference. The GC
content versus coverage plot is available in the report.

e Annotation of the ROIs if an annotated data file is provided (genbank).
Again, it can be downloaded via the standalone application.

e Assess the quality of a de-novo remapping reads on contigs.

o Identify repeated regions. See hereafter for more details.

Regions of lower genome coverage are sometimes related to repeated
content or unusual GC content [Dohm et al., 2008]. The identification
of repeated regions is illustrated in Fig.6. We extracted specific regions
where the filtered (mapping quality <30) and unfiltered coverage differ.
Duplicated reads are removed in both conditions. The first difference
occurs near a deleted region of 5kb around position 10,000. The second
difference occurs around location 30,000. In the first case, we have
deleted regions (the unfiltered coverage has zero coverage) compared to the
reference. However, in the second case, the coverage of the unfiltered data
seems normal with a value around 500. Only comparison with the filtered
coverage allows us to identify that it is a repeated region. Moreover, using
freebayes [Garrison, 2012] and the variant calling pipeline available (e.g.,
with the variant calling Sequana pipeline), no variants are found around
this position. The report, and in particular the Javascript plots, allows us
to identify all such repeated regions. In the case of the bacteria used in
this example, looking at the 3Mbp genome, about 70 repeated regions
with at least 50 bases and an average difference in coverage of 50X can be
identified.

— Filtered coverage
— Unfiltered coverage
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Fig. 6. Identification of repeated regions by comparing the genome coverage before and
after filtering of low quality mapped reads. In the filtered coverage series (blue), the mapped
reads with low quality were removed. In particular the duplicated reads are removed. This
allows us to identify repeated regions easily.

5 Conclusion

The genome coverage along a reference contains valuable information and
deserves to be part of an NGS toolkit (e.g., quality control of an alignment
before a variant detection pipeline). Yet, it is too often summarised by
its sequencing depth even though the raw data usually contains a wide
spectrum of features such as deleted regions, low frequency trends, non-
homogeneous central distribution, repeated regions, ...

The method presented in this paper provides a robust statistical
framework to detect under and over-covered genomic regions that can
be further characterized with basic statistics (length, mean coverage,
maximum z-score, ...). Although robust, the method remains simple
and can be summarized in three main steps: (1) detrending of genome
coverage series using a running median (ii) parameter estimation of
the central distribution of the normalized genome coverage series using
an EM approach (for a Gaussian mixture model), (iii) clustering and
characterization of the outliers as genomic regions of interest (ROI).

We underlined the value of the running median algorithm as compared
to a moving average while emphasizing the practical impact of the running
median algorithm complexity. Indeed, an efficient implementation is of
paramount importance in the context of NGS analysis. In addition, circular
series and multi-chromosome organisms should be handled. We wrap
the algorithm within the standalone application sequana_coverage,
which also provides HTML reports with a summary of the genomic regions
of interest. The HTML reports provide visual introspection of the genome
coverage, list of geomic ROISs and statistics such as the centralness, a metric
that encompasses the preponderance of the central distribution with respect
to the outliers.

Although we presented test cases with relatively large sequencing
depth (100X to a thousand), it is based on a robust statistics and practical
cases down to 30X were studied with success. We believe that the algorithm
can be used to sequencing depth as low as 10X. Below 10X, a Gaussian
distribution hypothesises not valid and the z-score values are less precise.
A natural extension to this work is to consider low sequencing depths
below 10X

With additional features such as the ability to annotate the ROIs with
genbank files and the identification of repeated regions, we believe that
the standalone application sequana_coverage will help researchers
in deciphering the information contained in the genome coverage.
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6 Appendix
6.1 Running median implementation

The mean is a measure of the central tendency of a population. It is
not a robust estimator in the presence of large extraneous outliers in the
population. In such a situation, it is preferable to consider a truncated mean
or a median estimator. The median is the middle point of a sample set in
which half the numbers are above the median and half are below. More
formally, let us consider a sample s[i],% = 1, ..,n and S[4] the sequence
obtained by sorting s[¢] in ascending order (ordering of equal elements is
not important here). Then, the median is defined as

. 241l oodd,

v = median({s[1],s[2], ..,s[n]}) = { S[n/z]-s-QS[n[/z%rJ  even.
(®)
Let us now consider a series X (k) where Kk = 1,..,N. Then,

the running median of X (k) is defined as the sequence v(k) =
median({X(k),X(k + 1),..,X(k+ W)}), k = W/2,..,N — W/2
where W is a window size defined by the user and the application. The
first /2 and last W/2 values are undefined so we should have W < N.

Since we perform a sorting of an array of W elements at /N positions,
the complexity of the running median is /N times the complexity of the
sorting algorithm. If W and NN are small (e.g., removal of narrow lines
in power spectral density in addition to the overall smoothing of time
or frequency series [Balasubramanian et al., 2005]), a naive quick-sort
algorithm (O(W?2) in the worst case scenario) may be used. However,
better algorithms do exist and can be decreased to O(v/W) in the worst
case as implemented in [Mohanty, 2002]. Yet, in NGS applications, N
could easily reach several millions and W may need to be set to large
values up to 50,000 (e.g., to identify long deleted regions).

Instead of computing the median at each position, k, a more efficient
solution consists in re-using the sorted block at k£ — 1, and to maintain the
block sorted as new elements are added. Indeed, one only needs to insert
the next sample into the sorted block and delete the earliest sample from
the sorted block. A standard Python module named bisect provides an
efficient insertion in sorted data (keeping the data sorted). The complexity
of this sorting algorithm is O(log W).
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Fig. 7. Computational cost of running median algorithms as a function of the window
size parameter W (for N = 1e6). Three variants are compared: SciPy [Jones et al.,
2001] implementation (function medfilt v0.17) and the Sequana implementations using
the 1ist and blist data containers (see text for details). The SciPy variant has a
O (W) complexity irrespective of the W value. For low W values (W < 20, 000), the
two Sequana variants have O (log(W')) complexity. For larger W values, the blist keeps
its O(log(W')) complexity while the list container follows a O(W') complexity. The
computational time of the Sequana implementations are about 2 orders of magnitude below
the SciPy one.

So far, we have neglected the cost of the insertion and deletion steps,
which is not negligible. For instance, in Python language, one of the most
common data structure is the list. It is a dynamically-sized array (i.e.,
insertion and deletion of an item from the beginning or middle of the list
requires to move most of the list in memory) and the look-up, insertion
and deletion have a O(n) complexity. So the running median is actually
dominated by the slow O(n) insertion and deletion steps. A better data
structure is available thanks to the blist package; it is based on a so-called
B-tree, which is a self-balancing tree data structure that keeps data sorted.
The blist allows searches, sequential access, insertions, and deletions in
O(log n) (see https://pypi.python.org/pypi/blist/ for details).

Based on materials from http://code.activestate.com/recipes/576930/,
we have implemented a running median function in Python within
Sequana [Desvillechabrol et al., 2016]. A simplified version of which is
reproduced here below. It is fully described and documented in the official
on line documentation at http://sequana.readthedocs.org.

1 from bisect import bisect_left, insort

2

3 def running_median (data, W, container=1list):
4 # W should be odd

5 # initialise first block and sort it

6 lc = container (data[:W])

7 lc.sort ()

8

9 mididx = (W - 1) // 2

10 # structure to hold the running median
11 result = datal[:]

12

13 # We initialise the first element

14 idx = mididx

15 result [idx] = lc[mididx]

16

17 # The N-W-1 other running median values
18 for new_elem in data[W:]:

19 old_elem = data[idx-mididx]

20 del lc([bisect_left (lc, old_elem)]
21 insort (lc, new_elem)

22 idx += 1

23 result [idx] = lc[mididx]

24

25 # The first W/2 and last W/2 points should
26 # be ignored.

27 return result

In Fig.7, we compare the performance of two variants of our
implementation and the running median implementation available within
SciPy [Jones et al., 2001]. For W > 20,000 up to 200,000, our
implementation is 2-3 order of magnitude faster than the SciPy version.
We should emphasize the fact that the SciPy function has additional
features since it is available for N-dimensional data sets whereas we restrict
ourselves to 1-D data sets. In Sequana, the two variants only differ in
the data structure being used to hold the data (list versus blist). The
Fig. 7 shows the difference between the list and blist data structures that is
marginal for low W values while for large values asymptotic behaviours
are reached showing the interest of the blist over the list choice.

6.2 Standalone application

Sequana is a Python library that provides NGS pipelines in the
form of snakefiles based on the workflow management system called
Snakemake [Koster and Rahman, 2012] (Makefile-like with a Python
syntax). Sequana also provides a Python library with re-usable blocks.
Moreover, we provide independent standalone applications. One of them
is called sequana_coverage; it includes the different features related
to genome coverage exposed in this paper. Although the standalone
sequana_coverage has a self-explanatory help, we give here below
an example that shows how to generate an HTML report from a BED
file. The BED being a data structure that stores the genome coverage
information [Quinlan, 2010] (3-columns tab-delimited file). A basic usage
is as follows:

sequana_coverage —--input virus.bed -w 4001 -o

Several chromosomes may be present (e.g., fungus case). By default,
the first chromosome is used but one can provide the chromosome number
using the -c option. The -o option indicates that the input is made
of a circular DNA. The running median window can be tuned using
-w option. Full details are available using --help. An HTML report
is created by default in the ./report directory. In the case of long
genome (larger than 0.5 Mbp), independent JavaScript pages are
created to focus on 0.5 Mbp-long regions to speed up browsing and
introspection. A list of genomic regions are available as HTML tables
but also as downloadable CSV files. An additional feature is the ability
to download a reference genome (given its ENA or NCBI accession
number). This is achieved internally using BioServices [Cokelaer et
al., 2013] that can switch between the ENA or NCBI web services
to download the data programmatically. This is particularly useful to
further compare the genome coverage with e.g., the GC content of
the reference. Finally, let us note that the standalone application is
scalable: the virus case takes a few seconds while the SMbp bacteria
case takes about one minute on a standard computer including analysis
and HTML reports (Python implementation). An HTML report example
is available on http://sequana.readthedocs.org. A docker file available via
the documentation should help users experimenting with their own data
set.

6.3 Terminology

The terms depth and coverage have been used interchangeably in many
papers. This is especially the case for the coverage term that is a
short form for different notions such as breadth of coverage, depth of
coverage, genome coverage and so on. In the seminal work from [Lander
and Waterman, 1988], the authors introduced the theoretical notion of
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redundancy of coverage. This is well defined as N, L,./G: the number
of experimental reads, V., times the fixed length of the reads, L., divided
by the genome length, G. Note that it is a metric derived from the raw data,
not the mapped reads. Following this work, many synonyms have been
introduced: sequencing depth [Sims et al., 2014], Depth of coverage
(DOC), fold-coverage, or simply, depth, or coverage. The two later
terms being ambiguous short forms for depth of coverage. Since, coverage
may be used as a short form for depth of coverage but also genome
coverage, which are two different notions, we do not recommend the use
of short forms.

Instead, we define the genome coverage as the number of reads
mapped to a specific position within a reference genome. It is a function
of the position on the genome of reference. From the genome coverage
we derive the sequencing depth, which is the average of the genome
coverage.

For completeness, note also the term breadth of coverage (BOC): the
assembly size divided by the target size. It can also be the proportion of
total intended genome representation in the data set with at least some
sequencing depth.
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