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Abstract

Computational biology has provided widely used and powerful software tools for testing and making inferences
about biological data. In the face of increasing volumes of data, heuristic methods that trade software speed for
mathematical completeness must be employed. We are interested in whether trade-offs between speed and
accuracy are reasonable. Also, what factors are indicative of accurate software?

In this work we mine published benchmarks of computational biology software, we collect data on the relative
accuracy and speed of different software and then test to see what factors influence accuracy e.g. speed, author
reputation, journal impact or recency.

We found that author reputation, journal impact, the number of citations, software speed and age are not reliable
predictors of software accuracy. This implies that useful bioinformatics software is not only the domain of famous
senior researchers. In addition, we found that there exists an excess of slow and inaccurate software tools across
multiple sub-disciplines of bioinformatics. Meanwhile, there are very few tools of middling accuracy and speed.
We hypothesise that a strong publication bias unduly influences the publication and development of bioinformatic
software tools. In other words, at present software that is not highly ranked on speed and not highly ranked
on accuracy is difficult to publish due to editorial and reviewer practices. This leaves an unfortunate gap in the
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literature upon which future software refinements cannot be constructed.
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Background

Computational biology software is widely used and has pro-
duced some of the most cited publications in the scientific
corpus [1l 2| 3]. This software includes implementations
of methods for sequence alignment and homology inference
[4. 15,16, 7], phylogenetic analysis 8,19, 10, 11} [12], statistical
analysis of survival patterns in biomedicine [[13}[14], biomolec-
ular structure analysis [[15 16} 17 [18}[19], visualization and
data collection [20, 21]. However, the popularity of a software
tool does not necessarily imply that it is either accurate or
computationally efficient, instead usability, ease of installation,
operating system and other factors may play a greater role.
Progress in the biological sciences is increasingly limited
by the ability to analyse increasing volumes of data, therefore
the dependence of biologists on software is also increasing
[22]. There is an increasing use of technological solutions for
automating biological data generation (e.g. next-generation
sequencing, mass-spectroscopy, cell-tracking and species track-
ing), therefore the biological sciences have become increas-

ingly dependent upon computational software for processing
large quantities of data [22]. As a consequence, the computa-
tional efficiency of data processing and analysis software is
of great importance to decrease the energy and time costs of
research [23]]. Furthermore, even small error rates can have
a major impact on the number of false inferences as datasets
become larger [24]].

The gold-standard for determining accuracy is for indepen-
dent researchers to conduct benchmarks, which can serve a use-
ful role in reducing the over-optimistic reporting of software
accuracy [25, 26] and the self-assessment trap [27]. Bench-
mark studies typically use a number of positive and negative
control datasets, predictions can then be partitioned into true
or false groups and a variety of metrics can be used to evaluate
the performance of different predictions [28}29]. Some bench-
marks now use live, or frequently updated, results to indicate
the latest developments in software performance [30} 131} 32].
The aim of these benchmarks is to independently identify tools
that make acceptable compromises in terms of scoring schemes
and the resulting potential for false predictions, true predic-
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tions and speed, and are therefore suited for wide adoption by
the community.

For common computational biology tasks, a proliferation
of software-based solutions often exists [|33), 134, 135, 136, 137].
While this may generally be a good problem to have, and points
to a diversity of options from which practical solutions can be
selected, many possible options creates a dilemma for users.
In the absence of any recent gold-standard benchmarks, how
should scientific software be selected? In the following work,
we presume that “biological accuracy” is the most desirable
feature of software. Biological accuracy is the degree to which
predictions or measurements reflect the truths of biological
systems, this is usually determined by comparing results of
software to the results of established reference data. These
are commonly expert-derived curated datasets. In some fields
biological accuracy is very difficult to ascertain, for example,
in phylogenetics it is nearly impossible to know the ances-
tral relationships between organisms. In situations like this,
researchers can use a mix of simulated or high-confidence
datasets.

A number of possible predictors of software quality are
used by the community of computational biology software
users. Some accessible, quantifiable and frequently used prox-
ies for identifying high quality software include: 1. Recency:
recently published software tools may have built upon the
results of past work or be an update to an existing software.
Therefore, these could be more accurate and faster. 2. Wide
adoption: a software tool may be widely used because it is
fast and accurate, or because it is well-supported and user-
friendly. In fact, “large user base”, “word-of-mouth”, “wide-
adoption”, "personal recommendation,” and “recommendation
from a close colleague,” are frequent responses to surveys of
“how do scientists select software?” [38} 139, 40]. 3. Jour-
nal impact: high profile journals are run by editors and re-
viewers who carefully select and curate the best manuscripts.
Therefore, high impact journals may be more likely to select
manuscripts describing good software [41]]. 4. Author/Group
reputation: the key to any project is the skills of the people
involved, including maintaining a high collective intelligence
[39,142143]. As a consequence, an argument could be made
that well respected and high-profile authors will produce better
software [44, |45]. 5. Speed: software is frequently said to
trade accuracy for speed. For example, heuristic software such
as the popular homology search tool, BLAST, compromise the
mathematical guarantee of optimal solutions for more speed
[4, [7]. Some researchers may naively interpret this fact as
slower software is likely to be more accurate. But speed may
also be influenced by the programming language [46], and/or
level of hardware optimisation [47} 48]; In general the imple-
mentation is likely to have more of an impact (e.g. brute-force
approaches versus rapid and sensitive pre-filtering [49, 50]).

Other factors that influence whether a software tool is
selected include: whether the documentation is good, user-
friendly, word-of-mouth and “used in a similar analysis” [40]].
This sort of information is not as readily quantifiable as the
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above measures. However, citation metrics may be a useful
proxy. The word-of-mouth factor may also explain the reason
why some software continues to be used, in spite of poor
relative performance [51].

In the following study, we explore factors that may be in-
dicative of software accuracy. This, in our opinion, should be
one of the prime reasons for selecting a software tool. We have
mined the large and freely accessible PubMed database [52]
for benchmarks of computational biology software, and manu-
ally extracted accuracy and speed rankings for 243 software
packages. For each software tool, we have collected measures
that may be predictive of accuracy, and may be subjectively
employed by the researcher community as a proxy for soft-
ware quality. These include relative speed, relative age, the
productivity and impact of the corresponding authors, journal
impact and the number of citations.

Results

We have collected relative accuracy and speed ranks for 243
distinct software tools. This software has been developed
for solving a broad cross-section computational biology tasks.
These include software for homology search [53], genome
sequence analysis (e.g. read mapping or sequence assembly)
[154] 1550 1561 157, 158l 1591 160} 161}, 162} 163}, 164, 165! 66, [67], mul-
tiple sequence alignment [68| |69, (70, [71 [72]], cell tracking
[[73]], transcriptome analysis [[74} 75, 76, [77]], RNA interaction
prediction [78], protein interactions [79], protein structure pre-
diction [80, I81]], epistasis [82]], metagenomic analysis 83| [84],
repetitive sequence prediction [85]], proteomics [86, I87]] and
phylogenetics [88, 189, 90, 91, 92]]. Each software tool was
benchmarked in at least one of 43 publications that satisfy the
Boulesteix criteria [93]]. In brief, the Boulesteix criteria are: 1.
the main focus of the article is a benchmark. 2. the authors are
reasonably neutral. 3. the test data and evaluation criteria are
sensible.

For each of the publications describing these methods, we
have (when possible) identified the 2014 journal impact factor
(JIF), published by Thomson Reuters [94] and the H5-index
published by |Google Scholar Metrics. We have collected the
H-indices and M-indices [44] for the corresponding authors
for each method, and the number of times the publication(s)
associated with a method has been cited using Google Scholar
(data collected over a 1 month period in early 2016).

We have computed the Spearman’s correlation coefficient
for each pairwise combination of the mean normalised accu-
racy and speed ranks, the year published, mean relative age
(compared to software in the same benchmarks), journal IF and
H5 metrics, the total number of citations, the relative number
of citations (compared to software in the same benchmarks)
and the maximum H and M indices for the corresponding
authors. The results are presented in Figure [[A. We found
significant associations between most of the citation-based
metrics (journal HS, JIF, citations, relative citations, H-index
and M-index). There is also a strong association between the
year of publication, the relative age and many of the citation-
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based metrics.

We found that author reputation metrics, journal impacts
and the age of methods were not significantly correlated with
either method accuracy or speed (see Figure[I). The strongest
association was between accuracy and journal impact factor
(Spearman’s tho = 0.1, P-value = 0.16). A linear model of these
parameters and accuracy also failed to identify a correlation
between these (accuracy: R2 =-0.03, P-value = 0.94; speed:
R2 = 0.04, P-value = 0.66). To further validate this result,
we compute a correlation between speed and accuracy for
each benchmark and used weighted sum Z-tests [95]. This
also failed to identify a significant relationship (sum Z=-0.1,
P-value=0.5).

In order to gain a deeper understanding of the distribution
of available bioinformatic software tools on a speed versus
accuracy landscape, we ran a Monte Carlo permutation test.
The ranks extracted from each benchmark were randomly
permuted, generating 10,000 randomized speed and accuracy
ranks. In the cells of a 10 x 10 grid spanning the normalised
speed and accuracy ranks we computed a Z-score for the ob-
served number of methods in a cell, compared to the expected
distributions generated by the randomized ranks. The results of
which are shown in Figure[2] We identified 19 bins where there
was a significant excess or dearth of methods. For example,
there was an excess of “slow and inaccurate” software (Z=1.6,
P-value=0.05) and “slow and accurate” software (Z=1.9, P-
value=0.03). We find that the amount of software classed as
“fast and accurate” and “fast and inaccurate” are at approxi-
mately the expected proportions based upon the permutation
test. The number of significant results is in excess and not
due to multiple testing, as the probability of finding 19 of 100
tests significant by chance is low (P-value = 5 x 1077, exact
binomial test).

There is a large reduction in the number of software tools
that are classed as intermediate in terms of both speed and
accuracy based upon our permutation test (Figure[2). The cells
corresponding to the four central underrepresented deciles are
highlighted (Z =-1.7, -2.1, -2.1 and -2.4, P-values = 0.04, 0.02,
0.02 and 0.008, respectively, reading from top to bottom, left
to right). We also tested the relative age of the software tools
in significantly over- or under-represented regions of the speed
vs accuracy plot. We found that the “slow and inaccurate”
methods were generally published earlier than other methods
(W =31, P=0.007, one-tailed Wilcoxon test) (Figure S8).

Discussion

We have gathered data on the relative speed and accuracies
of 243 bioinformatic methods from 43 benchmarks that were
published between 2005 and 2016. We show that there is an
under-representation of software that has both intermediate
levels of accuracy and speed. There may be a number of fac-
tors that drive this phenomena. One possible explanation for
this is that benchmarkers select software that fills the extremes
of each accuracy/speed niche. This seems unlikely since based
upon our word frequency analysis the terms “broad”, “compre-
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hensive”, “inclusive” and “thorough” are over-represented by
between 200% and 4,400%. A more likely explanation, in our
opinion, is that bioinformatic software tools suffer from a form
of publication bias [96] 97]. Our community of developers,
reviewers and editors are unwilling to publish software that is
neither the fastest nor the most accurate (we have anecdotal
evidence to support this, N=1). If correct, this is unfortu-
nate. Some problems that lack fast and accurate solutions
force researchers to make unnecessary compromises in terms
of accuracy and time. If our hypothesis that this underrepre-
sentation is due to publication bias is valid then why is there
an enrichment of slow and inaccurate software (P-value=0.05,
empirical distributions from permutation tests)? How could
these methods be published? We have found that slow and
inaccurate software is generally published earlier than alterna-
tive methods (P=0.007, one-tailed Wilcoxon test), therefore
comparisons were not required to publish these tools and the
accuracies may have been over-optimistically reported [98]].

We found that no commonly used proxy for study quality
is correlated with software accuracy. Neither, author reputa-
tion, number of citations, journal impact, relative age or speed
appear to be associated with accurate software. Linear mixed
models of these values also fail to identify predictors of soft-
ware accuracy, as do methods for combining P-values. A great
deal of criticism has been leveled specifically at journal impact
factors [[99} 100, [101]. Our finding show that this measure is
not reflective of software quality. But neither is the H5 index
which is thought to be a more robust measures of journal im-
pact [102]]. The poor relationship between accuracy and both
author reputation and the number of citations is particularly
troubling. Both are related to “word of mouth” and “previ-
ously used in a similar analysis” which a recent survey of
researchers suggested is a major influence on the selection of
software tools [40]. This implies that the recorded high citation
rates for bioinformatic software [, 2, 3] is more a reflection
of user-friendliness and the Matthew Effect [[101, [103]]. The
Matthew Effect is a biblical reference that can be paraphrased
as “the rich get richer and the poor get poorer”. In this context,
highly cited software is more likely to be used and cited again,
irrespective of relative performance.

The lack of any relationship between software speed and
accuracy is surprising. The slower software tools are overrep-
resented at both high and low levels of accuracy (Figure [2).
Likewise accurate software was found in both high and low
speed ranges. A simple gedankenexperiment may be suffi-
cient to prove that slow software is less thoroughly tested than
fast software. This is because typical software development
is an iterative process, where methods are refined by succes-
sive rounds of coding, testing and evaluation [104]. We can
assume that similar time-spans are spent on most projects, for
example, the span of a MSc or PhD degree. As a consequence
slow software undergoes fewer development cycles than fast
methods, and is therefore tested less, often resulting in less
accurate and slower software. The fact that fast and inaccurate
software is relatively rare supports this argument. The lack of
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Figure 1. A. A heatmap indicating the relationships between proposed predictors of software quality. Spearman’s rho is used to
infer correlations between metrics such as the H and M indices of corresponding authors, number of citations, journal impact
factors and HS indices, the year and relative age of software and the mean relative rankings of software speed and accuracy.
Red colours indicate a high positive correlation, blue colours indicate a high negative correlation. Correlations with a P-value
less than 0.05 are indicated with a ‘X’. The dashed rectangular area is illustrated in more detail in B, the bold square is shown
in more detail in Figure 2.The dendrogram was computed using the default ‘heatmap.2 function in R, which computes a
Euclidean distance matrix and a complete-linkage hierarchical clustering. B. A barplot illustrating the correlation as measured
by Spearman’s rho between and normalised accuracy ranks and potential factors that may be predictive of accuracy. In order to

give an appreciation of the difference between the observed effect-sizes and significant effect sizes, we generated 10,000
permuted accuracy ranks for each benchmark and recorded Spearman’s rho for the significant correlations (Pj0.05). These

values are marked with “x”’s in the barplot.

any further apparent relationship between speed and accuracy
implies there are stronger influences on accuracy rankings than
speed alone.

Conclusions

Scientific progress is a grinding process made by testing hy-
potheses using appropriate positive and negative controls, in
combination with independent experiments and replication
[105,[106]. We think that software and analysis tools should
be no exception to these principles. The continual increases in
the complexity of software tools creates an increased likelihood
that software bugs are introduced [107]. Scientific software
should therefore be thoroughly tested by developers, however,
the results of developer and author-derived tests should be
treated with caution due to a range of potential conscious and
unconscious biases [27]. Our study shows that no commonly-
used impact-based metrics are related to software accuracy,
therefore the only reasonable way to select software tools is
through software benchmarks.

We have shown that slow and inaccurate software is typi-
cally published early in the development of a field (see Figure
S8). Subsequent software tools may be high accuracy or high
speed. However, as further software tools become available,
those that do not rank highly in terms of accuracy or speed are
under-represented in the literature. Our conjecture is that this
is due to a publication bias in computational biology software
literature, with publishers, editors and reviewers implicitly re-
quiring software to be notable in at least one of these regards
in order to be published. This hole in the literature leaves
an unfortunate gap upon which further software refinements
cannot be made.

The software that could be used in building research work-
flows can make use of software tools that are of medium accu-
racy and speed. These may prove to be useful rapid pre-filters
for more accurate, yet computationally-demanding approaches.
These could also be used when datasets are too large to be
processed by more accurate software tools, i.e. when accurate
tools are slow or memory hungry [[108.[109]. These tools may
also serve as an indication that some approaches may not be
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Figure 2. A heatmap indicating the relative paucity or abundance of software in the range of possible accuracy and speed
rankings. Red colours indicate an abundance of software tools in an accuracy and speed category, while blue colours indicate
scarcity of software in an accuracy and speed category. The abundance is quantified using a Z-score computation for each bin,
this is derived from 10,000 random permutations of the speed and accuracy ranks from each benchmark. Mean normalised
ranks of accuracy and speed have been binned into 100 classes (a 10 x 10 grid) that range from comparatively slow/inaccurate

to comparatively fast/accurate. Z-scores with a P-value less than 0.05 are indicated with a ‘X’.
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worth pursuing further.

We propose that the full spectrum of software tool ac-
curacies and speeds serve a useful purpose to the research
community. Like negative results, if honestly reported, illus-
trate to the research community that certain approaches are
not practical research avenues [105} [110} [111]. The classes
of tools that we find in the under-represented accuracy and
speed region include some of the most widely used and useful
tools in bioinformatics. These include the homology search
tools NCBI-BLAST [4,[7] and HMMER? [112] and genome
assembly and mapping tools such as AbySS [113], MAQ [114]
and Newbler [115]. The current practises of publishers, edi-
tors, reviewers and authors of software tools therefore deprive
our community of tools for building effective and productive
workflows.

A potential avenue for further exploration is to compare
the starting point for software development projects as certain
approaches may produce more rapid gains than others. For
example, starting with biologically plausible and fast methods
will theoretically allow more rapid gains in accuracy through
iterative method refinement than starting with slow and mathe-
matically complete approaches. At the very least these may be
used as rapid data filters for reducing the size and complexity
of problems, prior to employing more rigorous methods.

We have shown that accurate software is not necessarily the
most recently released method or the product of high profile
lab groups or selected by high impact journals. Software that
is widely used or is either slow or fast is also not necessarily
the most accurate. Therefore, accurate software may be the
product of features we have not been able to capture. Possibly,
hard work, good ideas and sound method testing, as well as
technical ability, experience and education levels in software
development [[104].

Finally, we think that the field of computational biology
could benefit from embracing an increased number of inde-
pendent software comparison studies 93], in parallel with the
popular challenge-based benchmarks such as CASP, Assem-
blathon, Alignathon, DREAM and RGASP [116]. We are
hopeful that this, along with the relaxation of the publication
bias we have described, will reduce the over-optimistic and
misleading reporting of method accuracy [25} 26} 27].

Methods

In order to evaluate predictors of computational biology soft-
ware accuracy, we mined the published literature, extracted
data from articles, connected these with bibliometric databases,
and tested for correlates with accuracy. We outline these steps
in further detail below.

Criteria for inclusion: We are interested in using compu-
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the methods included in the benchmark. Thirdly, the test data
and evaluation criteria should be sensible. This means that the
test data should be independent of data that methods have been
trained upon, and that the evaluation measures appropriately
quantify correct and incorrect predictions.

Literature mining: We identified an initial list of 10 bench-
mark articles that satisfy the ALB-criteria. These were iden-
tified based upon previous knowledge of published articles
and were supplemented with several literature searches (e.g.

“benchmark” AND “cputime™ was used to query both GoogleScholar

and Pubmed [52, [117]]). We used these articles to seed a
machine-learning approach for identifying further candidate
articles and to identify new search terms to include.

For our machine-learning-based literature screening, we
computed a score (s(a)) for each article that tells us the like-
lihood that it is a benchmark. In brief, our approaches uses 3
stages:

1. Remove high frequency words from the title and abstract
of candidate articles (e.g. ‘the’, ‘and’, ‘of’, ‘to’, ‘a’,...)

2. Compute a log-odds score for the remaining words

3. Use a sum of log-odds scores to give a total score for
candidate articles

For stage 1, we identified a list of high frequency (e.g. f(word)
> 1/10,000) words by pooling the content of two control texts
[L18L[119].

For stage 2, in order to compute a log-odds score for
bioinformatic words, we computed the frequency of words
that were not removed by our high frequency filter in two
different groups of articles: bioinformatics-background and
bioinformatics-benchmark articles. The text from bioinformatics-
background articles were drawn from the bioinformatics litera-
ture, but these were not necessarily associated with benchmark
studies. For background text we used Pubmed ([52, [117] to
select 8,908 articles that contained the word ‘bioinformatics”
in the title or abstract and were published between 2013 and
2015. We computed frequencies for each word by combining
text from titles and abstracts for the background and training

articles. A log-odds score is computed for each word using the
1 fflf;(word)+8
02 Sog(word)+8 *

probability (§ = 1073, by default), fy,(word) and f,,(word)
are the frequencies of a word in the background and training
datasets respectively. Word frequencies are computed by count-
ing the number of times a word appears in the pool of titles
and abstracts, the counts are normalised by the total number
of words in each set.

Thirdly, we also collected a group of candidate benchmark

following formula: lo(w) = where is a prior

tational biology benchmarks that satisfy Anne-Laure Boulesteix’sarticles by mining Pubmed for articles that are likely to be

(ALB) three criteria for a “neutral comparison study” [93].
Firstly, the main focus of the article is the comparison and
not the introduction of a new method. Secondly, the authors
should be reasonably neutral, which means that the authors
should not generally have been involved in the development of

benchmarks of bioinformatic software, these may match the
terms: “((bioinformatics) AND (algorithms OR programs OR
software)) AND (accuracy OR assessment OR benchmark OR
comparison OR performance) AND (speed OR time)”. Further
terms used in this search were progressively added as relevant
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enriched terms were identified in later iterations. The final

query is given in supplementary materials.

A score is computed for each candidate article by sum-
ming the log-odds scores for the words in title and abstract,
i.e. s(a) = Y lo(w;). The high scoring candidate articles are
then manually evaluated against the ALB-criteria. Accuracy
and speed ranks are extracted from the articles that meet the
criteria, and these are also added to the set of training articles.
The evaluated candidate articles that do not meet the ALB-
criteria are incorporated into the set of background articles.
This process is iterated a number of times and has resulted in
the identification of 43 benchmark articles, that contain 102
different benchmarks, together these rank 243 distinct software
packages.

There is a potential for bias to have been introduced into
this dataset. Some possible forms of bias include converging
on a niche group of benchmark studies due to the literature
mining technique that we have used. A further possibility is
that benchmark studies themselves are biased, either including
very high performing or very low performing software tools.
To address each of these concerns we have attempted to be as
comprehensive as possible in terms of benchmark inclusion,
as well as include comprehensive benchmarks. By which
we mean studies that include all available software tools that
address a biological problem.

Data extraction and processing: for each article that met
the ALB-criteria and contained data on both the accuracy and
speed from their tests we extracted ranks for each method.
Many articles contained multiple benchmarks, in these cases
we selected a range of these, the provenance of which is stored
with the accuracy metric and raw speed and accuracy rank data
for each method. In line with rank-based statistics, the cases
where methods were tied are resolved by using a midpoint rank
(e.g. if method 3 and 4 are tied, the rank 3.5 is used) [120].
Each rank extraction was independently verified by at least one
other co-author to ensure both the provenance of the data could
be established and that the ranks were correct. The ranks for
each benchmark were then normalised to lie between 0 and 1
using the formula 1 — *— where ‘r’ is a method’s rank and ‘n’
is the number of methods in the benchmark. For methods that
were benchmarked multiple times with multiple metrics (e.g.
BWA is evaluated in 6 different articles [58],159, 161,162,163, 165])
a mean normalised rank is used to summarise the performance.

For each method we identified the corresponding publi-
cations in GoogleScholar, the total number of citations was
recorded, the corresponding authors were also identified and
if these had public GoogleScholar profiles we extracted their
H-index and calculated a M-index (Z=4¢X) where ‘y’ is the
number of years since their first publication. For the journals
that each method is published in we extracted the “journal im-
pact factor” (JIF) and the H5-index from Thompson-Reuters
and GoogleScholar Metrics databases respectively. The year
of publication was also recorded for each method. A “rela-
tive age” and “relative citations” was also computed for each
method. For each benchmark, software was ranked by year of
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first publication (or number of citations), ranks were assigned
and then normalised as described above. Methods ranked
in multiple evaluations were then assigned a mean value for
“relative age” and “relative citations”.

Statistical analysis: For each method we have up to 10
statistics (1. corresponding author’s H-index, 2. corresponding
author’s M-index, 3. journal HS index, 4. journal impact
factor, 5. normalised accuracy rank, 6. normalised speed rank,
7. number of citations, 8. relative age, 9. relative number of
citations, 10. year first published). These have been evaluated
in a pairwise fashion to produce Figure[I| A&B, the R code for
these is given in the supplement.

The linear models that we used to test for relationships
between speed, accuracy and the above measures are:

accuracy =co+ ¢y X speed + cy X JIF 4+ c¢3 x H5+
cq4 X citations + c5 X Hindex—+
ce X Mindex + c7 X relativeAge—+

cg X relativeCitations

speed =co+ ¢ X accuracy +cpy X JIF 4¢3 x H5+
c4 X citations + cs5 X Hindex+
c6 X Mindex+ c7 X relativeAge+

cg X relativeCitations

For each benchmark of three or more methods, we ex-
tracted the published accuracy and speed ranks. In order to
identify if there is an enrichment of certain accuracy and speed
pairings we constructed a permutation test. The individual
accuracy and speed ranks were reassigned to methods in a
random fashion and each new accuracy and speed rank pairing
was recorded. For each benchmark this procedure was repeated
10,000 times. These permuted rankings were normalised and
compared to the real rankings to produce the ‘X’ points in
Figure [IB and the heatmap and histograms in Figure[2] The
heatmap in Figure [2|is based upon Z-scores (Z = )%X). For
each cell in a 10 x 10 grid a Z-score is computed to illus-
trate the abundance or lack of methods in a cell relative to the
permuted data.

Data availability

Raw datasets, software and documents are available under a
CC-BY license:
https://docs.google.com/spreadsheets/d/

14xIY2PHNvxmVIOMQLpbzSfFkuylR1zDHbBOCZLJKCGuUS8/

edit?usp=sharing

and here:
https://dx.doi.org/10.6084/m9.figshare.
4299320.v1

Additional documentation, code, figures and raw data is
available here:
https://github.com/UCanCompBio/speed—-vs—
accuracy-meta—-analysis
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