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Abstract 5 

Clostridium difficile infection (CDI) has grown to be the most prevalent cause of hospital 6 

acquired infection in the United States. Susceptibility to CDI is induced by recent 7 

antibiotic exposure, which is known to alter the structure of the gut microbiome and to 8 

affect the availability of growth nutrients in the gut. We hypothesized that C. difficile is a 9 

generalist that adapts its physiology to the nutrients available within the gut. We orally 10 

challenged C57BL/6 mice that previously received one of three antibiotics with C. 11 

difficile and demonstrated that it was able to colonize the cecum within 18 hours of 12 

infection. However, levels of both spore and toxin production, which are known to be 13 

affected by nutrient availability, varied between each antibiotic treatment group. To 14 

more closely investigate the specific responses of C. difficile as it colonized the cecum, 15 

we performed in vivo transcriptional analysis of C. difficile from cecal content of infected 16 

mice. This approach revealed variation in expression of genes that drive life-cycle 17 

switches as well as metabolic pathways associated with catabolizing a variety of carbon 18 

sources such as carbohydrates, amino acids, and amino sugars. To assess which 19 

substrates C. difficile was most likely exploiting in each antibiotic-perturbed microbiome, 20 
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we developed a novel metabolite scoring algorithm within the genome-scale bipartite 21 

metabolic network of C. difficile that incorporated both network topology and transcript 22 

abundance to infer the likelihood that a given metabolite was acquired from the 23 

environment. Applying this approach, we found that C. difficile indeed occupies 24 

alternative nutrient niches across each antibiotic-perturbed microbiome and that the 25 

highlighted metabolites support significant growth, in vitro. Results from this analysis 26 

support the hypothesis that consumption of N-acetyl-D-glucosamine and Stickland 27 

fermentation substrates are central components of C. difficile's metabolic strategy and 28 

pathogenesis. This work has implications for elucidating specifics of the nutrient niche of 29 

C. difficile during infection and may lead to the discovery of targeted measures to 30 

prevent C. difficile colonization including potential pre- or probiotic therapies. 31 

Introduction 32 

Infection by the Gram-positive, spore-forming bacterium Clostridium difficile has 33 

increased in both prevalence and severity across numerous countries during the last 34 

decade1. In the United States, C. difficile was estimated to have caused >500,000 35 

infections and resulted in ~$4.8 billion worth of acute care costs in 20142. C. difficile 36 

infection (CDI) causes an array of toxin-mediated symptoms ranging from abdominal 37 

pain and diarrhea to the more life-threatening conditions pseudomembraneous colitis 38 

and toxin megacolon. Prior treatment with antibiotics is the most common risk factor 39 

associated with susceptibility to CDI3. It has been shown that antibiotic therapy alters 40 

the structure and function of the gut microbiota making it susceptible to colonization by 41 

C. difficile4. This is referred to as colonization resistance, in which the gut microbiota 42 

inhibits the persistence or growth of a number of pathogenic bacteria. Colonization 43 
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resistance can be achieved by multiple mechanisms including competition for physical 44 

space or growth nutrients5. 45 

Mouse models have been an effective tool for studying the mechanisms of colonization 46 

resistance. Use of distinct antibiotic classes to vary the structure of the microbiota which 47 

have been shown to result in susceptibility C. difficile colonization6–8. In this case, the 48 

antibiotics chosen significantly impact the structure and diversity of the cecal 49 

microbiome (Fig. S1a & S1b). It has been further demonstrated that at 18 hours after 50 

being introduced to a cefoperazone treated mouse, C. difficile reached its maximum 51 

vegetative cell density in the cecum9. This provided a single timepoint to measure the 52 

largest population of metabolically active C. difficile. Building upon these results, others 53 

have shown that many of these antibiotic classes also alter the gut metabolome, 54 

increasing the concentrations of known C. difficile growth substrates7,10–12. Taken 55 

together these results are a strong indication that the healthy gut microbiota inhibits the 56 

growth of C. difficile through limitation of substrates it needs to grow. The ability of an 57 

intact gut community to exclude C. difficile colonization is suggestive of the nutrient-58 

niche hypothesis in which an organism must be able to utilize a subset of available 59 

resources better than all competitors to colonize the intestine13,14. 60 

Based on its genome sequence and in vitro growth characteristics, C. difficile appears 61 

able to fill multiple nutrient niches. C. difficile has a relatively large and mosaic genome, 62 

it is amenable to a variety of growth substrates, and is able to colonize a diverse array 63 

of hosts suggesting that that it is a bacterial generalist15–17. The ability to metabolize a 64 

variety of substrates is important since these substrates affect the regulation of genes 65 

involved in C. difficile’s pathogenesis. For example, in vitro transcriptomic analysis 66 
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suggests that high concentrations of easily metabolized carbon sources, such as 67 

glucose or amino acids, inhibit toxin gene expression and sporulation18,19. These genes 68 

are regulated by DNA-binding sigma factors, such as the pleiotropic regulator ccpA, 69 

which are under the control of environmental nutrient concentrations, especially 70 

carbohydrates20,21. Downstream effects of this regulation likely have enormous impact 71 

on the lifestyle and metabolic strategy of C. difficile when colonizing across sensitive 72 

hosts. 73 

Previous transcriptomic studies of C. difficile have mainly focused on transcription of 74 

virulence factors, in vitro22,23, with some work characterizing transcription during 75 

colonization of germfree mice24,25. More relevant to nutrient acquisition, C. difficile up-76 

regulated several phosphotransferase systems (PTS) and ABC transporters in germfree 77 

mice, alluding to metabolic adaptation to nutrient availability in vivo25. Although these 78 

analyses are informative, they are either primarily directed toward the expression of 79 

virulence factors or lack the context of the gut microbiota which C. difficile must 80 

compete against for substrates. Metabolomic analyses have also been used to more 81 

directly assay changes in bacterial metabolism as they relate to CDI7,12; however, these 82 

methods cannot focus on C. difficile-specific metabolites and more closely resemble 83 

echoes of metabolism, not currently active processes. In contrast to these approaches, 84 

in vivo C. difficile transcriptomic analysis from specific pathogen free (SPF) animals may 85 

provide unique insight into its active metabolic pathways in a more realistic model of 86 

infection. Integrating transcriptomic data with genome-scale metabolic modeling has 87 

previously aided in identifying the most active aspects of an organism’s metabolism and 88 
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which substrates are preferred by the organism26–28. Applying these methods to study 89 

C. difficile colonization would allow us to directly test the nutrient-niche hypothesis. 90 

Founded on the ability of C. difficile to grow on a diverse array of carbon sources and its 91 

ability to colonize a variety of communities, we hypothesized that it focuses its 92 

metabolism to fit the context of the community it is attempting colonize. To test this 93 

hypothesis, we employed a mouse model of infection to compare the response of C. 94 

difficile to the gut environment caused by different classes of antibiotics. The antibiotics 95 

used in this study included streptomycin (Fig. 1a), cefoperazone (Fig. 1b), and 96 

clindamycin (Fig. 1c). These antibiotics differentially affect the structure of the gut 97 

microbiota8. Each has also been shown to alter the gut metabolome relative to 98 

untreated animals7,10,12. As such, we predicted that C. difficile would encounter a unique 99 

subset of nutrients and competitors in each environment, which would necessitate 100 

distinct adaptive responses. To determine whether C. difficile is a generalist and 101 

differentially responds to each condition, we assayed for differences in the amount of 102 

sporulation and toxin activity phenotypes and used metabolic models built using C. 103 

difficile expression data. In each of the three antibiotic conditions we challenged with C. 104 

difficile, as well as in monoassociated germfree mice, we observed that C. difficile 105 

adapted its nutrient utilization profile to colonize to high levels and express its virulence 106 

factors. 107 

Results 108 

Insert Table 1 here 109 

Levels of C. difficile sporulation and toxin activity vary between antibiotic-treated 110 

specific pathogen free and germfree mice. 111 
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Due to the connection between metabolism, sporulation, and toxin production in C. 112 

difficile, we measured sporulation and toxin production at 18 hours post infection in 113 

each group. There was not a significant difference in the number of vegetative cells 114 

between any susceptible condition tested (Fig. 2a). All antibiotic treated (Table 1) 115 

specific pathogen free (SPF) and germfree (GF) animals were colonized to ~1×108 116 

colony forming units (c.f.u.) per gram of content, while untreated SPF mice maintained 117 

colonization resistance to C. difficile. Despite having the same number of vegetative C. 118 

difficile cells, large differences were detected in the density of C. difficile spores. 119 

Significantly more spores (P = 0.005, 0.008, 0.003) were detected in ex-GF mice than in 120 

the antibiotic treated mice (Fig. 2b). The spore densities in both streptomycin and 121 

clindamycin-treated mice were also generally higher than that in cefoperazone-treated 122 

mice. There was significantly more toxin activity in ex-GF animals than any other 123 

colonized group (all P <= 0.001), but toxin titer also varied between antibiotic treatment 124 

groups (Fig. 2c). Although similar toxin activity was found in both the cefoperazone and 125 

clindamycin-treated groups, toxin titer was below the limit of detection in most 126 

streptomycin-treated animals. These results indicate that C. difficile was able to colonize 127 

different communities to a consistently high level, but that the density of spores and 128 

toxin titer varied by treatment. 129 

C. difficile adapts the expression of genes for virulence and key sigma factors 130 

that are under the control of environmental nutrient concentrations. To more 131 

closely investigate the responses of C. difficile to colonizing distinct susceptible gut 132 

environments, we performed whole transcriptome analysis of C. difficile during infection 133 

of the antibiotic treatment models. We then narrowed our analysis to focus on genes 134 
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that control or code for functions that have been linked to nutrient concentrations in the 135 

intestines during CDI. After observing differences in spore load, we first examined 136 

transcription of the most highly expressed genes in the C. difficile sporulation 137 

pathway29–32 (Fig. 3a). Across the four conditions where C. difficile colonized, we 138 

observed transcriptional profiles consistent with observed spore levels (Fig. 2b). The 139 

mice treated with cefoperazone had the lowest spore density and had the highest level 140 

of expression for the anti-sigma factors spoVG and spoVS. The produts of these genes 141 

are involved in suppressing expression of genes found later in the sporulation 142 

pathway33. Streptomycin-treated mice had the next highest density of spores and the 143 

highest expression of genes associated with sporulation activation (spoIIAB/spoIIE), but 144 

they also had relatively high levels of expression of sspA and sspB, which are genes 145 

that code for effectors that protect DNA from damage during dormancy. Next, in mice 146 

treated with clindamycin, C. difficile expressed genes associated with late stages of 147 

sporulation, including those for spore coat components (cdeC, cotD, and cotJB2), spore 148 

formation (spoIVA, spoVB, and spoVFB), and sspA and sspB. Finally, GF mice 149 

harbored the highest density of spores and those C. difficile primarily expressed the 150 

dormancy genes linked with the latest stages sporulation. Together these data 151 

demonstrate that C. difficile differentially expressed genes associated with sporulation 152 

that corresponded to the presence of spores in the cecum. 153 

Expression of genes for quorum sensing and pathogenicity have been linked to 154 

changes in the nutrients that can be found in the environment of C. difficile. Both the agr 155 

locus and luxS gene are thought to be associated with inducing the expression of C. 156 

difficile virulence in several strains34,35. Considering the link between quorum sensing 157 
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genes and toxin production, we expected the expression of genes for quorum sensing 158 

and toxin production and toxin titer to be concordant. Based on this model, we expected 159 

GF mice to have the highest levels of expression of genes for toxin production (Fig. 3b) 160 

and quorum sensing (Fig. 3c); however, these transcripts were not found in the GF 161 

mice. We also observed the highest level of expression for quorum sensing genes in 162 

cefoperazone-treated mice, but tcdA expression in these animals was not the highest 163 

among the different treatment groups. Interestingly, the levels of expression for genes 164 

associated with toxin production did not match the toxin titers observed in the animals. 165 

These results suggest that the relationship between toxin titer and the expression of 166 

genes for toxin production is even more complex than current models indicate. 167 

We next focused on the regulators of metabolic pathways. Sigma factors are master 168 

regulators and a subset have been shown to integrate signals from intra- and 169 

extracellular nutrient concentrations20,21,31,36. The transcription of the global repressor 170 

codY is responsive to intracellular concentrations of C. difficile energy sources37. 171 

Highest transcription for this gene was found in cefoperazone-treated and GF mice (Fig. 172 

3d). The regulation networks of CodY and CcpA are highly interconnected, with the 173 

expression of ccpA specifically linked to local concentration of rapidly metabolizable 174 

carbon sources38. Cefoperazone-treated mice also exhibited increased transcription of 175 

ccpA, but the GF condition did not follow the same pattern. CcpA acts directly on spo0A 176 

(Fig. 3d), which positively regulates initiation of the sporulation pathway in C. difficile. 177 

Transcripts for spo0A were highly abundant in all conditions tested except for 178 

clindamycin-treated mice, where it was still moderately detectable. The sig-family of 179 

sigma factors is under the control of spo0A and regulate different stages of sporulation. 180 
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The genes from this family with the highest total transcription (sigA1, sigF, sigG, sigH, 181 

and sigK) each demonstrated a unique pattern of expression between conditions. These 182 

results indicate that complete expression of sporulation likely integrates multiple levels 183 

of signaling and is more complex than a single metabolic switch. Both CcpA and Spo0A 184 

also control pathogenicity by regulating toxin production (Fig. 3d). We found expression 185 

of the toxin negative regulator tcdC in all of the antibiotic-treated groups, but no 186 

detectable transcripts for the positive toxin A/B regulator tcdR were seen in any 187 

treatment. In addition to its effects on sporulation and virulence, CcpA also regulates the 188 

expression of other sigma factors that generally mediate distinct forms of C. difficile 189 

metabolism as needed. These targets include rex (general fermentation regulator) and 190 

prdR (Stickland fermentation regulator) (Fig. 3d). Although the expression of both has 191 

been shown to be linked to environmental proline concentrations, rex integrates 192 

additional signals from the intracellular NADH/NAD+ ratio to also control carbohydrate 193 

fermentation. Low-level transcription of prdR was found across all conditions, however 194 

C. difficile expression the rex gene highly in both cefoperazone-treated and GF mice. 195 

Combined, the variable expression of these sigma factors support the hypothesis that 196 

C. difficile adapts expression metabolism to fit its needs between colonized 197 

environments. 198 

Gene sets from multiple C. difficile metabolic pathways are differentially 199 

expressed between colonized environments. In the context of similar colonization 200 

between antibiotic-treated animals, differential expression of global metabolic control 201 

mechanisms that are under the control of specific nutrient concentrations suggests that 202 

C. difficile adapts to each environment when in competition with the resident microbiota. 203 
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To test this further, we quantified the total expression for all KEGG annotated genes in 204 

the C. difficile genome (Fig. S2a). We then focused on general differences in 205 

carbohydrate (Fig. S2b) and amino acid (Fig. S2c) metabolism in order to asses for 206 

apparent differences in the utilization of carbon sources by C. difficile across 207 

environments. However aside from overall lower expression of most gene families in GF 208 

mice, no other clear trends were evident at this broad level of analysis so we moved 209 

toward a more fine-scale resolution of annotation and focused on specific gene sets 210 

known to contribute to certain forms of C. difficile metabolism (Table S1). Also, to more 211 

effectively compare between colonized states, we calculated the percentage of total 212 

expression between antibiotic-treated conditions for each gene (Fig. 4). We then 213 

identified the condition in which each gene was most highly transcribed and adjusted 214 

the size of the corresponding point relative to the largest transcipt abundance (Fig. 4a). 215 

This demonstrated that genes involved in amino acid catabolism had the greatest 216 

amount of expression overall, relative to other gene sets. This category includes those 217 

enzymes involved in Stickland fermentation (arg, fdh, grd, and prd loci) as well as 218 

several general peptidases (pep family). These results indicated that catabolizing 219 

environmental amino acids may be important for the growth of C. difficile during 220 

infection. 221 

To more clearly indentify associations of gene sets with each condition, we also 222 

analyzed each set separately. First, we found that the expression of genes associated 223 

with amino acid catabolism were expressed at nearly consistent levels across the 224 

conditions (Fig. 4b). This was in agreement with the high level of overall expression 225 

associated with these genes. Additionally, genes for the metabolism of the host-derived 226 
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amino sugars N-acetylglucosamine and N-acetylmannosamine were also expressed at 227 

consistent levels across each treatment group (glm, nan, mur, and acd loci) (Fig. 4c). 228 

Along similar lines with related molecules, a number of genes for certain 229 

monosaccharides entering (gal, man, pmi, and tag loci) and leading through glycolysis 230 

(fba, fbp, gap, and pfk), as well as catabolism of the polysaccharides trehalose and 231 

cellibiose (treA and celG) were expressed relatively evenly between each condition (Fig. 232 

4d & 4e). Combined, these findings suggest that catabolism of amino acids and specific 233 

carbohydrates are likely core components of the C. difficile nutritional strategy during 234 

infection. 235 

Aside from those gene sets that were equally expressed across conditions, there were 236 

also large scale differences in expression of certain pathways between groups of mice. 237 

We chose to assess sugar transport systems have been associated with adaptive 238 

expression of phosphotransferase systems (PTS) and ABC transporters with many 239 

known differences in substrate specificities25. Among the genes classified as PTS 240 

transporters (Fig. 4f) were overrepresented in both clindamycin and streptomycin-241 

treated mice, while ABC sugar transporters (Fig. 4g) were overrepresented in the 242 

cefoparazone-treated mice. The most stark differences were seen in transcription for 243 

genes involved in sugar alcohol catabolism (Fig. 4h). Expression of these genes was 244 

entirely absent from clindamycin-treated mice and expression of genes for mannitol 245 

utilization (mtl operon) were overrepresented in cefoparazone-treated mice and 246 

expression of genes for sorbitol utilization (srl operon) were overrepresented in 247 

streptomycin-treated mice. Concordant patterns also emerged in genes associated with 248 

fermentation end steps (Fig. 4i) and polysaccharide degradation (Fig. 4e). Short chain 249 
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fatty acids (SCFAs) and alcohols are the end products of both carbohydrate and amino 250 

acid fermentation in C. difficile through separate pathways with shared terminal steps. 251 

Transcripts for genes involved in C. difficile butyrate/butanol metabolism (ptb, buk1, 252 

cat2, and adhE) were more abundant in clindamycin-treated mice (Fig. 4i). Additionally, 253 

alpha/beta-galactosidase genes (aglB and bglA) were also overrepresented in 254 

clindamycin-treated mice (Fig. 4e). Together these patterns suggested that 255 

polysaccharide fermentation occurred this condition. More subtle differences were seen 256 

in those gene associated with glycolysis (Fig. 4d). This category includes genes for not 257 

only the steps of glycolysis, but also several genes that mediate entry points of 258 

monosaccharides to glycolysis. Transcripts for several genes in this group (eno, gapA, 259 

gpmI, tpi, and pyk) were overrepresented in cefoparazone-treated mice, however fruK 260 

was overrepresented in streptomycin-treated mice which catalyzes the committed step 261 

of glycolysis. Overall, these results support the hypothesis that C. difficile is able to 262 

adapt its metabolism to fit the nutrient availability across different susceptible 263 

environments. 264 

Structure of genome-scale bipartite metabolic model underscores known 265 

bacterial metabolism. To further investigate which metabolites were differentially 266 

utilized between conditions, we represented the metabolic network of C. difficile as a 267 

directed bipartite graph using the genome annotation. Enzymes and metabolites were 268 

represented by nodes and their interaction by the edge between the nodes (Fig. 5a). To 269 

validate our metabolic network, we calculated betweenness centrality (BC) and overall 270 

closeness centralization index (OCCI) for all enzyme and metabolite nodes in the 271 

bipartite metabolic network of C. difficile generated for this study (Table S2). In 272 
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biological terms, BC reflects the amount of influence a given hub has on the overall flow 273 

of metabolism through the network39 and OCCI indicates those enzymes and substrates 274 

that are the most central components of the organism’s metabolism40. For both 275 

enzymes and substrates, the 18 of top 20 nodes with the highest BC values were 276 

involved in glycolysis, fermentation, and amino acid synthesis. In agreement, almost all 277 

nodes with the largest OCCI values were involved in glycolysis and amino acid 278 

synthesis as well. Enzymes that scored highly in both metrics included pyruvate kinase, 279 

aspartate aminotransferase, and formate C-acetyltransferase while substrates 280 

consistently scoring most highly were pyruvate, acetyl-CoA, D-glyceraldehyde 3-281 

phosphate. This indicated to us that the topology of the network reflects established 282 

bacterial physiology. 283 

Metabolite importance algorithm reveals adaptive nutritional strategies of C. 284 

difficile during infection across distinct environments. Moving beyond a strictly 285 

topological analysis of the C. difficile metabolic network, we sought to utilize 286 

transcriptomic data to infer which metabolites C. difficile is most likely to obtain from its 287 

environment in each condition. To accomplish this we mapped normalized transcript 288 

abundances to the enzyme nodes in the network. Due to the coupling of transcription 289 

and translation in bacteria, we were able to use this information as a proxy for enzyme 290 

levels. The importance of each metabolite was measured as the log-transformed 291 

difference between the average transcript levels of enzymes that use the metabolite as 292 

a substrate and those that generate it as a product (Fig. 5b). A metabolite with a high 293 

importance score is most likely obtained from the environment because the expression 294 

of genes for enzymes that produce the metabolite are low. Then, using a Monte Carlo-295 
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style simulation, we generated a random transcript abundance distribution for each 296 

enzyme node to then calculate new metabolite importance scores for each iteration. We 297 

then created a confidence interval of scores for each metabolite that would likely result 298 

from random noise41. This provided a standard of comparison for actual importance 299 

scores from single timepoint measurments, and ultimately allow for computing the 300 

significance level that a given score has a high probability of being excluded from its 301 

associated null hypothesis score distribution. 302 

Applying these methods to the C. difficile transcriptomic data collected from the in vivo 303 

CDI models, we sought to assess differential patterns of metabolite importance. We first 304 

ranked the importance scores to identify the most important metabolites for each 305 

treatment group (Table S3). To identify the core metabolites that are essential to C. 306 

difficile in any condition, we compared the highest 50 scoring, significant metabolites 307 

from each treatment group (P < 0.05) (Fig. 6a). The host derived amino sugar N-acetyl-308 

D-glucosamine was found to be consistently important. Components of the Stickland 309 

fermentation pathway were also found to be important to C. difficile in all conditions 310 

tested including proline, 3−hydroxybutanoyl−CoA, formate, and some selenium-311 

containing compounds42–44. This indicated that these metabolites may be an integral 312 

component of the nutrient niche for C. difficile in any infection condition. Additionally, 313 

acetate was found to be important in all conditions, but was just below the significance 314 

cutoff in GF mice (Table S3). It has been shown that C. difficile metabolizes acetate for 315 

use in glycolysis45. We directly tested the relative concentration of acetate in 316 

cefoperazone-treated C. difficile-infected mice versus mock-infected mice. We found 317 

that C. difficile colonization led to a significant decrease in the levels of acetate (Fig. S4) 318 
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suggesting that C. difficile was utilizing acetate in the cecum. These findings provided 319 

validation for our metabolite importance algorithm as well as supporting known 320 

elements of C. difficile metabolism. 321 

Returning to our hypothesis that C. difficile adapts its metabolism to fit the surrounding 322 

community, we identified those metabolites that were uniquely important to each 323 

condition in which C. difficile colonized. We cross-referenced the top 25 positively 324 

scoring, significant substrates (P < 0.05) between treatment groups to uncover the most 325 

important patterns of nutrient utilization by C. difficile in each (Fig. 6b). Each group of 326 

metabolites contained at least one known carbohydrate growth substrate of C. 327 

difficile7,46. This included close analogs of D-fructose, mannitol, N-acetylneuraminic 328 

acid, and salicin. Furthermore, in GF mice where no other competitors are present, our 329 

model indicated that C. difficile was more likely to acquires several amino acids (lysine, 330 

leucine, and isoleucine) from the environment instead of expending energy to produce 331 

them itself. These data support the hypothesis that C. difficile may exploit alternative 332 

nutrient sources between the susceptible environments it colonizes. 333 

Carbon sources sources predicted to be important using network-based 334 

approach support C. difficile differential growth in vitro. To validate the biological 335 

relevance of substrates identified as uniquely important to C. difficile metabolism 336 

through our network-based analysis, we tested whether C. difficile was able to utilize 337 

each substrate for in vitro growth (Fig. 6c). This was performed using a modified defined 338 

C. difficile minimal media7, supplemented individually with the selected carbohydrates 339 

implicated by high importance scores. Because C. difficile is auxotrophic for several 340 

amino acids it was necessary to include amino acids in the minimal media; however, 341 
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since it can use amino acids for growth through Stickland fermentation the most 342 

effective negative control was growth in media lacking carbohydrates but containing 343 

amino acids (Max OD600 = 0.212). 344 

N-acetyl-D-glucosamine important to C. difficile in each condition tested (Fig. 6b). When 345 

tested for improved growth, significantly more growth (Max OD600 = 0.774) was 346 

observed compared to no carbohydrate (+ amino acids) controls (P < 0.001). This 347 

provided evidence that N-acetyl-D-glucosamine, derived from the host mucus layer, 348 

may be a central component of the C. difficile nutritional niche during infection. 349 

Trehalose was also shown to be important in each condition and supported C. difficile 350 

significant growth (P < 0.001; Max OD600 = 0.559), but was more likely provided by the 351 

diet than from the host. Furthermore, at least one carbohydrate highlighted as distinctly 352 

more important in each of the antibiotic treatment groups provided high levels of C. 353 

difficile growth relative to control wells (P < 0.001). This included D-fructose 354 

(streptomycin; Max OD600 = 0.671), mannitol (cefoperazone; Max OD600 = 0.464), salicin 355 

(clindamycin; Max OD600 = 0.869), and N-acetylneuraminate (GF; Max OD600 = 0.439). 356 

Because it was not possible to test aminofructose directly, we instead chose to test 357 

fructose, an immediate breakdown byproduct of aminofructose catabolism. We also 358 

tested both starch and acetate for the ability to support C. difficile growth in vitro, but 359 

neither should any improvement over no carbohydrate control (Fig. S5). Maximum 360 

growth rate analysis for each carbohydrate also indicated potential hierarchy of growth 361 

nutrient preference (Table S4). The progression is as follows: D-fructose (slope = 362 

0.089), N-acetyl-D-glucosamine (slope = 0.085), salicin (slope = 0.077), mannitol (slope 363 

= 0.044) / trehalose (slope = 0.044), and finally N-acetylneuriminate (slope = 0.024). 364 
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This suggested that C. difficile was most well-suited to metabolize the nutrient source 365 

that is most likely to be present in all susceptible mouse ceca. 366 

Discussion 367 

Collectively, our results support the hypothesis that C. difficile can adapt its metabolism 368 

to the available niche landscape across susceptible gut environments and give insight 369 

to the adaptive strategies that C. difficile can use to colonize diverse human microbiota. 370 

Data from both our in vivo and in vitro experiments demonstrate the plasticity of C. 371 

difficile to effectively change its metabolism to utilize alternative resources for growth. 372 

This may be the result of increased concentration of particular metabolites as a 373 

consequence of concordant decreases in the population of one or more competitors for 374 

those resources. These preliminary conclusions are further supported by previous mass 375 

spectrometry-based efforts analyzing the metabolome from mouse intestinal content 376 

treated under similar conditions to those used in the current study. These investigations 377 

revealed that several of the substrates predicted to be used by C. difficile in a given 378 

condition through metabolic modeling (Fig. 6a & 6b), are increased in the 379 

gastrointestinal tract of mice in the corresponding treatment group. One recent study 380 

found that cefoperazone treatment resulted in a 553-fold increase in mannitol 381 

concentration in the cecum of mice prior to C. difficile colonization7. Similar trends have 382 

also been demonstrated in streptomycin-treated conventional and GF mice10,47. 383 

Together these results provide evidence that our network-based approach accurately 384 

predicts which metabolites C. difficile adapts its metabolic strategy towards, most likely 385 

due to changes in availability. 386 
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In addition to uncovering adaptive strategies of C. difficile, our method is also able to 387 

identify consistent trends in metabolism across environments. The findings that N-388 

acetyl-D-glucosamine and Stickland fermentations substrates were consistently among 389 

the highest scoring shared metabolite among all tested conditions strongly indicates that 390 

these metabolites are central to the nutritional strategy of C. difficile and may be utilized 391 

in and condition in which they are available. The metabolism of both substrate types 392 

provides not only carbon and energy to C. difficile, but are also a source for nitrogen 393 

which is a limited resource in the mammalian lower GI tract48. Apart from exploring 394 

differential patterns in known metabolism, our modeling approach also allowed for the 395 

identification of emergent properties for the metabolic strategy of C. difficile during 396 

infection. One interesting result is the appearance of CO2, an apparent metabolic end 397 

product, in the list of shared important metabolites (Fig. 6a). While this may be a 398 

shortcoming of the annotation, one group has posited that C. difficile may actually be 399 

autotrophic under certain conditions and could explain the appearance of CO2 in Fig. 400 

6a49. Furthermore, oxygen appears to be significantly important in clindamycin-treated 401 

mice (Fig. 6b). Reactive oxygen species could be introduced to the gut through 402 

antibiotic-induced stress on host mitochondia50. Despite the fact that C. difficile is 403 

considered to be a strict anaerobe, it does possess the functionality to deal with 404 

oxidative stress51. What this highlights is that our method does not only identify growth 405 

substrates, it also reports any metabolits that is very likely being removed from the 406 

environment. 407 

While our results are consistent with previously published work on the metabolism of C. 408 

difficile, there are potential limitations of this approach. Ultimately, the metabolite 409 
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importance calculation is dependent on correct and existing gene annotation. In this 410 

regard it has been shown that the pathway annotations in KEGG are robust to missing 411 

elements52, however this does not completely eliminate the posibility for this type of 412 

error. Due to the topology of the metabolic network, we were also unable to integrate 413 

stoichiometry for each reaction which may effect rates of consumption or production. In 414 

addition to computational limitations, our network-based approach simplifies several 415 

aspects of bacterial metabolism. First, the importance algorithm operates under the 416 

assumption that all detectable transcript is translated to effector protein. While this is not 417 

completely accurate, since bacterial transcription and translation are physically coupled, 418 

we were comfortable using normalized levels of transcription to infer approximate 419 

amount of translation. Second, the metabolite importance scores do not account for the 420 

amount of each metabolite that is actually available. Finally, the importance algorithm 421 

only consider the transcription of those enzyme nodes immediately adjacent to the 422 

metabolite node of interest. Although this does not negate any observations made in the 423 

current study, it may be beneficial to incorporate the importance of other local 424 

metabolites or subnetworks into the final score of each metabolite. In spite of these 425 

assumptions, the method outlined here supports known elements of C. difficile biology 426 

and future studies could employ metabolomic analysis to confirm the predictions made 427 

here. 428 

Based on the evidence presented, our results support the hypothesis that C. difficile is a 429 

metabolic generalist and is able to catabolize alternative carbon sources across 430 

susceptible gut environments. This may be due to an inability to outcompete a collection 431 

of metabolic specialists in an intact community, and separate classes on antibiotics 432 
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differentially eliminate these populations and allow for C. difficile colonization. This 433 

concept may also potentially explain the success rate of fecal microbial transplant 434 

(FMT), in that wholesale installation of a diverse range of specialized metabolic 435 

strategies is enough to outcompete C. difficile from the majority of perturbed gut 436 

environments. Furthermore, our metabolic network platform may also prove informative 437 

for generating hypotheses through reverse ecology that could ultimately lead to 438 

uncovering new interaction between species that ultimately impact host health53. In 439 

conclusion, C. difficile is is able to optimize its nutritional strategy for each colonized gut 440 

environment. Our results implicate that further considerations are needed when 441 

attempting to design targeted prebiotic and probiotic therapies for the prevention or 442 

elimination of C. difficile from the human gut. 443 

Methods 444 

Animal care and antibiotic administration Adapted from the previously described 445 

model54, six-to-eight week-old SPF C57BL/6 mice were obtained from a single breeding 446 

colony maintained at the University of Michigan for all experiments. Six-to-eight week-447 

old GF C57BL/6 mice were obtained from a single breeding colony maintained at the 448 

University of Michigan and fed Laboratory Rodent Diet 5001 from LabDiet for all 449 

experiments. All animal protocols were approved by the University Committee on Use 450 

and Care of Animals at the University of Michigan and carried out in accordance with 451 

the approved guidelines. Specified SPF animals were administered one of three 452 

antibiotics; cefoperazone, streptomycin, or clindamycin (Table 1). Cefoperazone (0.5 453 

mg/ml) and streptomycin (5.0 mg/ml) were administered in distilled drinking water ad 454 

libitum for 5 days with 2 days recovery with untreated distilled drinking water prior to 455 
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infection. Clindamycin (10 mg/kg) was given via intraperitoneal injection 24 hours before 456 

time of infection. 457 

C. difficile infection and necropsy C. difficile strain 630 spores were prepared from a 458 

single large batch whose concentration was determined a week prior to challenge for all 459 

experiments. On the day of challenge, 1×103 C. difficile spores were administered to 460 

mice via oral gavage in phosphate-buffered saline (PBS) vehicle. Subsequent 461 

quantitative plating for c.f.u. was performed to ensure correct dosage. Infection negative 462 

control animals were given an oral garage of 100 µl PBS at the same time as those 463 

mice administered C. difficile spores. 18 hours following infection, mice were euthanized 464 

by carbon dioxide asphyxiation. Necropsy was then performed and cecal content was 465 

split into three small aliquots (~100 µl). Two were flash frozen immediately for later DNA 466 

extraction and toxin titer analysis respectively. The third aliquot was quickly moved to an 467 

anaerobic chamber for c.f.u. quantification. The remaining content in the ceca (~1 ml) 468 

was emptied into a stainless steel mortar in a dry ice/ethanol bath using 1 ml of sterile 469 

PBS. This process was repeated for each mouse within a treatment group to pool 470 

content into a single large sample (9 mice across 3 cages) to compensate for cage 471 

effects as much as possible while maximizing sequencing depth. The content was then 472 

finely ground and stored at -80° C for subsequent RNA extraction. 473 

C. difficile cultivation and quantification Cecal samples were weighed and serially 474 

diluted under anaerobic conditions (6% H, 20% CO2, 74% N2) with anaerobic PBS. 475 

Differential plating was performed to quantify both C. difficile spores and vegetative cells 476 

by plating diluted samles on CCFAE plates (fructose agar plus cycloserine, cefoxitin, 477 

and erythromycin) at 37° C for 24 hours under anaerobic conditions55. It is important to 478 
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note that the germination agent taurocholate was omitted from these plates in order to 479 

only quantify vegetative cells. In parallel, undiluted samples were heated at 60° C for 30 480 

minutes to eliminate vegetative cells and leave only spores56. These samples were 481 

serially diluted under anaerobic conditions in anaerobic PBS and plated on CCFAE with 482 

taurocholate at 37° C for 24 hours. Plating was simultaneously done for heated samples 483 

on CCFAE to ensure all vegetative cells had been eliminated. 484 

C. difficile toxin titer assay To quantify the titer of toxin in the cecum, a Vero cell 485 

rounding assay was performed57. Briefly, filtered-sterilized cecal content was serially 486 

diluted 1:5 in PBS. As a control for toxin-mediated cell rounding the cecal content was 487 

diluted a further 1:2 by the addition of an equal volume of goat anti-toxin serum (T5000; 488 

TechLab). Vero cells were grown to a confluent monolayer in DMEM (Dulbecco's 489 

Modified Eagle's medium), supplemented with 10% heat-inactivated fetal bovine serum 490 

and 1% penicillin-streptomycin. The cells then were transferred to a conical tube and 491 

centrifuged at 1,000 rpm for 5 minutes to pellet the cells. The old media was removed 492 

and the cells were re-suspended in fresh media to a final concentration of 1×105 cells 493 

per 90µL. 90µL of the cell suspension were seeded in each well of a 96-well plate and 494 

incubated at 37° C in a 5% CO2 humidified incubator for 4 hours. Following the 495 

incubation, cecal samples were added to the Vero cells and the plate was incubated 496 

overnight at 37° C. Plates were viewed after 24 hours at 10x magnification for cell 497 

rounding. The cytotoxic titer was defined as the log10 transformed reciprocal of the 498 

highest dilution that produced rounding in 80% of the cells. A more detailed protocol 499 

with product information can be found at: 500 
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https://github.com/jlleslie/Intraspecific_Competition/blob/master/methods/Verocell_Toxin501 

Activity_Assay.Rmd 502 

16S rRNA gene sequencing DNA was extracted from approximately 50 mg of cecal 503 

content from each mouse using the PowerSoil-htp 96 Well Soil DNA isolation kit (MO 504 

BIO Laboratories) and an epMotion 5075 automated pipetting system (Eppendorf). The 505 

V4 region of the bacterial 16S rRNA gene was amplified using custom barcoded primers 506 

and sequenced as described previously using an Illumina MiSeq sequencer58. All 63 507 

samples were sequenced on a single sequencing run. 508 

Sequence curation The 16S rRNA gene sequences were curated using the mothur 509 

software package (v1.36), as described previously58. In short, paired-end reads were 510 

merged into contigs, screened for quality, aligned to SILVA 16S rRNA sequence 511 

database, and screened for chimeras. Sequences were classified using a naive 512 

Bayesian classifier trained against a 16S rRNA gene training set provided by the 513 

Ribosomal Database Project (RDP)59. Curated sequences were clustered into 514 

operational taxonomic units (OTUs) using a 97% similarity cutoff with the average 515 

neighbor clustering algorithm. The number of sequences in each sample was rarefied to 516 

2,500 per sample to minimize the effects of uneven sampling. 517 

RNA extraction, shotgun library preparation, and sequencing To generate enough 518 

mRNA biomass contributed by C. difficile, we pooled cecal content from all mouse 519 

replicates into a single large isolation for each treatment group. Pooling was performed 520 

in a sterile stainless steel mortar resting in dry ice and a small amount of 100% ethanol. 521 

After all content for the given group was added, the sample was ground with a sterile 522 

pestle to a fine powder and scraped into a sterile 50 ml polypropylene conical tube. 523 
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Samples were stored at -80° C until the time of extraction. Immediately before RNA 524 

extraction, 3 ml of lysis buffer (2% SDS, 16 mM EDTA and 200 mM NaCl) contained in 525 

a 50 ml polypropylene conical tube was first heated for 5 minutes in a boiling water 526 

bath60. The hot lysis buffer was added to the frozen and ground cecal content. The 527 

mixture was boiled with periodic vortexing for another 5 minutes. After boiling, an equal 528 

volume of 37° C acid phenol/chloroform was added to the cecal content lysate and 529 

incubated at 37° C for 10 minutes with periodic vortexing. The mixture was the 530 

centrifuged at 2,500 x g at 4° C for 15 minutes. The aqueous phase was then 531 

transferred to a sterile tube and an equal volume of acid phenol/chloroform was added. 532 

This mixture was vortexed and centrifuged at 2,500 x g at 4° for 5 minutes. The process 533 

was repeated until aqueous phase was clear. The last extraction was performed with 534 

chloroform/isoamyl alcohol to remove acid phenol. An equal volume of isopropanol was 535 

added and the extracted nucleic acid was incubated overnight at -20° C. The following 536 

day the sample was centrifuged at 12000 x g at 4° C for 45 minutes. The pellet was 537 

washed with 0° C 100% ethanol and resuspended in 200 µl of RNase-free water. 538 

Following the manufacturer's protocol, samples were then treated with 2 µl of Turbo 539 

DNase for 30 minutes at 37° C. RNA samples were retrieved using the Zymo Quick-540 

RNA MiniPrep according the manufacturer's protocol. Completion of the reaction was 541 

assessed using PCR for the V4 region of the 16S rRNA gene (Kozich, 2013). Quality 542 

and integrity of RNA was assessed using the Agilent RNA 6000 Nano kit for total 543 

prokaryotic RNA. The Ribo-Zero Gold rRNA Removal Kit Epidemiology was then used 544 

to deplete prokaryotic and eukaryotic rRNA from the samples according the 545 

manufacturer's protocol. Prior to library construction, quality and integrity as measured 546 
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again using the Agilent RNA 6000 Pico Kit. Stranded RNA-Seq libraries were made 547 

constructed with the TruSeq Total RNA Library Preparation Kit v2, both using the 548 

manufacturer's protocol. The Agilent DNA High Sensitivity Kit was used to measure 549 

concentration and fragment size distribution before sequencing. High-throughput 550 

sequencing was performed by the University of Michigan Sequencing Core in Ann 551 

Arbor, MI. For all groups, sequencing was repeated across 4 lanes of an Illumina HiSeq 552 

2500 using the 2x50 bp chemistry. 553 

Sequence curation, read mapping, and normalization. Raw transcript sequencing 554 

read curation was performed in a two step process. Residual 5’ and 3’ Illumina adapter 555 

sequences were trimmed using CutAdapt35 on a per library basis. Reads were quality 556 

trimmed using Sickle (Joshi, 2011) on the default settings. An average of ~300,000,000 557 

total reads (both paired and orphaned) remained after quality trimming. Mapping was 558 

accomplished using Bowtie261 and the default stringent settings. ~1,600,000 reads in 559 

sample each mapped to the annotated nucleotide gene sequences of PeptoClostridium 560 

difficile str. 630 from the KEGG: Kyoto Encyclopedia of Genes and Genomes62. Optical 561 

and PCR duplicates were then removed using Picard MarkDuplicates 562 

(http://broadinstitute.github.io/picard/), leaving ~150,000 reads per sample for final 563 

analysis. The remaining mappings were converted to idxstats format using Samtools63 564 

and the read counts per gene were tabulated. Discordant pair mappings were discarded 565 

and counts were then normalized to read length and gene length to give a per base 566 

report of gene coverage. Unless indicated otherwise, each collection of reads was then 567 

1000-fold iteratively subsampled to 90% of the lowest sequence total within each 568 

analysis, and a median expression value for each gene was calculated. 569 
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Reaction Annotation & Bipartite Network Construction. The metabolism of C. 570 

difficile str. 630 was represented as a directed bipartite graph with both enzymes and 571 

metabolites as nodes. Briefly, models were semi-automatically constructed using KEGG 572 

ortholog (KO) gene annotations to which transcripts had been mapped. Reactions that 573 

each KEGG ortholog mediate were extracted from ko_reaction.list located in 574 

/kegg/genes/ko/. KOs that do not mediate simple biochemical reactions (ex. mediate 575 

interactions of macromolecules) were omitted. Metabolites linked to each reaction were 576 

retrieved from reaction_mapformula.lst file located in /kegg/ligand/reaction/ from the 577 

KEGG release. Those reactions that did not have annotations for the chemical 578 

compounds the interact with are discarded. Metabolites were then associated with each 579 

enzyme and the directionality and reversibility of each biochemical conversion was also 580 

saved. This process was repeated for all enzymes in the given bacterial genome, with 581 

each enzyme and metabolite node only appearing once. The resulting data structure 582 

was an associative array of enzymes associated with lists of both categories of 583 

substrates (input and output), which could then be represented as a bipartite network. 584 

The final metabolic network of C. difficile str. 630 contained a total of 1205 individual 585 

nodes (447 enzymes and 758 substrates) with 2135 directed edges. Transcriptomic 586 

mapping data was then re-associated with the respective enzyme nodes prior to 587 

substrate importance calculations. Betweenness-centrality and overall closeness 588 

centralization indices were calculated using the igraph R package found at 589 

http://igraph.org/r/. 590 

Metabolite Importance Calculation. The substrate importance algorithm (Fig. 5a) 591 

favors metabolites that are more likely acquired from the environment (not produced 592 
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within the network), and will award them a higher score (Fig. 6b & 6c). The presumption 593 

of our approach was that enzymes that were more highly transcribed were more likely to 594 

utilize the substrates they act on due to coupled bacterial transcription and translation. If 595 

a compound was more likely to be produced, the more negative the resulting score 596 

would be. To calculate the importance of a given metabolite (m), we used rarefied 597 

transcript abundances mapped to respective enzyme nodes. This was represented by to 598 

and ti to designate if an enzyme created or utilized m. The first step was to calculate the 599 

average expression of enzymes for reactions that either created a given metabolite (i) or 600 

consumed that metabolite (ii). For each direction, the sum of transcripts for enzymes 601 

connecting to a metabolite were divided by the number of contributing edges (eo or ei) to 602 

normalize for highly connected metabolite nodes. Next the raw metabolite importance 603 

score was calculated by subtracting the creation value from the consumption value to 604 

weight for metabolites that are likely acquired exogenously. The difference was log2 605 

transformed for comparability between scores of individual metabolites. This resulted in 606 

a final value that reflected the likelihood a metabolite was acquired from the 607 

environment.Untransformed scores that already equaled to 0 were ignored and negative 608 

values were accounted for by transformation of the absolute value then multiplied by -1. 609 

These methods have been written into a single python workflow, along with supporting 610 

reference files, and is presented as bigSMALL (BacterIal Genome-Scale Metabolic 611 

models for AppLied reverse ecoLogy) available in a public Github repository at 612 

https://github.com/mjenior/bigsmall. 613 

Transcriptome Bootstrapping and Probability Distribution Comparison. As 614 

sequencing replicates of in vivo transcriptomes was not feasible, we applied a Monte 615 
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Carlo style simulation to distinguish calculated metabolite importances due to distinct 616 

transcriptional patterns for the environment measured from those metabolites that were 617 

constitutively important. We employed a 10,000-fold bootstrapping approach of 618 

randomly reassigning transcript abundance for enzyme nodes and recalculating 619 

metabolite importances. This approach was chosen over fitting a simulated 620 

transcriptome to a negative binomial distribution because it created a more relevant 621 

standard of comparison for lower coverage sequencing efforts. Using this method, each 622 

substrate node accumulated a random probability distribution of importance scores 623 

which were then used to calculate the median and confidence interval in order to 624 

ultimately generate a p-value for each metabolite. This was a superior approach to 625 

switch randomization since the connections of the network itself was created through 626 

natural selection and any large-scale alterations would yield biologically uninformative 627 

comparisons64. These calculations are also included within the standard bigSMALL 628 

workflow presented above. 629 

Measuring in vivo concentrations of acetate. Cecal contents were flash frozen in 630 

liquid nitrogen at the time of necropsy and subjected to short chain fatty acid 631 

quantification analysis using GC-MS (gas chromatography–mass spectrometry) as 632 

described in the targeted metabolomics section of Theriot et al., 2014. All assays were 633 

performed at the Michigan Regional Comprehensive Metabolomics Resource Core in 634 

Ann Arbor, MI. 635 

Anaerobic in vitro C. difficile growth curves. The carbon-free variation of C. difficile 636 

Basal Defined Medium (NCMM) was prepared as previously described7. Individual 637 

carbohydrate sources were added at a final concentration of 5 mg/mL and pair-wise 638 
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carbohydrate combinations were added at 2.5 mg/mL each (5 mg/mL total). A solution 639 

of the required amino acids was made separately and added when noted at identical 640 

concentrations to the same study. 245 µl of final media mixes were added to a 96-well 641 

sterile clear-bottom plate. A rich media growth control was also included, consisting of 642 

liquid Brain-Heart Infusion + 0.5% cysteine. All culturing and growth measurement were 643 

performed anaerobically in a Coy Type B Vinyl Anaerobic Chamber (3.0% H, 5.0% CO2, 644 

92.0% N, 0.0% O2). C. difficile str. 630 was grown for 14 hours at 37° C in 3 ml BHI + 645 

0.5% cysteine. Cultures were then centrifuged at 2000 rpm for 5 minutes and resulting 646 

pellets were then washed twice with sterile, anaerobic 1 × phosphate-buffered saline 647 

(PBS). Washed pellets were resuspended in 3 ml more PBS and 5 µl of prepped culture 648 

was added the each growth well of the plate containing aliquoted media. The plate was 649 

then placed in a Tecan Sunrise plate reader, heated to 37° C. Plates were incubated for 650 

24 hours with automatic optical density readings at 600 nm taken every 30 minutes. 651 

OD600 values were normalized to readings from wells containing sterile media of the 652 

same type at equal time of incubation. Growth rates and other curve metrics were 653 

determined by differentiation analysis of the measured OD600 over time in R to obtain 654 

the slope at each time point. 655 

Statistical methods. All statistical analyses were performed using R (v.3.2.0). 656 

Significant differences between community structure of treatment groups from 16S 657 

rRNA gene sequencing were determined with AMOVA in the mothur software package. 658 

Significant differences of Inv. Simpson diversity, CFU, toxin titer, and acetate 659 

concentration were determined by Wilcoxon rank-abundance test with Holm-Bonferroni 660 

correction. Significant differences for growth curves compared to no carbohydrate 661 
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control (+ amino acids) were calculated using 2-way ANOVA with Holm-Bonferroni 662 

correction. Significance for metabolite importance scores was determined as described 663 

above. 664 
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Antibiotic Class Target Activity Administration Dosage 

Cefoperazone Cephalosporin (3rd 
generation) 

Primarily Gram-
positive bacteria, 
with increased 
activity against 
Gram-negative 
bacteria 

Irreversibly 
crosslink bacterial 
transpeptidases to 
peptidoglycan and 
prevents cell wall 
synthesis 

Drinking water Ad 
libitum 

0.5 mg/ml 

Streptomycin Aminoglycoside Active against most 
Gram-negative 
aerobic and 
facultative 
anaerobic bacilli 

Protein synthesis 
inhibitor through 
binding the 30S 
portion of the 70S 
ribosomal subunit 

Drinking water Ad 
libitum 

5.0 mg/ml 

Clindamycin Lincosamide Primarily active 
against Gram-
positive bacteria, 
most anaerobic 
bacteria, and some 
mycoplasma 

Protein synthesis 
inhibition through 
binding to the 23s 
portion of the 50S 
ribosomal subunit 

Intraperitoneal 
injection 

10 mg/kg body 
weight 

 687 
Table 1 | Antibiotics used during C. difficile infection models. 688 
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Figure Legends 689 

Figure 1 | Experimental time lines for mouse model pretreatments and C. difficile 690 

infection. 9 wild-type C57BL/6 mice across 3 cages were included in each treatment 691 

group. (a) Streptomycin or (b) cefoperazone administered ad libitum in drinking water 692 

for 5 days with 2 days recovery with untreated drinking water before infection, (c) a 693 

single clindamycin intraperitoneal injection one day prior to infection, or (d) no antibiotic 694 

pretreatment (for both SPF control and GF mice). If no antibiotics were administered in 695 

the drinking water, mice were given untreated drinking water for the duration of the 696 

experiment beginning 7 days prior to infection. At the time of infection, mice were 697 

challenged with 1×103 C. difficile str. 630 spores at the time of infection. Sacrifice and 698 

necropsy was done 18 hours post-challenge and cecal content was then collected. 699 

Figure 2 | C. difficile sporulation and toxin activity quantification after 18 hours of 700 

infection. (a) Vegetative C. difficile c.f.u. per gram of cecal content. No significant 701 

differences were observed in between any group colonized by C. difficile. (b) C. difficile 702 

spore c.f.u. per gram of cecal content. Significantly more spores were detectable in GF 703 

mice compared to any of the antibiotic-treated SPF groups (P < 0.05). (c) Toxin titer 704 

from cecal content measured by activity in Vero cell rounding assay. GF mice also 705 

displayed significantly more toxin activity than all other groups (P < 0.05). Untreated 706 

mice in a,b,c had no detectable C. difficile or toxin activity and were significantly 707 

different from all other groups in each assay (P < 0.01). Median values are shown for 708 

each group with significant differences calculated using Wilcoxon rank-sum test with the 709 

Holm-Bonferroni correction. Dotted lines denote the limit of detection for both assays, 710 

and undetectable points are shown just below the limit of detection for clarity. 711 
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Figure 3 | Select C. difficile gene set expression compared between treatment 712 

group. Relative abundances of C. difficile transcript for specific genes of interest, 713 

rarefied to 90% of the total number of reads within each colonized condition shown. (a) 714 

Transcription for select genes from the C. difficile sporulation pathway with the greatest 715 

variation in expression between the conditions tested. (b) Relative abundances of 716 

transcript for genes that encode effector proteins from the C. difficile pathogenicity 717 

locus. (c) Transcript abundances for genes associated with quorum sensing in C. 718 

difficile. (d) Transcript relative abundance of select sigma factors which expression or 719 

activity is influenced by environmental metabolite concentrations. Asterisks (*) indicate 720 

genes from which transcript was undetectable. 721 

Figure 4 | C. difficile expression of gene sets for carbon metabolism pathways 722 

across antibiotic pretreatments. (a) Ternary plot indicating the relative abundance of 723 

transcripts for all C. difficile str. 630 genes across the three colonized antibiotic-treated 724 

conditions (gray points). Raw transcript abundances were iteratively rarefied and the 725 

median expression of each gene was calculated (~24x coverage). Each point 726 

represents a unique gene from the annotated genome of C. difficile str. 630 with 727 

position reflecting the ratio of transcription for that gene in all three antibiotic 728 

pretreatments. Transcripts for genes that are over-represented in a single condition are 729 

placed more proximal to the corner associated with that treatment group. Points placed 730 

near the center are equally expressed across all of the conditions measured at 18 hours 731 

post-infection. Points are colored based on inclusion in specific carbon metabolic 732 

pathways, and point sizes within groups of interest were determined based on the 733 

highest expression value for each gene from a single condition. (b – i) Groups from (a) 734 
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are shown individually, without abundance information, for ease of comparison. Genes 735 

included in each group with normalized transcript abundances can be found in Table 736 

S1, and refer to Fig. S3 for additional explanantion of figure interpretation. 737 

Figure 5 | Genome-scale bipartite metabolic modeling results using the 738 

transcriptome of C. difficile str. 630 in each colonized environment. (a) Largest 739 

component from the bipartite genome-scale metabolic model of C. difficile str. 630. The 740 

complete network contains 447 enzymes and 758 metabolites, with 2135 directed 741 

edges. Size of enzyme nodes is relative to the number of normalized reads mapped to 742 

the corresponding gene. The sizes shown reflect the transcriptome of C. difficile str. 630 743 

during infection of cefoperazone-treated mice after 18 hours of infection. Below the 744 

representative network is the metabolite importance algorithm separated into 3 745 

components; (i) relative transcription of reactions consuming a metabolite, (ii) relative 746 

transcription of reactions consuming a metabolite, and (iii) difference of consumption 747 

and creation of the given metabolite. (b) The expanded window displays an example of 748 

a single metabolite importance calculation based on local enzyme gene transcription. 749 

White values in the red nodes represent the number of normalized transcript reads 750 

mapping to the gene sequence for each enzyme node. Average expression of input and 751 

output reactions surrounding metabolite m are calculated at then the difference of these 752 

values found to get the relative importance of m. Log2 transformation is then performed 753 

for uniform comparison between metabolites. 754 

Figure 6 | Results from network-based metabolite importance calculation and in 755 

vitro growth with important carbohydrates. Prior to importance calculation, transcript 756 

abundances for each condition were evenly rarefied for even comparison across 757 
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colonized environments (~18x coverage). (a) Median shared significant metabolites 758 

among the 50 highest scoring metabolites from each condition (P < 0.05). Median 759 

importance scores and pooled random distribution were recalculated per metabolite 760 

using the scores from each condition tested. (b) Distinctly important significant 761 

metabolites from each treatment group (P < 0.05). The top 25 scoring metabolites from 762 

each group was cross-referenced against each other group resulting in metabolites that 763 

are differentially important between environments. (c) in vitro growth curves validating 764 

identified growth nutrients from network analysis. One metabolite that is consistently 765 

important to C. difficile and at least one metabolite indicated as distinctly important from 766 

each group supported growth significantly more (P < 0.001) than no carbohydrate 767 

control (+ amino acids, gray line). Only those carbon sources that significantly improved 768 

C. difficile growth over control are displayed (remainder are located in Table S4). 769 

Significant differences were calculated using 2-Way ANOVA with Holm-Bonferroni 770 

correction. 771 

Supplementary Figure 1 | Analysis of bacterial community structure resulting 772 

from antibiotic treatment. Results from 16S rRNA gene amplicon sequencing from 773 

bacterial communities of cecal content in both mock-infected and C. difficile 630-774 

infected animals 18 hours post-infection across pretreatment models. (a) Non-metric 775 

multidimensional scaling (NMDS) ordination based on ThetaYC distances for the gut 776 

microbiome of all conventionally-raised mice used in these experiments (n = 63). All 777 

treatment groups are significantly different from all other groups by AMOVA (P < 0.001). 778 

(b) Inverse Simpson diversity for each cecal community from the mice in (a). Cecal 779 
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communities from mice not treated with any antibiotics are significantly more diverse 780 

than any antibiotic-treated condition by Wilcoxon test (P < 0.001). 781 

Supplementary Figure 2 | Expression of specific KEGG gene families. Abundances 782 

of normalized transcriptomic reads from C. difficile str. 630 in each tested condition. (a) 783 

All KEGG families. (b) Those sub-families within Carbohydrate metabolism. (c) Sub-784 

families within Amino acid metabolism. 785 

Supplementary Figure 3 | Additional explanation for Figure 4 interpretation. 786 

Relative abundance of transcription for C. difficile 630 genes during infection across the 787 

3 antibiotic pretreatment models used during this study. Points that are located closer to 788 

a corner are more highly transcribed in the condition associated with that corner 789 

compared to the others. As this shows a 3-dimensional data set in 2 dimensions, there 790 

is an amount of distortion proximal to each corner. Simply put for points that are nearer 791 

to an edge, a greater percentage of their total transcription was contributed by C. 792 

difficile colonizing those mice. (a) This point represents the transcription for a gene that 793 

is overrepresented in cefoperazone-treated mice. (b) This point represents a gene in 794 

which transcripts are equally detectable in all 3 conditions. (c) Transcripts for this gene 795 

are only underrepresented in only cefoperazone-treated mice, and are equally 796 

detectable in clindamycin and streptomycin-treated animals. 797 

Supplementary Figure 4 | in vivo acetate concentrations with GC-MS analysis 798 

from cefoperazone-treated mouse cecal content. 2 groups of 5 mice each were 799 

pretreated with cefoperazone as outlined Fig. 1b. A single cage was infected with C. 800 

difficile in the same fashion as other experiments described here. Animals were 801 
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necropsied at 18 hours post-infection and cecal content was flash frozen for later GC-802 

MS analysis. Significance was determined using Wilcoxon signed-rank test. 803 

Supplementary Figure 5 | Additional growth curves for additional carbon sources 804 

and controls. Significant metabolites from network analysis that did not provide 805 

improved growth over no carbohydrate (+ amino acids) control. Also included is the 806 

negative control of minimal media with no amino acids as well as C. difficile growth in 807 

standard Brain-Heart Infusion broth. 808 

Supplementary Table 1 | Sets of genes included in Figure 4 with normalized 809 

abundances and citations. 810 

Supplementary Table 2 | Topology metrics for enzyme and metabolite nodes in 811 

the C. difficile str. 630 metabolic network. 812 

Supplementary Table 3 | All metabolites with significant important scores for C. 813 

difficile in each colonized condition. 814 

Supplementary Table 4 | Growth curve analysis for each tested carbon source. 815 
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