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ABSTRACT
Genomics is set to transform medicine and our
understanding of life in fundamental ways. But the
growth in genomics data has been overwhelming - far
outpacing Moore’s Law. The advent of third generation
sequencing technologies is providing new insights into
genomic contribution to diseases with complex mutation
events, but have prohibitively high computational costs.
Over 1,300 CPU hours are required to align reads from
a 54× coverage of the human genome to a reference
(estimated using [1]), and over 15,600 CPU hours to
assemble the reads de novo [2]. This paper proposes
“Darwin” - a hardware-accelerated framework for genomic
sequence alignment that, without sacrificing sensitivity,
provides 125× and 15.6× speedup over the state-of-the-art
software counterparts for reference-guided and de novo
assembly of third generation sequencing reads, respectively.
For pairwise alignment of sequences, Darwin is over
39,000× more energy-efficient than software. Darwin uses
(i) a novel filtration strategy, called D-SOFT, to reduce the
search space for sequence alignment at high speed, and (ii)
a hardware-accelerated version of GACT, a novel algorithm
to generate near-optimal alignments of arbitrarily long
genomic sequences using constant memory for trace-back.
Darwin is adaptable, with tunable speed and sensitivity
to match emerging sequencing technologies and to meet
the requirements of genomic applications beyond read
assembly.
Keywords: Genomic sequence alignment, Long reads,
Hardware acceleration, Resequencing, De novo assembly.

1. INTRODUCTION
Since the completion of the first draft of the human

genome in 2001 [3, 4], genomic data has been doubling
every 7 months - far outpacing Moore’s Law. By 2020,
genomic data is expected to reach exabyte scale and surpass
Youtube and Twitter by 2025 [5]. This growth has been
primarily led by the massive improvements in “genome
sequencing” - a technology that enables reading sequence
of nucleotide bases from DNA molecules. Today, it is
possible to sequence genomes on rack-size, high-throughput
machines at nearly 50 human genomes per day [6], or
on portable, USB-stick size sequencers that require several
days per human genome [7]. This data explosion has been
immensely valuable to the emerging field of personalized
medicine [8] and in detecting when some genomic mutations

predispose humans to certain diseases, including cancer [9],
autism [10] and aging [11]. It has also contributed to the
understanding of the molecular factors leading to phenotypic
diversity (such as eye and skin color, etc.) in humans
[12], their ancestry [13] and the genomic changes that made
humans different from related species [14].

Third generation technologies produce much longer reads
of contiguous DNA — tens of kilobases compared to only a
few hundred bases in both first and second generation [15].
This drastically improves the quality of the genome assembly
— where the reads are assembled into a complete sequence.
For example, contiguity in the Gorilla genome assembly was
recently found to improve by over 800× using long reads
[16]. For personalized medicine, long reads are superior
in (i) identifying structural variants i.e. large insertions,
deletions and re-arrangements in the genome spanning
kilobases of more which are sometimes associated with
diseases, (ii) haplotype phasing, to distinguish mutations on
maternal versus paternal chromosomes and (iii) resolving
highly repetitive regions in the genome [15].

Despite several advantages, the long read technology
suffers from one major drawback - high error rate in
sequencing. Mean error rates of 15% on Pacific Biosciences
(PacBio) technology and up to 40% on Oxford Nanopore
Technology (ONT) have been reported [17, 18]. These
errors are corrected using computational methods that can
be orders of magnitude slower than those used for the
second generation technologies. For instance, using BWA
[1], aligning 54× coverage reads of the human genome to
reference requires over 1,300 CPU hours on PacBio reads
(15% error rate), compared to only 270 CPU hours for short
Illumina reads (<2% error rate).

In this paper, we describe a hardware-acceleration
framework for genome sequence alignment, named Darwin
, which accelerates the compute-intensive task of long-read
assembly by orders of magnitude. We note that Darwin is a
general framework for acceleration of sequence alignment,
and can be used for applications beyond read assembly,
such as homology search [19] or whole genome alignments
[20], but we specifically focus on Darwin’s application to
long read sequencing due to it’s far-reaching potential in
near-term.

This paper makes the following contributions:
1. We propose Genome Alignment using

Constant-memory Trace-back (GACT) - a novel
algorithm using dynamic programming for aligning
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arbitrarily long sequences using constant memory
for the compute-intensive step. This has a profound
hardware design implication, as all previous hardware
accelerators for genomic sequence alignment have
assumed an upper-bound on the length of sequences
they align (typically <10Kbp) [21, 22] or have left the
trace-back step in alignment to software [23, 24], thus
undermining the benefits of hardware-acceleration.
We show that GACT can produce alignments which
are within 0.95% of the optimal and have no effect on
the consensus accuracy for coverage above 13×.

2. We propose Diagonal-band Seed Overlapping based
Filtration Technique (D-SOFT) - a novel filtering
algorithm to reduce the search-space for dynamic
programming. D-SOFT can be used for finding
read-to-reference mapping in reference-guided
assembly or for finding overlaps between reads in de
novo assembly at high speed and sensitivity. D-SOFT
filters by counting the number of non-overlapping
bases in a band of diagonals. This allows D-SOFT
to be tuned flexibly — at only 0.16% sensitivity
loss, D-SOFT can be made 121× more specific, thus
alleviating the need for additional filtering heuristics.

3. We propose a hardware design for acceleration of
GACT. The design is fully prototyped on FPGA.
We perform ASIC synthesis and layout for GACT
on 45nm TSMC technology node. With our ASIC
implementation, pairwise alignment of sequences has
a speedup of 762× over software and is over 39,000×
more energy-efficient.

4. We propose Darwin, a framework which combines
hardware-accelerated GACT with D-SOFT. We
evaluate Darwin’s speedup in comparison to software
counterparts and show that Darwin can be tuned to a
wide-range of speed and sensitivity. Darwin provides
a speedup of 125× and 107× for reference-guided
assembly of the human genome using PacBio and
ONT 2D reads, respectively, without losing sensitivity.
For finding read overlaps for de novo assembly of
PacBio reads, Darwin provides a 15.6× speedup over
DALIGNER [2].

The rest of the paper is organized as follows.
Section 2 provides relevant background in genome sequence
alignment, sequencing and read assembly. Section 3
and 4 present the GACT and the D-SOFT algorithms,
respectively. Section 5 explains how Darwin’s framework
combines D-SOFT and hardware-accelerated GACT to
perform reference-guided and de novo assembly of long
reads. Section 6 provides the hardware design and
implementation details to accelerate the GACT algorithm.
We provide experimental methodology in Section 7, and
discuss the results in Section 8. Section 9 discusses some
relevant related work, which is followed by conclusion and
future work discussion in Section 10.

2. BACKGROUND
In this section, we provide some necessary background

on genome sequence alignment, genome sequencing and
genome assembly needed for the rest of this paper.

2.1 Genome sequence alignment
The sequence alignment problem can be formulated as

follows: Given a query sequence Q = q1,q2, ..,qn and a
reference sequence R = r1,r2, ..,rm (m ≥ n), assign gaps
(denoted by ‘-’) to R and Q to maximize an alignment score.
The alignment assigns letters in R and Q to a single letter or
a gap in the opposite sequence. For genomic sequences, the
letters are in the alphabet Σ = {A,C,G,T}, corresponding to
the four nucleotide bases.

Sequence alignment often uses the Smith-Waterman
algorithm [25], since it provides optimal local alignments for
biologically-meaningful scoring schemes. A typical scoring
scheme rewards matching bases and penalizes mismatching
bases, with these rewards and penalties specified by a
substitution matrix W of size Σ × Σ. The gaps in R
and Q, known as insertions and deletions, are penalized
by another parameter, gap. Smith-Waterman operates in
two phases: (i) matrix-fill, in which a score H(i, j) and
a trace-back pointer is computed for every cell (i, j) of
the DP-matrix having dimensions (m+ 1)× (n+ 1) using
the dynamic programming equations of Figure 1a, and
(ii) trace-back, which uses trace-back pointers, starting
from the highest-scoring cell, to reconstruct the optimal
local alignment. Figure 1c shows an example DP-matrix
computed using the parameters in Figure 1b for sequences
R =‘GGCGACTTT’ and Q =‘GGTCGTTT’. An arrow in
each cell represents the trace-back pointer, which points to
the cell that led to its score, with no arrow for cells with score
0, where the trace-back phase must terminate. Red arrows
indicate that trace-back path from the highest-scoring cell
(highlighted using red) to reconstruct the optimal alignment
shown in Figure 1d.

Smith-Waterman is a highly compute intensive algorithm
with time complexity of O(mn). To align even a 1000 bp
read with the 3× 109 bp human genome has a complexity
of O(1012) and takes several minutes on highly-optimized
software. As a result, most alignment heuristics use
an additional filtration step based on the seed-and-extend
paradigm, made popular by BLAST [19]. This approach
uses substrings of fixed size k from Q, known as seeds, and
finds their exact matches in R, known as seed hits. Finding
seed hits is O(m), but can be achieved in O(1) with some
pre-processing on R [19]. Once the seed hits are found,
the extend step uses dynamic programming equations to
compute DP-matrix scores for only the cells surrounding
the seed hit that could result in a good local alignment,
thereby avoiding the high cost of computing every cell of the
DP-matrix. Alignments between R and Q having no exactly
matching substrings of size k or larger will not be discovered
by this approach, resulting in lower sensitivity. The
seed-and-extend paradigm trades sensitivity for speed but
works well in practice and has been incorporated in a large
number of alignment heuristics since BLAST [26, 20, 1, 27,
28, 29, 2], each heuristic optimized for a speed/sensitivity
trade-off point depending on the application context and the
properties of sequences in that context.

2.2 Genome sequencing and assembly
Genome/DNA sequencing is the process of shearing

DNA molecules of the genome into a large number N of
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(a) (b) (c) (d)

Figure 1: (a) Smith-Waterman equations. (b) Smith-Waterman scoring parameters. (c) DP-matrix with trace-back pointers. (d)
Optimal alignment.

random fragments and reading the sequence of bases in each
fragment. The size of the fragments depends on sequencing
technology. Long read sequencing technologies, such as
Pacific Biosciences and Oxford Nanopore, have a mean read
length L of about 10Kbp. Typically, N is chosen such that
each base-pair of the genome G is expected to be covered
more than once, i.e. C = (NL/G) > 1, where C is known
as the coverage of sequencing. Higher sequencing coverage
has the advantage that each base-pair is likely covered by
several reads and small errors in each read can be corrected
using a consensus of multiple reads. Despite high error-rate
of 15% at base-pair level, Pacific Biosciences reads have
consensus accuracy of > 99.99% at a coverage of 50× [30].

Genome assembly is the computational process of
reconstructing a genome G from a set of reads S. In
reference-guided assembly a reference sequence R is used
to assist the assembly. In de novo assembly, G is constructed
only from S, without the benefit (or bias) of R. The
preferred approach to de novo assembly of long reads is
using overlap-layout-consensus (OLC) [31]. In the overlap
phase, all read pairs having a significant overlap are found.
During the layout phase, overlapping reads are merged to
form larger contigs. Finally, in the consensus phase, the final
DNA sequence is derived by taking a consensus of reads,
which corrects the vast majority of read errors. By far, the
most time-consuming step of OLC is the overlap step, which
requires O(N2) time for N reads.

In reference-guided assembly, sometimes called
resequencing, the reads are directly aligned to reference
sequence R, which closely resembles the sequenced
genome. Reference-guided assembly is O(N) for N reads,
produces fewer contigs compared to de novo assembly, and
is good at finding small changes, called variants, of the
sequenced genome with respect to the reference genome.
However, it can also introduce reference-bias, and unlike de
novo assembly, reference-guided assembly does not capture
large structural variants between reference and sequenced
genome. The debate on the relative merits of de novo and
reference-guided assembly for clinical practice is far from
settled, but the current standard of BWA-GATK pipeline
[32], incorporates best of both worlds — BWA performs
fast reference mapping, and GATK implements techniques
to reduce reference-bias and identify de novo variants in the
sequenced genome. Additionally, graph-based algorithms,

such as Manta [33], are now being used for detecting
structural variants for certain clinical applications.

3. GACT ALGORITHM
Motivation. The advent of long-read technology has

made the problem of efficiently aligning two long genomic
sequences critical. Smith-Waterman requires O(mn) space
to optimally align two sequences of lengths m and
n. Hirschberg’s algorithm [34] can improve the space
complexity to linear O(m+n), but is rarely used in practice
because of its performance. As a result, linear-space
heuristics, such as Banded Smith-Waterman [35] and X-drop
[36], that do not guarantee optimal alignments but have
linear space and time complexity, have become popular. For
long reads, both algorithms require prohibitive trace-back
pointer storage for hardware implementation. The longest
recorded read is over 300Kbp [37], storing a band of 2-bit
trace-back pointers of width B on both sides of the main
diagonal requires 2B×300×103×2 bits, or roughly 15MB
for B = 100. Not only is provisioning such a large memory
using on-chip SRAM difficult, it is also performance-
and energy-inefficient, and restricts the amount of on-chip
parallelism. We later show in Section 8, that even a band
B = 100 is insufficient for long reads since they have very
different insertion and deletion rates, resulting in the optimal
alignment drifting far from the diagonal.

Description. GACT for left extension, i.e. aligning
sequences R and Q to the left of position i∗ in R and
j∗ in Q, is shown in Algorithm 1. GACT works in the
seed-and-extend paradigm, and positions i∗ and j∗, where
R and Q are likely to have an alignment, are generated
by the seeding stage. GACT finds alignment between
long sequences by incrementally finding optimal alignments
between a series of smaller subsequences of R and Q,
starting at (i∗, j∗). The size of the subsequences have an
upper-bound of tile size T , an input parameter to GACT.
GACT maintains the start and end positions of R (Q) in the
current tile in istart ( jstart ) and icurr ( jcurr), respectively.

The function Align computes the optimal alignment
for the current tile. The alignment begins from the
highest-scoring cell of the DP-matrix if argument t is true.
Otherwise the alignment starts from the bottom-right cell.
Aligning from highest-scoring cell is used when the filtering
stage generates approximate (i∗, j∗) around which alignment
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Algorithm 1: GACT for Left Extension
// Initialization

1 tb_le f t← [] ;
2 (icurr, jcurr)← (i∗, j∗) ;
3 while ((icurr > 0) and ( jcurr > 0)) do

// Start coordinates for next tile
4 istart ← max(0, icurr−T ) ;
5 jstart ← max(0, jcurr−T ) ;
6 Rtile← R[istart : icurr] ;
7 Qtile← Q[istart : icurr] ;

// Align next tile

8 (T S, io f f , jo f f , imax, jmax, tb)← Align(Rtile,Qtile, t) ;
9 tb_le f t.prepend(tb) ;

10 if (t == 1) then
11 (icurr, jcurr)← (imax, jmax);
12 t← 0;
13 end
14 if ((icurr− io f f < T/2) and ( jcurr− jo f f < T/2))

then
15 break;
16 end
17 else
18 (icurr, jcurr)← (icurr− io f f , jcurr− jo f f )
19 end
20 end
21 return (imax, jmax, tb_le f t);

should begin, and is used only for the first tile in GACT.
Aligning from bottom-right cell is used to “stitch” together
the alignments from successive tiles during extension. Align
returns (i) the alignment score of the tile T S, (ii) the offsets
io f f and jo f f in R and Q based on the number of bases
of each sequence participating in the alignment, (iii) a
set of traceback pointers tb, that can be used to used to
reconstruct the final alignment, and (iv) the position of the
highest-scoring cell (imax, jmax) if t is set. GACT terminates
when it reaches the start of R or Q, or when the trace-back
results in less than half of the bases in R and Q being aligned,
indicating that further extension is unlikely to result in a
positive score. For right extension, GACT works similar
to Algorithm 1, but using reverse of R and Q. Because
the maximum length of sequences used as input for Align
is T , a maximum of T 2 trace-back pointers are stored in
memory. The size of the traceback buffer, tb_le f t, which
stores global trace-back for left extension, is still linear in
sequence length (O(m+n)), but the compute-intensive step
of Align is implemented in constant memory (O(T 2)).

Figure 2 provides an example of GACT using T = 5, for
the two sequences of Figure 1. The figure also illustrate why
GACT is not optimal - the resulting alignment is different
from the optimal alignment of Figure 1d, and with a lower
alignment score. This is because GACT only computes
scores of the gray and red cells of a single tile of the
DP-matrix of Figure 2 at any point of time, leaving out the
white cells. So while GACT constructs optimal alignments
from the starting cell (icurr, jcurr) within a tile, it cannot
guarantee the resulting alignment to be globally optimal

Figure 2: GACT tiling and alignment with sequences and
scoring scheme of Figure 1 and T =5. Gray cells represent
computed cells (scores not shown) and red path represents
GACT trace-back.

Figure 3: Illustration of D-SOFT algorithm for k=4, N=10,
h=8, NB=6.

once the alignments from individual tiles are “stitched”
together. We empirically show in Section 8, that for T =
300, GACT produces alignments that are within 0.95%
(worst-case) of the optimal score for sequences with 70%
similarity.

GACT has a number of unique features: (i) its
performance is linear (O(max(m,n) · T )) in the length of
the sequences being aligned, as opposed to quadratic for
optimal alignment, (ii) its compute-intensive step Align has
a constant trace-back memory requirement, O(T 2), that
depends only on the tile size T , and not on the length
of sequences being aligned, which makes it suitable for
hardware implementation, (iii) unlike banded alignment,
which imposes a strict band around the main diagonal,
GACT’s band is adaptive, as it is adjusted depending on the
trace-back path it has encountered so far. (iii) is an extremely
useful feature for long reads, that have different insertion and
deletion rates - resulting in the alignment drifting away from
the main diagonal.

4. D-SOFT: A FILTERING ALGORITHM
FOR SEQUENCE ALIGNMENT

Motivation. Simple seed-and-extend algorithms, such
as BLAST, can result in excessive computation due to a
high rate of false positives [38]. For a seed of size k
bp, an error rate of e, and uniformly distributed bases,
G/4k false positives are expected, while the probability of
a true positive is (1− e)k. For G = 3× 109, e = 0.3, and
k = 12, 178 false positives are expected but only 1.38%
of the actual matches will be detected. To address this
issue, Long read assembly algorithms, such as [29, 39], use
a generalization of the two-hit BLAST proposed in [38],
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and filter by using multiple seeds from the read, counting
the number of matching seeds in a band of diagonals. A
match is detected when the count exceeds a threshold, d.
For high sensitivity, several closely-spaced seeds from the
query sequence are used, as they have a higher probability
of staying within a narrow diagonal band. This method has
high sensitivity but poor specificity, as noted in [2]. A large
number of false positives occur when overlapping seeds
contribute to the count. For example, if every seed from
the query is used (i.e. stride = 1), only k + d consecutive
bases must match exactly for a region to be chosen. [2]
improves on this technique by counting the actual number
of non-overlapping bases (instead of the number of seeds) in
a band of diagonals and then filtering on a fixed threshold.
This results in better specificity and speedup, since fewer
additional filter stages are required. Here, we propose
D-SOFT, that like [2] counts the number of unique matching
bases in a diagonal, but differs in its implementation strategy.
We highlight the advantages of D-SOFT versus [2] later in
Section 9.

Description. Like [2], D-SOFT filters by counting the
number of unique bases in Q covered by seed hits in diagonal
bands. Bands in which the count exceeds h bases are
selected for alignment. Figure 3 illustrates the D-SOFT
technique. The X- and Y-axes in the figure correspond to
positions in R and Q, respectively. Similar to [2], R is divided
up into NB bins, of size B (NB =

⌈
m/B

⌉
). In Figure 3, NB = 6.

Each bin is associated with one uniquely colored diagonal
band, with diagonals having a slope of 1. Ten seeds with
k=4 from Q are used from consecutive positions, starting at
position 1. The seed start positions are marked by dotted
horizontal lines. For each seed, if a hit is found in R, a red
dot is marked on its horizontal line, with its X-coordinate
equal to the hit position in R. The tail of the red dot covers
k=4 bases, showing the extent of the match. The count over
each diagonal band is equal to the number of bases in Q
covered by seed hits in that band. For instance, seeds at
positions 4, 5 and 6 in Q find a hit in bin 1 of R, but its count
is 6 since the seed hits cover only 6 bases (4-9) in Q. Bin 3
also has 3 seed hits, but the hits cover 9 bases (1-4 and 5-9).
Similarly, the count of bin 4 is 4 with two seed hits, since
both hits result from seed at query position 3 covering same
bases (3-6). If h = 8 is used, only bin 4 would be chosen as a
candidate. However, if a seed hit count strategy is used, both
bin 1 and bin 3 would have the same count (=3), even though
bin 3, having more matching bases, has a better probability
of finding a high-scoring alignment. Counting unique bases
in a diagonal band allows D-SOFT to be more specific than
strategies that count seed hits, because overlapping bases are
not counted multiple times.

As shown in Algorithm 2 D-SOFT operates using two
arrays, last_hit_pos and bp_count, each of size NB to store
the last seed hit position for every bin and the total bases
covered by seed hits, respectively. Seeds of size k are drawn
from Q, with a specified stride between start and end (lines
4-5). For each seed, function SeedLookup finds all hits in R
(line 6). For each hit, its bin and its overlap with the last hit
in the bin is computed (lines 7-9). Non-overlapping bases
are added to bp_count (line 11). When the bp_count for
a new bin exceeds the threshold h, the last hit in the bin is

Algorithm 2: D-SOFT
1 candidate_pos← [] ;
2 last_hit_pos← [−k for i in range(NB)] ;
3 bp_count← [0 for i in range(NB)] ;
4 for j in start : stride : end do
5 seed← Q[ j : j+ k];
6 hits← SeedLookup(R,seed) ;
7 for i in hits do
8 bin← d(i− j)/Be ;
9 overlap←max(0, last_hit_pos[bin]+ k− j);

10 last_hit_pos[bin]← j;
11 bp_count[bin]← bp_count[bin]+ k−overlap ;
12 if (h+ k−overlap > bp_count[bin]≥ h) then
13 candidate_pos.append(< i, j >) ;
14 end
15 end
16 end
17 return candidate_pos;

Figure 4: Inferring read overlaps using D-SOFT.

added to a filtered list of candidate positions, candidate_pos
(lines 12-13). This list is returned at the end of the algorithm
(line 17) and is used as input to the GACT algorithm. In
algorithm 2, we use unspaced seeds separated by a fixed
stride, but D-SOFT can be easily generalized to spaced
seeds [40], or even non-strided seed selection using more
involved techniques [41], which can help further improve
the sensitivity. Moreover, D-SOFT can work with any
implementation of SeedLookup, such as seed position table
[19, 20], suffix arrays or trees [42], or compressed index
tables based on Burrows Wheeler Transform [27], FM-index
[43], etc.

D-SOFT can be used for reference-guided as well as de
novo assembly of long reads. In reference-guided assembly,
the reference genome is used as R in Algorithm 2, and the
reads are processed one at a time, using their forward as well
as reverse-complement sequences, as Q.

For de novo assembly, Figure 4 shows how D-SOFT
can be used to infer overlaps between reads. The P reads
r1,r2, ..,rP are concatenated together to form R. The reads
are made to align with the bin boundaries, filling the space
between boundaries using unknown nucleotides, ‘N’. This
way, each bin is associated with a unique read and this
information is stored in a dictionary. Then, the forward and
reverse-complement of each read ri is used as Q to infer
overlaps with other reads, as shown in Figure 4. When P
is very large, exceeding the memory capacity, the reads are
partitioned into blocks that fit into available memory. For
each block, a different R is constructed.
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5. DARWIN: SYSTEM OVERVIEW
Darwin is a general-purpose framework for genomic

sequence alignment that combines hardware-accelerated
GACT with D-SOFT. Its design is based on two
observations: (i) the parameters of D-SOFT can be set
to make it very specific even for noisy sequences at high
sensitivity, and (ii) the hardware-acceleration of GACT
results in 762× speedup over software. This allows Darwin
to directly use dynamic programming in GACT following
filtering of D-SOFT and still provide high speedup. Using
a minimum threshold, htile, on the score of the first tile in
GACT (line 8, Algorithm 1), avoids processing further tiles
for most false positives. Further filtering of D-SOFT’s false
positives can be handled by rejecting all D-SOFT candidates
that result in shorter than expected extensions using GACT.
This is explained in section 7. For simplicity, Darwin uses
B = 100, stride = 1 and start = 0 in D-SOFT, reducing the
number of D-SOFT parameters to (k,N,h), where N = end
in Algorithm 2. GACT uses tile size, T , and the minimum
score threshold of the first tile, htile, as the two parameters.

For high performance, Darwin uses an uncompressed seed
position table similar to LASTZ [20] for SeedLookup in
D-SOFT. To reduce excessive false positives from repetitive
regions, we exclude high frequency seeds i.e. seeds
occurring more than 32 times G/4k, the expected frequency
of the seed hit for a uniform random genome sequence of
size G. Darwin uses 16-bit integers for last_hit_pos and
bp_count, requiring 120MB for human genome and B=100.

6. HARDWARE DESIGN AND
IMPLEMENTATION OF GACT

In this section, we present the design of the GACT array,
custom hardware that accelerates the compute-intensive
Align routine in GACT, as described in Section 3. The
rest of Algorithm 1, is implemented on a general-purpose
processor. A block diagram of the GACT array is shown
in Figure 5a. It consists of a systolic array of processing
elements (inspired by [44]), several SRAM banks that store
the trace-back pointers, and trace-back logic.

Input/Output interface: The host processor provides to
the GACT array: (i) a set of scoring parameters for the
alignment, (ii) a tile size T , (iii) a reference (Rtile) and
a query (Qtile) sequence corresponding to the tile being
processed, and (iv) a single bit t to indicate whether the
trace-back should start from the highest scoring cell in
the tile, or from the bottom-right cell of the tile. We
have implemented GACT for the Smith-Waterman algorithm
with affine gap penalties [45], and therefore, there are
18 scoring parameters - 16 parameters for the substitution
matrix W , one parameter for gap open penalty o and one
parameter for gap extend penalty e. The 18 parameters are
stored using 10-bit signed integers in a register file and can
be reused across several alignments. The maximum tile
size is Tmax = 512, because of the amount of trace-back
memory provisioned in hardware (128KB). Our GACT
implementation accepts ASCII inputs for Rtile and Qtile, but
internally stores the sequences using 3-bits for an extended
DNA alphabet Σext = {A,C,G,T,N}, where N represents an
unknown nucleotide and does not contribute to the alignment

score.
Depending on whether t is set (unset), the GACT array

outputs (i) score of the highest-scoring (bottom-right) cell
of the tile, (ii) the coordinate (i∗, j∗) of the highest-scoring
(bottom-right) cell of the tile, and (iii) a series of trace-back
pointers for the optimal alignment in the tile from the
highest-scoring (bottom-right) cell, where each pointer
requires 2-bit to indicate whether the next operation in
trace-back is an insert, a delete or a match.

Processing Element (PE): An array of Npe PEs exploits
wavefront parallelism to compute the Npe cells of the
DP-matrix each cycle. Each clock cycle, each PE computes
three scores and one trace-back pointer for one cell of the
DP-matrix. The three scores are:

I(i, j) = max
{

H(i, j−1)−o
I(i, j−1)− e (1)

D(i, j) = max
{

H(i−1, j)−o
D(i−1, j)− e (2)

H(i, j) = max


0
I(i, j)
D(i, j)
H(i−1, j−1)+W (ri,q j)

(3)

A four-bit trace-back pointer is also computed: 1 bit each
for equations 1 and 2 to indicate whether the insertion and
deletion gap to the cell resulted from opening or extending
another gap, and 2 bits for equation 3 pointing to whether the
cell’s best score results from a null (terminating), horizontal,
vertical or diagonal cell. When t is set, each PE maintains
the maximum score and corresponding position for the cells
it has computed. On completion, the global maximum score
and position is computed in a systolic fashion.

Figure 5a shows an example GACT array with Npe = 4
PEs computing the DP-matrix of Figure 5b, that corresponds
to a single GACT tile with T = 9. For T > Npe, the rows of
the DP-matrix are divided into a number of query blocks,
where a block consists of up to Npe rows, one row for
each PE. During the processing of one query block, each
PE is initialized with the query base-pair corresponding
to its row in the block. The reference sequence is then
streamed through the array, shifting one base-pair every
cycle. The systolic array architecture helps exploit the
wave-front parallelism available in the computation of the
query block. A FIFO is used to store the H and D scores
of equations 3 and 2 of the last PE of the array, which gets
consumed by the first PE during the computation of the next
query block. The depth of this FIFO is Tmax, corresponding
to the maximum number of columns in the DP-matrix.

Trace-back Memory: A total memory of size 4T 2
max bits

is required to store the trace-back pointers corresponding to
the tile of size Tmax. In GACT array, this memory is divided
into Npe independent single-port SRAM banks, one back for
every PE as shown in Figure 5a. Each cycle, each PE writes
4-bits for the trace-back pointer corresponding to the cell
it computed, starting from address 0 and incrementing the
address each cycle. As a result, pointers corresponding to
the rows of consecutive query blocks get stored sequentially.

Trace-back Logic: The trace-back (TB) logic is a
finite-state machine (FSM) that traces back the optimal
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(a) GACT array architecture. (b) GACT query blocking.

Figure 5: GACT hardware design. (a) Systolic architecture of GACT array with Npe=4. (b) Query blocking for T =9.

alignment in the tile starting from the cell provided to it
as input. This FSM requires three cycles to produce 2-bits,
which indicates whether the next direction in the trace-back
is a match, insert, delete or terminate. in the first cycle,
TB logic computes the address and the PE id corresponding
to the next cell in the trace-back path depending on the
direction pointer of the current cell. The address and PE
id of the starting cell of the trace-back is provided by the last
PE of the GACT array, which, depending on t, corresponds
to either the highest-scoring or the bottom-right cell. This
address is broadcast to all the banks of trace-back memory.
The second cycle is consumed for the data to be available
at the output of each SRAM bank. The third cycle is used
by a multiplexer, which uses the incoming data from all
SRAM banks and selects the one corresponding to the PE
id provided by the TB logic. The output of the multiplexer
is also used by the TB logic to generate the next 2-bit output
direction in the same cycle. The trace-back terminates when
either a terminating pointer is encountered or an edge of the
DP-matrix (first row or column) is reached. The TB logic
also keeps track of the number of base-pairs of Rtile and
Qtile in the alignment, which are used as io f f and jo f f in
Algorithm 1.

Tile processing time: Using the proposed architecture,
the approximate number of cycles CT to process one tile of
size T is given by:

CT = T +(Npe +T )d(T/Npe)e+3T (4)

The first term of the equation 4 corresponds to the total
cycles consumed in initializing the PEs, one cycle for each
base-pair in the Qtile. The second term corresponds to the
number of cycles required to process one query block (Npe+
T ), times the number of query blocks, d(T/Npe)e. Finally,
the last term corresponds to the number of cycles required by
TB logic to compute trace-back path, assuming T directions
in the alignment path. Equation 4 has been verified to be
approximately correct using RTL simulation with genomic
sequences.

In Darwin, we have used Npe = 64, and therefore, for T =
300, roughly 3K cycles are required to processing the tile.
Darwin uses Tmax = 512, which requires 128KB SRAM for
trace-back memory, with each of the 64 PEs connected to

Read type Substitution Insertion Deletion Total
PacBio 1.50% 9.02% 4.49% 15.01%

ONT 2D 16.50% 5.10% 8.40% 30.0%
ONT 1D 20.39% 4.39% 15.20% 39.98%

Table 1: Error profile of the reads sets. A 2.0% standard
deviation was used for each read set.

one 2KB SRAM bank.

7. EXPERIMENTAL METHODOLOGY
Reference genome and read data. We used the

latest human genome assembly GRCh38 as the reference
genome for reference-guided assembly and our experiments
involving GACT evaluation. We used only the haplotype
chromosomes (chromosome 1-22, X, Y) and removed the
mitochondrial genome, unmapped and unlocalized contigs
from the assembly. The resulting assembly size is 3.08Gbp.
The long reads for different technologies were simulated
using PBSIM [46]. With simulated reads, ground truth
is known, which allows for accurate measurements of
sensitivity and specificity. We generate three sets of reads
with length of 10Kbp each using a 30× coverage of the
GRCh38 assembly: to match the error profiles of PacBio,
high-quality Oxford Nanopore 2D reads and low quality
Oxford Nanopore 1D reads, respectively. Default settings
of continuous long read (CLR) model were used in PBSIM
for PacBio reads at an error rate of 15.0%, while the PBSIM
settings for ONT reads were taken from [29]. Table 1
shows the error profile for the three sets of reads. These
parameters correspond roughly to the error profiles observed
using P6-C4 chemistry for PacBio reads, and R7.3 chemistry
for Oxford Nanopore reads. For de novo assembly, we
used PBSIM to generate PacBio reads for 30× coverage
of WS220 assembly of the C. elegans genome, resulting in
3.0Gbp of raw reads.

Hardware setup. Darwin, and the comparison baselines
were run on an Intel Xeon E5-26200 CPU operating at
2.0GHz with 64GB DDR-3 memory. Hardware-acceleration
of GACT was implemented on a PicoComputing platform
consisting of six M505 modules on an EX-500 backplane.
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Each module contains one Xilinx Kintex 7 FGPA [47]. The
FPGA is clocked at 250MHz and the communication with
host CPU uses ×16 PCIe 2.0. For fair comparison, we used
a single software thread for baseline techniques (discussed
below) and a single software thread with only one GACT
array for Darwin. The software thread was kept idle for
Darwin while the FPGA was computing, and vice versa.

Comparison baseline. For reference-guided assembly
of PacBio reads, Darwin was compared to BWA-MEM
[1] (version 0.7.14) using its -pacbio flag. For Oxford
Nanopore reads, we used GraphMap [29], a recently
developed and highly-sensitive mapper optimized for ONT
reads. We note that while BWA-MEM also has a mode
optimized for 2D reads of Oxford Nanopore, its sensitivity
on our ONT_2D read dataset was only 89.1%, much
lower than 98.1% that we observed using GraphMap. We
used DALIGNER [2] as a baseline technique for de novo
assembly of long reads. We tuned D-SOFT’s parameters to
match or exceed the sensitivity of the baseline technique. We
define sensitivity and specificity as:

Sensitivity =
T P

T P+FN
(5)

Speci f icity =
T P

T P+FP
(6)

where TP, FP and FN are the number of true positives,
false positives and false negatives of the algorithm,
respectively. For reference-guided assembly, a true positive
is when the read gets aligned to the reference within 50bp of
the region of the ground-truth alignment reported by PBSIM.
For de novo assembly, an overlap between two reads is
considered a true positive if the two reads overlap by at
least 1Kbp according to PBSIM, and if at least 80% of that
overlap is detected by the algorithm under consideration.
To evaluate the filtration ability of D-SOFT, we have also
defined false positive rate (FPR) as the average number of
false positives for every true positive resulting after D-SOFT
filtration, without using GACT.

We also compared performance of GACT to
other heuristics, namely X-drop [36] and Banded
Smith-Waterman algorithm [35]. Both heuristics were
implemented using SeqAn [48], a highly-optimized
software library for sequence alignment. The alignments
were carried out on the simulated reads and the reference
genome and the performance is measured in terms of the
ratio of alignment score to that of optimal Smith-Waterman
algorithm, also implemented using SeqAn.

ASIC Synthesis, Layout and Performance. To estimate
the performance achievable with an application-specific
integrated circuit implementation of GACT (rather than
an FPGA implementation), we synthesized one processing
element (PE), and one GACT array (including trace-back
logic) with Npe = 64 using Synopsys Design Compiler (DC)
in a TSMC 40nm CMOS process. We used the tcbn40lpbwp
standard cell library with worst case PVT corner. Placement
and routing were carried out using Synopsys IC compiler
(ICC) with 7 metal layers. We used Cacti [49] to estimate
the area and power of the trace-back SRAM memory. We
used the synthesis power estimation provided by Synopsys
Design Compiler to estimate logic power. We compare

Figure 6: Maximum alignment score loss (%) using GACT
for different sequence similarity and tile sizes.

the ASIC power to software power measured using Intel’s
PCM power utility [50]. Since the utility only provides
power at package level, and not core level, we estimate the
application’s CPU power to be the difference of package
power when application is running and when it is not.

To compute ASIC performance, we first computed
the runtime component of GACT using Darwin’s FPGA
prototype. This was done by executing every application
twice on the FPGA, once with, and once without GACT.
The difference in the two runtimes was estimated to be the
runtime component of D-SOFT. We also created a log of
the number of bytes exchanged between the host processor
and the FPGA over PCIe, and estimated the communication
overhead by measuring runtime of a dummy application
exchanging same number of bytes between host and FPGA.
The ASIC runtime was estimated to be the sum of D-SOFT
runtime and the GACT runtime on FPGA, scaled to ASIC
frequency. We assume that the ASIC implementation would
have a fast communication interface with host processor
such that GACT would be compute-bound. To better
understand Darwin’s software bottlenecks, we used Gprof
[51].

8. RESULTS AND DISCUSSION
GACT. Figure 6 shows worst-case GACT score loss (in

%) compared to optimal alignment using Smith-Waterman
with a simple scoring scheme (match = +1, mismatch =
-1, gap = -1) for different tile sizes and similarity of the
sequences being aligned. The plot has been generated
for 1,000 randomly chosen 10Kbp reads generated using
PBSIM for sequence similarities of 70%, 80%, and 90%.
For a given tile size, score loss for GACT decreases as
the sequence similarity increases. For 100% similarity (not
shown), GACT performs as well as optimal - perfectly
tracing back along the main diagonal. The worst-case loss
for GACT is lower than 0.95% for tile sizes above 300, and
there is diminishing return for higher tile size, so we set
T =300 for both, reference-guided and de novo assembly.

Table 2 compares GACT to other alignment heuristics,
namely Banded Smith-Waterman and X-drop for different
trace-back memory requirements. We use a random sample
of 10,000 10 Kbp sequences of PacBio read set in Table 1
and use simple scoring (match: +1, mismatch: -1, gap: -1)
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Trace-back Mean score loss Max score loss
memory (KB) Banded X-Drop GACT Banded X-Drop GACT

20 98.7% 99.51 0.14% 99.8% 99.9%% 0.31%
50 95.2% 6.8% 0.10% 98.9% 99.9% 0.27%

100 89.2% 0.13% 0.03% 94.35% 0.19% 0.19%
1000 57.5% 0.0% 0.0023% 67.2% 0.0% 0.06%

Table 2: Average and max score loss of GACT compared to
Banded Smith-Waterman and X-Drop heuristics on PacBio
reads for different trace-back memory.

(a) Banded Smith-Waterman. (b) GACT.

Figure 7: Comparison of DP-matrix of Banded
Smith-Waterman and GACT for aligning 1Kbp PacBio
read to reference (GRCh38). Gray cells of the matrix
represent the cells computed by each algorithm. Red path
represents optimal trace-back.

for the alignment. Since 4 bits are needed to store each
trace-back pointer, we set the band B and threshold X in
Banded Smith-Waterman and X-drop heuristic to M/(0.5L),
where M is the memory size in bytes and L is the read
length (10Kbp). Tile size T of GACT for MB of trace-back
memory is

√
(M/0.5), and is independent of the read length

L. Banded Smith-Waterman, which has been implemented
in numerous hardware-accelerators [21, 52, 22], does not
work for long read alignment because the insertion rate
is 4.53% higher than the deletion rate in PacBio reads
(Table 1). This causes the optimal alignment to shift an
average of 453bp from the main diagonal over a 10Kbp
read. To capture the optimal alignment would require a
band width of at least 453. Since X-drop adapts the band
while computing the trace-back path,it has a far better score
loss at 100KB memory and above. With only 50KB of
memory, however, GACT has only 0.27% worst-case score
loss, compared to 99.9% in X-drop. GACT is better suited
for implementation on a memory-limited ASIC than current
heuristics for long read alignments. Moreover, GACT
performance is independent of the length of reads aligned,
as opposed to the heuristics, whose performance would drop
with a constant memory as read lengths increase.

Figure 7 shows why Banded Smith-Waterman performs
much worse than GACT on long read alignments. The
figure shows the DP-matrix for the two heuristics aligning
a 1Kbp region from a PacBio read to the reference genome
(GRCh38). The gray regions denotes the cells of the
DP-matrix computed by the two heuristics, corresponding to
B=25bp in Banded Smith-Waterman and T =220bp in GACT.
The optimal trace-back path is shown in red. B and T were

Figure 8: Layout of one GACT Processing Element (PE) in
a TSMC 40nm CMOS process. Distances are in µm.

Figure 9: GACT throughput vs. sequence length (T =300).
Plot generated using 10,000 sequences for every sequence
length.

chosen such that the two heuristics had the same memory
requirement for this alignment. PacBio reads have slightly
higher insertion rate than deletion rate (Table 1), and we
can see that the optimal trace-path path drifts from the main
diagonal by 41bp. As a result, a band B=25bp can only
capture a small portion of the optimal alignment that stays
within the band shown in gray, as its alignment score is
only 47% of the optimal. On the other hand, successive
tiling in GACT in Figure 7 has been able to follow the
optimal trace-back path perfectly, and in this case, GACT
also resulted in the optimal alignment. Also note that the
overlap between successive tiles is small, and so the number
of tiles in an alignment of length L can be approximated as
L/T .

Figure 8 shows the layout of a single PE of the GACT
array in a TSMC 40nm CMOS process. The PE fits
in an area 55um on each side, 0.003mm2. A 64PE
GACT array (excluding TB memory) requires 0.27mm2,
the additional area is for control, trace-back logic, and the
FIFO used for storing scores between query blocks. The
critical path has a delay of 1.18ns, enabling operation at
847MHz (3.4× the FPGA frequency). The array consumes
17mW of power. A 128KB TB memory, for Tmax =
512, requires another 1.10mm2 and consumes 120mW of
additional power. Therefore, one GACT array has a total
area of 1.37mm2 and power of 137mW.

Figure 9 shows the throughput of the

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 15, 2017. ; https://doi.org/10.1101/092171doi: bioRxiv preprint 

https://doi.org/10.1101/092171
http://creativecommons.org/licenses/by-nc/4.0/


Figure 10: Sensitivity and false positive rate (FPR) for
D-SOFT on PacBio reads for different choice of threshold
h. Rest of D-SOFT settings: k=14, N=750.

hardware-accelerated GACT algorithm using T =300
for pairwise alignment of sequences with different lengths.
The plot shows that GACT can perform 23,562 pairwise
alignments of sequences of 1Kbp length every second.
This throughput is roughly 35% of the expected throughput
from equation 4 using 847MHz clock frequency and
d1000/300e = 4 tiles, since 65% of the time is spent in
software to extract successive tiles after each alignment and
prepending/appending trace-back pointers (Algorithm 1).
Even at this throughput, GACT hardware is 762× faster than
highly-optimized software implementation using SeqAn,
which could perform only 31 pairwise alignments using
Banded SmithWaterman with B=45. Moreover, SeqAn’s
software consumed 7W of power, making it 39,000× less
energy-efficient than the GACT accelerator. Figure 9 also
illustrates that the GACT throughput indeed scales inversely
to the length of the alignment — the throughput reduced by
nearly 10×, from 23,562 to 2,350 alignments per second
when the length of the alignment increased by a factor of
10, from 1Kbp to 10Kbp. In comparison, throughput of
the optimal algorithm would scale inverse of the square
of sequence length. With this throughput, an oracular
filter, which knows the read to reference genome mapping
beforehand, would complete the reference-guided assembly
of 54× human genome in only 1.96 hours with one GACT
array, and the performance scales linearly with the number
of arrays.

D-SOFT. Figure 10 shows the sensitivity and false
positive rate (FPR) of the D-SOFT filter (without dynamic
programming filter) on PacBio reads. It highlights the one
key advantage of the D-SOFT - it’s ability to filter out the
false positives with negligible loss in sensitivity. This is
achieved using the knob of the base-count threshold (h). In
figure 10, with h=15, the filter can find a true positive in
99.87% cases, but it also results in 9079.2 false positives
for every true positive. Increasing h to 24 decreases the
sensitivity by only 0.16%, but decreases the FPR by 121×.
Increasing h further to 30 decreases FPR marginally by
another 1.86×, with additional 0.02% loss of sensitivity. The
ability to be orders of magnitude more specific with little
loss of sensitivity makes D-SOFT advantageous for Darwin,

Figure 11: Histogram of first GACT tile score for D-SOFT
false positives and true positives of different read sets.

as it can now employ highly-sensitive, hardware-accelerated
GACT for further filtering. Besides h, k and N can also be
tuned in D-SOFT for different sensitivity and FPR trade-off.
Higher FPR results in lower throughput, as false positives
require further filtration using GACT.

Darwin. Table 3 compares Darwin’s performance
with baseline algorithms for reference-guided assembly on
human genome using 50,000 randomly sampled reads for
each of the three read sets of Table 1. We used T =300 and
htile=70 for GACT. We adjusted the D-SOFT parameters in
Darwin, listed in Table 3, to match or exceed the sensitivity
of the baseline technique. We note that for higher read
error rate, smaller seed size (k) and larger number of seeds
(N) are required to maintain high sensitivity. For PacBio
reads, we observed a 125× speedup over the baseline
technique, BWA-MEM, with 3.76% extra sensitivity. The
extra sensitivity of Darwin can be explained, in part, by
the choice of fixed length seeds of length 14 in Darwin,
compared to supermaximal exact match (SMEM) seeding
approach, as well as the additional chain filtering stage used
in BWA-MEM, both of which discard some true positives.
For ONT 2D and 1D reads, Darwin’s speedup is 107×
and 12.47× that of GraphMap, respectively. Darwin uses
very small seeds (k=11) for matching the high sensitivity
of GraphMap in case of ONT 1D reads, and this resulted
in D-SOFT slowdown, due to large number of seed hits, as
well as GACT slowdown, due to alignments on too many
false positives resulting from D-SOFT. GraphMap itself uses
seeds with k=12, but it still maintains higher sensitivity
because of two reasons: (i) it uses spaced seeds, which are
known to provide higher sensitivity [40], and (ii) it uses
multiple seeds with different shapes for every position in the
query. We believe that incorporating the two aforementioned
GraphMap strategies in D-SOFT could potentially speed
up Darwin further, but we have left this evaluation for our
future work. Darwin was also found to be more specific
than baseline techniques, and this is because we discarded
reads that resulted in less than 80% base-pairs aligning to
the reference genome, and this resulted in fewer number of
mapped reads.

Figure 11 shows the histogram of scores observed for the
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Read type D-SOFT settings Mapped reads (%) Sensitivity Specificity Throughput (reads/sec)
(k,N,h) Baseline Darwin Baseline Darwin Baseline Darwin Baseline Darwin

PacBio (14, 750, 24) 99.996% 99.786% 95.95% 99.71% 95.95% 99.91% 3.45 431.7
ONT 2D (12, 1000, 22) 98.99% 98.81% 98.11% 98.4% 99.1% 99.62% 0.19 20.47
ONT 1D (11, 1300, 25) 98.82% 98.33% 97.10% 97.40% 98.5% 99.22% 0.17 2.12

Table 3: Comparison of Darwin and baseline techniques on reference-guided assembly.

Figure 12: Fraction of mismatching base-pairs between
the consensus sequences generated using GACT and
Smith-Waterman algorithm.

first GACT tile for the true and the false positives resulting
from D-SOFT for the three read sets. False positives from
all three read sets are combined into a single histogram.
The figure shows that PacBio reads, which have lower error
rates, result in higher average GACT tile score. The figure
also shows that it is easy to filter out a majority D-SOFT’s
false positives using a simple threshold on first GACT tile
score itself. With htile=70 used in Table 3, 95.9% of
D-SOFT’s false positives can be filtered out after the first
GACT tile itself, with less than 0.05% additional loss in
sensitivity. Because Darwin uses dynamic programming as
a filter following the initial seeding using D-SOFT, it retains
the sensitivity of D-SOFT almost exactly. In contrast, nearly
all competing long read aligners, including BWA-MEM,
BLASR, and GraphMap, use several filtration stages with
each stage incorporating a heuristic having a non-trivial
influence on sensitivity.

Figure 12 shows the fraction of mismatching base-pairs
between the consensus sequences generated using GACT
and Smith-Waterman algorithm. The figure is generated by
first mapping all reads from chromosome 1 (consisting of
247Mbp) in the PacBio read set of Table 1 using GACT and
optimal Smith-Waterman algorithm for alignment, and then
for each alignment algorithm, considering the consensus of
first C reads covering a base-pair, to find the consensus
of that base-pair at a coverage of C. We find that at
a low coverage C=1, nearly 1bp in every 1100bp has a
mismatch between GACT and optimal (Smith-Waterman)
consensus, but this fraction drops exponentially, and at 13×
or higher coverage, we observe a perfect match of consensus
sequence using GACT and optimal alignment. We believe
this result is because GACT introduces deviations from the
optimal alignment at a small number of random locations,
and the stochastic nature of the deviations implies that they
could be corrected statistically, much like read errors can be

Sensitivity Specificity Runtime
DALIGNER 99.80% 88.3% 14h21m

Darwin 99.89% 90.1% 0h55m

Table 4: Comparison of DALIGNER and Darwin on overlap
assembly of 30× C. elegans genome. D-SOFT settings are
(k=14, N=1100, h=24).

corrected using consensus of several reads. However, read
errors occur much more frequently, and hence need a much
higher coverage to be corrected for. [17] observed error
rate of 0.7% persists at even 15× coverage in PacBio reads.
The result in Figure 12 indicates that with high coverage
sequencing, Darwin can be used reliably for applications in
precision medicine, such as variant calling in patients [53].

Table 4 shows the comparison of Darwin and DALIGNER
for finding pairwise overlaps between PacBio reads for de
novo assembly of a 30× C. elegans genome. DALIGNER
detected 99.8% overlaps in over 14 hours, and in
comparison, Darwin required less than one hour to find
99.89% overlaps, a 15.6× speedup over DALIGNER. Of
this, 99.1% overlaps were directly derived from D-SOFT,
and remaining 0.79% overlaps were transitively determined.
14 min of Darwin’s 55 min were required to build the
seed lookup table. Although DALIGNER has a more rigid
filter requiring at least 35bp to be conserved in a diagonal
band using seeds of size 14bp, compared to at least 24bp
conservation in D-SOFT settings for the same seed size,
DALIGNER was found to be more sensitive. This is because
(i) DALIGNER uses all seeds of the reads, whereas Darwin
uses only N=1100 seeds from the head of every read, (ii)
Darwin discards high-frequency seeds while constructing
the seed lookup table, but DALIGNER maintains all seeds.

Darwin’s bottleneck. Profiling of Darwin revealed that
GACT contributes to nearly 20% of the overall runtime,
including the time spent on filtration of false positives
resulting from D-SOFT, while D-SOFT itself contributes
to about 80%. This shows that 762× speedup obtained by
ASIC was critical to Darwin’s overall speedup, but also that
scaling up GACT arrays further would provide incremental
benefits. D-SOFT is the current bottleneck in Darwin, and
detailed profiling using Gprof revealed that around 70-90%
of D-SOFT runtime is spent updating the two arrays,
last_hit_pos and bp_count (line 10-11 in Algorithm 2),
but SeedLookup is fast. This is because SeedLookup
has majority sequential memory accesses, compared to
completely random memory accesses in updating the two
arrays. Speeding up of random memory accesses using
specialized hardware is possible, as shown in recent work
using e-DRAM for Graph Analytics workloads [54], and
extending this approach to D-SOFT could help further scale
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Darwin’s performance. Only 120MB memory is required for
the two arrays making it possible to place this entire memory
on-chip.

9. RELATED WORK
Alignment heuristics and hardware-acceleration.

GACT algorithm falls under the rich body of literature
involving heuristic approximation to the Smith-Waterman
algorithm for pairwise alignment of sequences. Navarro et.
al [55] have provided a detailed survey of algorithms used
for approximate string matching, with applications ranging
from genome sequence analysis to text retrieval. Besides
X-drop and Banded Smith-Waterman, a technique proposed
by Gene Myers [56] that aligns two strings using dynamic
programming, while exploiting bit-vector parallelism
available in hardware, has found immense traction in
genomics applications. However, unlike GACT, X-drop
and Banded Smith-Waterman, [56] restricts the number of
mismatches between the two sequences to be at most k,
where k is a parameter to the algorithm. Moreover, unlike
GACT, [56] has a memory requirement that grows linearly
with the length of sequences being aligned. In fact, to the
best of our knowledge, GACT is the first approximation
algorithm to Smith-Waterman that takes constant trace-back
memory requirement into consideration, which makes it
suitable for hardware acceleration, especially for aligning
long sequences.

Acceleration of sequence alignment has also been
well explored in hardware architecture and compiler
communities. Lipton et. al [44] were the first to propose
a systolic array exploiting wavefront parallelism to perform
Smith-Waterman alignment of arbitrarily long sequences.
This architecture, however did not handle trace-back. A
number of papers [57, 58, 23, 24] have implemented variants
of systolic arrays in hardware, particularly on FPGAs. While
they have all achieved high speedup against software, they
only handle the matrix fill step of Smith-Waterman, leaving
the trace-back step to software, which would require the
software to recompute the score matrix around high-scoring
cells. This undermines the benefits of hardware acceleration,
particularly in the context of read assembly. Some
prior work [59, 60] has proposed hardware-acceleration of
read mapping for second generation technologies, without
trace-back in hardware. Compiler assisted high level
synthesis of systolic arrays has been studied in [61, 62]. This
work is orthogonal to GACT, but GACT hardware synthesis
could potentially improve from the proposed techniques.

Some more recent work [22, 21, 63, 64] has also
implemented the trace-back step in hardware. Chen
et. al [21] accelerated long read mapping using Banded
Smith-Waterman with a maximum read length of 4Kbp.
Reads are now longer in length and as our results
indicate, Banded Smith-Waterman does not work well with
different insertion and deletion rates observed in current
sequencing technologies. Nawaz et. al [22] also accelerated
banded Smith-Waterman in hardware, for sequences up to
10Kbp in length, but their architecture required 2.5MB of
trace-back memory. In comparison, the proposed GACT
architecture requires only 128KB, and can align arbitrarily
long sequences, even with different insertion and deletion

rates. We consider this to be a significant contribution for
hardware-acceleration of sequence alignment, since all prior
work on hardware acceleration has found limited scope of
application due to the restriction of length of sequences
that can be aligned. To our knowledge, GACT is the first
hardware-acceleration technique to eliminate this restriction.

Filtration heuristics. D-SOFT falls under the broad
category of filtration heuristics that reduce the search
space for dynamic programming alignment. In particular,
D-SOFT was designed to be more specific than the filtration
techniques that are based on counting the number of
seed hits conserved in a band of diagonals. The first
filtration stage of BLAST [19], two-hit BLAST [38],
GraphMap [29], and BLASR [39] are all based on seed hit
count. DALIGNER [2] was the first to our knowledge to
directly count the base-pairs instead of seeds in a diagonal
band, which allows it to be highly specific even at high
sensitivity. This algorithm inspired D-SOFT. However,
in implementation, D-SOFT and DALIGNER differ in
significant ways. First, for the same memory constraint,
DALIGNER creates more blocks because it stores the read
number, the seed, and the offset of the seed for every seed
in the block. D-SOFT, which uses a seed position table
for the concatenated reads, stores a single offset. The
seed, which translates to an address, is not stored. More
read blocks requires comparing more block pairs. Second,
DALIGNER uses a sort and merge operation for every block
pair, while D-SOFT queries seeds only from the head of
every read to detect overlaps with a read block. This results
in high speedup, since fewer seeds are used when accessing
the seed position table and this access is highly sequential.
Finally, D-SOFT can be applied to reference-guided as
well as overlap-based in de novo assembly. On the other
hand, DALIGNER is specialized for the overlap step, and
its extension to reference-guided assembly is non-trivial
(reference genomes are several orders longer than individual
reads).

There are filtration techniques, such as BWA-MEM [1],
that are neither based on counting seeds in a band of
diagonals nor the number of bases. Instead, BWA-MEM
uses super maximal seeds and its performance has been
evaluated in this paper. Other examples include Canu [65],
M-HAP [66] and LSH-ALL-PAIRS [67], which are based
on probabilistic, locality-sensitive hashing of seeds. While
D-SOFT cannot generalize to these techniques, as our results
on other filtration techniques indicate, it is still possible to
tune D-SOFT parameters to match or exceed the sensitivity
of these heuristics.

Finally, there has been work on improving the sensitivity
of seed-based filtration and reducing the storage requirement
of seeds. These are orthogonal to D-SOFT. Work on spaced
seeds [40], transition-constrained seeds [68] and vector
seeds [69], help improve seeding sensitivity. Minimizers
[70] help reduce the storage requirement of seeds.

Sequence alignment frameworks. Like Darwin,
some prior work has focused on implementation of a
complete sequence alignment framework, implementing
filtration as well as sequence alignment with relatively
flexible parameters, and aided by hardware acceleration.
Examples include TimeLogic [71], which has implemented
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FPGA-based framework for BLAST and HMMER,
and Edico Genome [64], which provides FPGA-based
framework for acceleration of BWA-GATK pipeline
for reference-guided assembly on second generation
sequencing. Darwin leverages the tunable sensitivity of
D-SOFT, and can accelerate alignment of arbitrarily long
sequences using GACT, overcoming two major limitations
of prior frameworks. In this paper, we have shown
that Darwin handles and provides high speedup versus
hand-optimized software for two distinct applications:
reference-guided and de novo assembly of reads, and
can work with reads with very different error rates. To
our knowledge, Darwin is the first hardware-accelerated
framework to demonstrate speedup in more than one class
of applications and in future, we plan to extend Darwin to
alignment applications even beyond read assembly.

10. CONCLUSION AND FUTURE WORK
Darwin is a hardware-accelerated framework for genomic

sequence alignment that is orders of magnitude faster than
software counterparts used in long read assembly. Darwin
uses (i) D-SOFT, a novel filtration heuristic, that has tunable
sensitivity and is highly specific even at high sensitivity
for assembling noisy long reads, and (ii) GACT, a novel
alignment algorithm based on dynamic programming that
can be used for aligning arbitrarily long sequences and
accelerated by orders of magnitude using constant memory
hardware. Darwin has been shown to give large speedup for
reference-guided as well as de novo assembly of long reads,
with different error profiles.

We plan to extend Darwin by building an accelerator for
D-SOFT, the current bottleneck in Darwin. This, combined
with scaling up number of GACT arrays, is likely to add
another order of magnitude speedup. We also plan to
evaluate spaced seeds and seeding with multiple shapes to
further improve D-SOFT sensitivity. Several extant species
will be sequenced over the next decade, and we plan to
extend Darwin to applications beyond read assembly, such
as whole genome alignments and remote homology search,
both of which will contribute profoundly to genomic science
as more genome sequences become available.
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