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Abstract

Submitted Manuscript 2016. Territorial animals share a variety of common
resources, which can be a major driver of conspecific encounter rates. We
examine how changes in resource availability influence the rate of encounters
among individuals in a consumer population by implementing a spatially ex-
plicit model for resource visitation behavior by consumers. Using data from
2009 and 2010 in Etosha National Park, we verify our model’s prediction
that there is a saturation effect in the expected number of jackals that visit
a given carcass site as carcasses become abundant. However, this does not
directly imply that the overall resource-driven encounter rate among jackals
decreases. This is because the increase in available carcasses is accompa-
nied by an increase in the number of jackals that detect and potentially visit
carcasses. Using simulations and mathematical analysis of our consumer-
resource interaction model, we characterize key features of the relationship
between resource-driven encounter rate and model parameters. These results
are used to investigate a standing hypothesis that the outbreak of a fatal dis-
ease among zebras can potentially lead to an outbreak of an entirely different
disease in the jackal population, a process we refer to as indirect induction of
disease.
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1 Introduction1

Due to the rapid growth in high-resolution animal movement data, there is a2

growing recognition that classical models for encounter rates among animals3

should be revisited [1, 2]. Some recent progress on this point has been made in for-4

aging theory. Theoreticians have shown that predictions for search efficiency, and5

its dependence on prey density, can be substantially different when movement6

models include intermittent long-range relocation events [3] or local sensing and7

decision-making [4]. The resulting nonlinear dependence on prey density yields8

novel forms for functional response in predator-prey systems, and raises ques-9

tions about what other theoretical frameworks would benefit from the inclusion10

of more realistic animal behavior.11

Understanding the impact of sudden environmental changes on animal behav-12

ior is a particularly compelling application. Intentionally or unintentionally, hu-13

mans frequently alter the availability of resources for consumer species, invariably14

leading to unintended consequences. As reviewed by Oro et al. [5], considerable15

work has been devoted to identifying instances of anthropogenic resource pro-16

visioning. Other work has examined the impact of naturally occurring resource17

subsidies that occur as pulses in either space or time on consumer population dy-18

namics, behavior and community structure (Rose & Polis [6], Anderson et al. [7],19

Clotfelter et al. [8], Holt [9], Ostfeld & Keesing [10], Yang et al. [11]). A smaller but20

substantial body of work (reviewed by Becker et al. [12] and Sorensen et al. [13])21

specifically considers the effects that such provisioning can have for infectious22

diseases of consumers.23

In order to develop a predictive framework for the impact of resource sup-24

plementation on the spread of disease among consumers, one must establish a25

relationship between resource density and a rate of conspecific consumer encoun-26

ters. This is especially true when considering directly transmitted pathogens such27

as rabies virus or canine distemper virus. Becker et al. [12] recently considered this28

relationship explicitly in their review on the link between anthropogenic resources29

and wildlife-pathogen dynamics. Motivated by the prevailing trend revealed by30

their meta-analysis, they introduced the assumption that increased resource avail-31

ability will lead to increased consumer aggregation, which in turn implies in-32

creased infection risk when a pathogen is present. In contrast, we highlight that33

the relationship between resource availability and consumer encounters need not34

be strictly increasing. At some level of resource availability, consumers may no35

longer need to share resource sites, meaning that consumer encounters might ac-36

tually decrease. The question then concerns whether there is a critical resource37

density above which consumer aggregation no longer increases, and how that38
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density would depend on parameters that can be inferred from data.39

With the foregoing discussion as motivation, in this work we investigate the40

role resources play in helping to maintain pathogen transmission or facilitate dis-41

ease emergence. Specifically, we quantify the relationship between increases in42

resource availability and the consequent changes in conspecific encounter rates43

among consumers. Furthermore, we provide context from disease ecology to ad-44

dress the question “How big is big?” when it comes to encounter rate changes. To45

this end, we consider the relationship between the potential for disease main-46

tenance among a population of jackals and the annual occurrence of anthrax47

outbreaks among local herbivores in Etosha National Park (ENP) in Namibia48

[14, 15, 16]. This surge in available carcasses serves as a supplemental resource for49

the local jackal population, and due to two years worth of tracking data, we have50

new understanding about how jackals respond to temporarily available resources51

[15]. The jackals live in territorial family groups. They regularly hunt and forage52

within and nearby their defendable territory, and opportunistically scavenge on53

carcasses when they are available. In studying the data, we also observe that jack-54

als sometimes make long treks to visit resources (see Figure 1), possibly crossing55

through the territories of neighboring family groups.56

These movement patterns have interesting implications for the potential spread57

of disease. It is possible that during resource pulses, jackals will have increased58

contact with individuals outside their family group. As a consequence, though59

anthrax bacteria rarely cause disease in carnivores, an intense uptick in jackal-60

to-jackal encounters could lead to an outbreak of a different disease in the jackal61

population [15]. In this particular sense, we might say that anthrax can “cause”62

a rabies epidemic. We refer to this process as indirect induction of disease because63

change in resource availability does not introduce a pathogen, it simply changes a64

population’s contact network structure in such a way that the population becomes65

susceptible to invasion by a pathogen that would not otherwise be able to take66

hold. In fact, as we argue later, induction of disease can result from a decrease in67

resource availability as well.68

2 Model development and preliminary analysis69

2.1 Resource-driven encounters70

With the jackal population from ENP in mind, we introduce the following general71

assumptions:72

- the locations of both consumers and resources are randomly distributed73

throughout a spatial region of interest;74
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Figure 1: Collared jackal movement and known carcass locations in Etosha Na-
tional Park. Left: GPS locations for one jackal over one week time frames, be-
ginning on February 2, 2010 (upper) and June 6, 2009 (lower). Right: GPS lo-
cations for all collared jackals on February 2, 2010. Jackals are differentiated by
color. Each colored line segment with black dashes connects two GPS pings for
that jackal. Blue circles represent waterholes. Blue triangles indicate locations of
known carcasses. White triangle insets indicate that the carcass tested positive for
anthrax causing bacteria. Roads are indicated by black lines and the shaded gray
areas are part of a salt pan in ENP.

- the resources are only available for a given interval of time τ1 and new75

resources are located independently of previous ones;76

- consumers are territorial, spending most of their time near a home location,77

and have a limited range of detection, characterized by a length scale `;78

- consumers prefer to visit the nearest resource they detect;79

- they respond to resources independently of other consumers; and,80

- they are satiated after visiting a resource, and therefore visit at most one81

resource per unit of time τ2.82
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We are interested in the number of conspecific encounters a typical consumer will83

have as a result of temporarily available resources.84

For the sake of simplicity, and because we believed the choice was reasonable85

for the jackal population in ENP, we choose the time parameters to be the same,86

τ1 = τ2 = τ = one week. We use O to denote the spatial region we are studying.87

For each week, resources are distributed throughout O according to a Poisson88

spatial process, with intensity parameter κ. This means that for any region of area89

A contained in O, the number of resources in that region is Poisson distributed90

with mean κA. Moreover, if two regions are disjoint, their respective numbers91

of resources are independent. We assume there is a consumer located at the ori-92

gin, referred to as the focal consumer. The remaining consumers are distributed93

throughout O according to a Poisson spatial point process with intensity ρ. These94

intensity parameters correspond to the expected population density produced by95

the model for the consumers and resources, respectively. In our simulation and96

mathematical analysis, the size of the landscape is taken to be sufficiently large97

that the presence of a boundary does not have an effect on quantities of interest.98

y y

 = 0.4  = 1  = 10

Figure 2: Voronoi diagrams displaying the regions of "attraction" for each re-
source. Each blue triangle indicates the location of a resource. The black square
and the white squares indicate the locations of the focal consumer and non-focal
consumers, respectively. Gray circles, centered at the resource closest to the focal
consumer, display the region where consumers can detect the resource. From left
to right, the number of resources displayed in each panel is 2, 5, and 50.

To model the consumer’s limited ability to detect resources and/or travel to99

resources that have been detected, we assume there is a maximum distance `100

within which a given consumer will detect resources. Moreover, we assume that101

consumers will detect all resources within a surrounding circle of radius ` and102

will choose to visit the nearest of these detected resources. To understand the103

consumer-resource landscape, it is helpful to construct Voronoi tessellations of104
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the region O generated using the set of the resource locations [17]. Using the105

R-package deldir [18], we display three such tessellations in Figure 2. Consumer106

locations are displayed as squares while resource locations are triangles. The focal107

consumer appears in black. Each subregion of the tessellation, referred to as a108

Voronoi cell, contains exactly one resource and is comprised of all points that are109

closer to this local resource than any other. We also refer to a resource’s Voronoi110

cell as its basin of attraction. We stress that when resources are rare, the basin of111

attraction will usually contain many points that are a distance greater than ` from112

the resource. If a consumer is located at such a point, it will not visit any resources113

during that unit interval of time.114

The fundamental goal in the analysis of our model is to understand the num-115

ber of encounters that occur due to the presence of a particular type of resource.116

We define the resource-driven encounter rate E to be the expected number of con-117

sumers that choose the same resource as the focal consumer per unit interval of118

time. In Figure 2, the focal consumer in the left, center and right panels has119

0, 2 and 1 encounters respectively. This reveals a fundamental dynamic in the120

model: that intermediate resource availability can produce the highest encounter121

rates. When resources are scarce, resource-driven encounters are rare because it122

is unlikely that the focal consumer is near enough to a resource to detect it. On123

the other hand, when resources are common, encounters are rare because nearby124

consumers have local resources of their own to visit.125

To estimate E for a given parameter triplet (ρ, κ, `), we simulated 1000 inde-126

pendent landscapes, calculated the resulting number of encounters for the focal127

consumer in each, and then took the average of these observations. For most of128

our simulations, we used the parameter ranges κ ∈ (0, 10) and ` ∈ (1, 14). As129

described in Section A.3, for every triplet (ρ, κ, `) there is an associated triplet130

(1, κ̃, ˜̀) for which E is the same. We therefore always set ρ = 1 in our simulations131

and use the transformation κ̃ = κ/ρ and ˜̀ =
√

ρ` to compute E when ρ 6= 1.132

2.2 Introduction of pathogen and outbreak of disease.133

To place our encounter rate results in the context of disease ecology, we employ134

a simple stochastic model of pathogen spillover between two “adjacent” popu-135

lations. Because we assume that the disease is initially not present in the target136

population, we incorporate a rate γspillover of pathogen introduction events from a137

maintenance population in which the disease is endemic. Due to our interest in138

transient seasonal effects, the results are expressed in terms of the duration T of139

the resource increase.140

We make three central assumptions:141
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- the time scale of an outbreak is small relative to the time it takes for signifi-142

cant changes in population size to occur;143

- each introduction of a pathogen involves just one initial infectious individ-144

ual; and,145

- the arrival times of pathogen spillover events are independent.146

Under these assumptions, the initial pathogen invasion process is intrinsically147

stochastic. We model the introductions as a Poisson arrival process with rate pa-148

rameter γspillover, an assumption similar to the invasion model proposed by Drury149

et al. [19]. For the transmission events among individuals in the target population,150

we use a stochastic Susceptible-Infectious-Susceptible (SIS) model. Because the to-151

tal population size is fixed in this model, it is only necessary to track the state152

transitions for the infectious group, whose population size at time t is denoted153

I(t). The transition rates for our continuous-time Markov chain are given by154

I → I + 1 at rate λ(I) =
(
γspillover + bI

) (
1− I

N

)
I → I − 1 at rate µ(I) = νI,

155

where N is the target population size, ν is the clearance (or disease-related mortal-156

ity) rate, and b(1− I/N) is the average number of transmissions per unit interval157

of time by an infectious individual when the infectious population has size I.158

While this simple model of transmission ignores other potentially relevant159

characteristics (e.g. latent periods, population turnover, and acquired immunity),160

our present focus is on how consumer-resource interactions modulate transmis-161

sion dynamics in the early introduction phase. We are specifically interested in the162

probability that the level of infection can reach an endemic state in the target pop-163

ulation before the period of resource increase dissipates. Given our context that164

the disease dynamics take place over a large area and the pathogen introductions165

are relatively rare, we introduce a fourth assumption:166

- each pathogen introduction resolves itself independently in the target pop-167

ulation (either to extinction or invasion).168

Mathematically, this is tantamount to omitting the γspillover term in the transition169

rate formulas and treating each pathogen introduction event independently. The170

"endemic equilibrium" is the minimum size for the infectious population such171

that the rate of increase equals the rate of decrease. We consider a pathogen172

introduction to be “successful” if the size of the resulting infectious population173

eventually exceeds the endemic equilibrium value:174

I∗ = min
{

i ∈ {1, . . . , N} : λ(i) ≤ µ(i)
}

. (1)175
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We then study the continuous-time Markov chain {I(t)}t≥0 with the transition176

rates177

I → I + 1 at rate λ(I) = bI
(
1− I

N
)

I → I − 1 at rate µ(I) = νI,
178

and compute the probability of successful invasion assuming that a pathogen has179

been introduced at time zero:180

pinvasion = P {I(t) hits I∗ before 0 | I(0) = 1} .181

In a sense made rigorous by Kurtz [20], when N is large this stochastic system182

behaves more and more like an associated ODE,183

ẏ = by(1− y)− νy, (2)184

where we interpret y(t) as the proportion of the population that is infectious at185

time t. If b > ν and y(0) > 0, then y(t) converges to the equilibrium value186

y∗ = 1− ν/b. Otherwise y(t) → 0 as t → ∞. Following the terminology used by187

Ball [21] (see also Heffernan et al. [22]), we refer to R0 = b/ν as the reproductive188

ratio.189

Suscep'ble	
  
Infec'ous:	
  

�spillover

I(t)

I
(t

)

I⇤

t

1 −

ODE
CTMC

Figure 3: Number of infectious individuals resulting from the introduction of
one infectious individual in a population of size N = 50. Ten sample paths for
the stochastic SIS model defined in Appendix 2.2 are plotted (red lines) with the
solution to the analogous ordinary differential equation model (black curve). Our
representation for having achieved the endemic state is I∗ (dashed horizontal black
line), which is defined in Equation 1. Open circles are plotted when I∗ is reached
before 0 and red points indicate when the pathogen died out of the population
before reaching I∗.
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In contrast to the ODE model, no matter how large N is, in the stochastic190

model there is always a chance that an infectious lineage will go extinct before it191

reaches an endemic state. In Figure 3 we display ten stochastic SIS paths with a192

population size of 50 with b = 2 and ν = 1. Some of these paths quickly go extinct,193

while others reach the endemic state. Overlaid on the stochastic paths is Ny(t),194

the rescaled solution to the associated ODE (2), with initial condition Ny(0) = 1.195

Just as it is for the ODE model, the reproductive ratio is a critical dimensionless196

parameter in the stochastic model. When R0 ≤ 1, then as N → ∞, pinvasion → 0197

[23]. On the other hand, when R0 > 1, then as N → ∞, the probability of invasion198

is strictly greater than zero. As described in Appendix A.4, pinvasion is commonly199

approximated by computing the complement of an extinction probability for an200

associated branching process [24]. This gives the approximation201

pinvasion ≈
{

1− ν

b
, b > ν

0, b ≤ ν.
(3)202

With this in hand, we can estimate the probability that there is a success-203

ful pathogen invasion in the target population during the period of increased204

resource availability, t ∈ [0, T]. For each pathogen introduction, we label it “suc-205

cessful” with probability pinvasion and then note that, from Markov chain theory206

[25] the arrival of successful introductions is also a Poisson process, but with a207

“thinned” intensity γspillover pinvasion. This implies that the time of the arrival of208

the first successful spillover has an exponential distribution with rate parameter209

γspillover pinvasion. Therefore, the probability of a successful invasion occurring dur-210

ing the resource pulse has the form211

1− e−Tγspillover pinvasion .212

2.3 Data collection and analysis213

Jackals were captured from January 2009 to July 2010 in central ENP as part of a214

larger study on jackal movement and anthrax ecology (Bellan et al [15]). Twenty-215

two adult jackals were fitted with GPS (global positioning system; African Wildlife216

Tracking, Pretoria, Republic of South Africa) collars based on the requirement217

that they were large enough to limit the collar to less than 6% of body weight.218

Movement data was acquired from collars by VHF radio-tracking animals and219

downloading recorded hourly GPS fixes with UHF download. Due to challenges220

associated with acquiring downloads, there is some variation in the time intervals221

between recorded locations. In some cases there are missing data points; and in222

a few cases, observations were made more frequently than once per hour. The223
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duration of time each collared animal was observed also varied greatly, from a224

few weeks to 2 years, for a total of 13.5 jackal-years of (roughly) hourly location225

data.226

In addition to jackal position data, carcass surveillance data was recorded from227

January 2009 to November 2010 (see [15] and [26] for additional information).228

Multiple characteristics of a carcass were recorded, such as: species, date of ob-229

servation, level of degradation, and cause of death. Particularly relevant to our230

investigation, there are jackal counts recorded for 299 out of 411 carcass sites (178231

out of 244 zebra carcass sites). These data are displayed in Figure 6.232

Resource visits. For each recorded instance of a carcass, we assigned a “carcass233

active interval” based on its estimated time of death and the level of degradation234

at the time of discovery (if recorded). This window lasted up to six days. Six235

days also served as the baseline duration of availability, used when low or no236

level of degradation was recorded. For each jackal that was tracked in the park237

contemporaneously with a known carcass, we computed a “time-local average238

position,” i.e. the mean of all recorded positions of the jackal during the carcass239

active interval. The distance between this average position and the location of the240

active carcass was assigned to be the distance of a resource visit or non-visit. If241

the jackal’s minimum distance from the carcass of interest during this period was242

less than 100m, we classified the event as a resource visit.243

Our use of the location datasets for collared jackals to identify “resource vis-244

its” assumes that visits to carcass sites are meaningfully captured within the move-245

ment data. If jackal movement were not influenced by the distribution of carcasses246

on the landscape, we would expect to find no association between jackal locations247

and identified carcass sites. We performed a randomization test to assess the null248

hypothesis that there is no association between jackal locations and identified car-249

cass sites. For each site, we held the time that the site was available constant250

and reassigned the location by sampling (without replacement) from the recorded251

carcass locations. For each permuted dataset, we then calculated the number of252

“resource visits” in the same way as described above for the observed data. Using253

the true carcass location data there were 10 and 44 visits from jackals with a time-254

local average of 10+ km and 5+ km respectively from the carcass locations. Out255

of 1000 sets of randomized carcass locations, the maximum number of 10+ km256

and 5+ km visits was 6 and 15, corresponding to a p-value of < 0.001 for both dis-257

tances, and indicating that there is a highly significant association between jackal258

locations and identified carcass sites.259
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3 Results260

By way of simulation and analysis, we are able to characterize the most prominent261

qualitative features of the expected number of encounters experienced by a focal262

consumer, as it depends on the expected resource density κ and the maximum dis-263

tance of detection `. While we report the results of the specific model described in264

the previous section, as long as a model is consistent with the listed assumptions,265

then our fundamental conclusions are the same: there is a non-monotonic rela-266

tionship between the expected resource-driven encounter rate and the resource267

density; the maximum potential encounter rate can be large in terms of its impact268

on the critical disease ecology parameter R0; and, somewhat surprisingly, low269

resource densities are associated with the largest increases in encounter rates.270

3.1 Analysis of the consumer-resource model271

We summarize the predictions of the mathematical model as follows. For fixed272

values of ρ and `:273

– From the point of view of an available resource (carcass), the number of visitors274

decreases with κ. The presence of additional resources increases the number275

of options for consumers and so, as κ increases, the expected number of276

visitors at a given resource site decreases.277

– From the point of view of an individual consumer, the number of encounters in-278

creases, then decreases with κ. When resources are scarce, most consumers will279

not be near enough to detect them. Increasing κ means that more and more280

consumers visit resources, leading to increased consumer-consumer interac-281

tions. The effect is not monotonic though. When resources are abundant,282

consumers will generally detect more of them. Due to this increase in avail-283

able options, it becomes less likely that multiple consumers will visit the284

same resource.285

From the point of view of a given resource site, there are two limiting factors on286

the number of visitors: 1) the size of the resource’s basin of attraction, as defined287

by the Voronoi tesselation described in Section 2.1 and presented in Figure 2; and288

2) the consumers’ limited distance of detection. As κ increases, the resource’s289

basin of attraction decreases in size, therefore limiting the pool of consumers that290

would choose it. In Section 3.2 we present an analysis of the ENP data set, wherein291

we find some evidence that the number of jackals expected at a particular carcass292

decreases with the number of carcasses available at the time.293

From the consumer point of view, a focal consumer is always in the basin294

of attraction of some resource; however, when resources are scarce it is unlikely295

� 3 Results 11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2016. ; https://doi.org/10.1101/091850doi: bioRxiv preprint 

https://doi.org/10.1101/091850
http://creativecommons.org/licenses/by/4.0/


Borchering et al, 2016 (Submitted)

Resource intensity

R
es

ou
rc

e−
dr

ive
n 

en
co

un
te

rs

0.001 0.01 0.1 1 10

0.
01

0.
1

1
10

10
0

10
00

Approximation     

small −     
large −     




` = 14

` = 14

()

(E
)

Figure 4: Encounter rate behavior. Each dot represents the average over 1000 sim-
ulations. The intersection of the dotted and dashed lines is the order-of-magnitude
estimate described in the Results, Section 3.1.

that it will be close enough to detect the nearest resource. On the other hand,296

when resources are abundant, the area of the basin of attraction can be very small297

compared to the focal consumer’s detection area, limiting the pool of potential298

consumers that might share the resource. In Figures 4 and 5 we provide a com-299

prehensive view of the dependence of a focal consumer’s encounter rate E on300

resource density. In Appendix A, we provide the details of a mathematical anal-301

ysis of the model and rigorously demonstrate certain prominent features of the302

relationship: namely, the asymptotic power law in both the scarce and abundant303

resource regimes, as well as in the small and large distance of detection extremes.304

Furthermore, we provide an approximate formula for the resource density κ∗ that305

leads to the maximum number of encounters for a given distance of detection and306

consumer density.307

Asymptotic results. In Figure 4 we see that E , the expected number of encoun-308

ters for the focal consumer, has a very regular power law behavior in both the309

small- and large-κ regimes. Regardless of the value of `, all of the encounter rate310

curves overlap in the large-κ regime. For small κ, the log-log slope is the same for311

all `, but the leading coefficient differs. In Theorem A.1 we demonstrate that when312

resources are scarce (small κ), the resource-encounter function is asymptotically313

linear in κ. Furthermore we are able to establish the leading coefficient, yielding314

the small-κ approximation E ≈ ρκπ2`4, which is also validated by simulation. For315

example, in Figure 4, the lower black dotted line is the small-κ approximation316
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when ` = 1 and we see good agreement for κ < 0.1. When resources are abun-317

dant the analysis leads to an unsolved problem in spatial point process theory318

concerning the distribution of Voronoi cell (basin of attraction) sizes in tessella-319

tions generated by Poisson spatial processes. Nevertheless, we argue that E scales320

with κ−1 in the abundant resource limit. Following the discussion in Section A.3,321

we present the large-κ approximation E ≈ ρ/κ (Figure 4, black dashed line). The322

correct leading coefficient appears to be larger than ρ, but we were unable to323

obtain the exact value by mathematical analysis.324
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Figure 5: Left: In teal (circles), the maximum encounter rate as a function of `. In
blue (triangles), the resource intensity that yields the maximum. Right: Resource-
driven encounters as a function of distance of detection. Lighter-to-darker shading
corresponds to increasing values of κ.

Characterizing the encounter rate peak. For reasons discussed in Section 3.4, per-325

haps the most important “landmark” of the resource-encounter function is its326

peak. Unfortunately it is difficult to directly analyze the magnitude of the peak327

and the corresponding critical resource density. However, there is a natural first-328

order estimate that involves the small- and large-κ approximations. Solving for329

their intersection yields the estimate κ∗ ≈ (1/π)`−2 and E(κ∗) ≈ ρπ`2 where330

κ∗ is the resource intensity that leads to the maximum resource-driven encounter331

rate. From Figure 4, it is clear that this is an overestimate, but not dramatically332

so. Using 1000 simulations at an array of κ and ` values, we found the following333

estimates using a linear regression:334

κ∗ ≈ 0.536`−2 and E(κ∗) ≈ 1.48ρ`2. (4)335

While the exponents align well with the intersection of the small- and large-κ336

approximations, we were unable to obtain a satisfactory explanation of the leading337
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coefficients through direct mathematical analysis.338

Dependence on distance of detection. In addition to characterizing the encounter339

rate’s dependence on κ, we are also able to obtain an asymptotic understanding of340

the dependence of the resource-driven encounter rate on the maximum distance341

of detection parameter `. As ` → 0, the encounter rate function behaves like `4
342

(Theorem A.1). As might be expected, this function is monotonically increasing in343

` and saturates to a limiting value for large ` (Theorem A.4). The corresponding344

simulation results are displayed in the right panel of Figure 5. The limiting value345

corresponds to the expected area of the basin of attraction in which the focal346

consumer resides. As explained before, this exact value is not known, but it scales347

like κ−1, which is why the limiting values in Figure 4 are largest for the smallest348

values of κ.349

3.2 The relationship between resource density and site visitation350

The mathematical model makes predictions about both full-population scale en-351

counter rates and local single-resource site encounters. For the latter, from the352

perspective of a given carcass site, the model predicts that the maximum number353

of visitors should be observed when the resource density is the lowest. This is354

because in the sparse resource-density regime there is little to no competition for355

consumers. As the resource-density increases, the expected number of visitors356

should decrease. We consulted the ENP data set to investigate whether this effect357

can be observed for jackals and their tendency to visit carcasses that seasonally358

vary in abundance.359

In the study area [15], the number of carcasses available for jackal scavenging360

varies seasonally (Figure 6, left panel inset). Between February and April, there is361

a resource pulse resulting from annual anthrax outbreaks in the local zebra popu-362

lation. These outbreaks occur during the end of the wet season [14, 16]. The timing363

and severity of anthrax outbreaks appears to be different between 2009 and 2010.364

The difference in severity provides an opportunity to make comparisons between365

the same months of the year but with very different numbers of available car-366

casses. In March and April, for example, the average number of jackals observed367

at carcasses decreases markedly from 2009 to 2010 when there are more carcasses368

available. In fact, in eight out of the eleven months where pairwise comparisons369

are possible, the average number of jackals observed at a carcass decreased when370

more carcasses were available in that month (right panel of Figure 6).371

To employ a more quantitative statistical test, we fit a Poisson general lin-372

ear model with the number of observed carcasses as a predictor variable, and373

the number of jackals visiting a carcass as the response variable (available from374
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Figure 6: Monthly carcass availability and jackal visitation to carcass sites. Left:
For each month-year pair, the number of observed carcasses is counted (x-axis).
We plot the number of jackals recorded at each carcass versus the number of
observed carcasses in the corresponding month. Jackal counts at carcasses are
color-coded by month of the year as indicated by the bar chart in the upper right
corner. Points are shaded so that darker shading indicates more observations.
Regression lines are plotted for each month in the corresponding color. Inset:
The monthly average number of observed total carcasses (solid bars) and zebra
carcasses (striped bars). Right: For each month-year pair, the average number of
jackals observed at carcasses is plotted. Repeated months are connected by lines.

January 2009 to November 2010). We also included predictor variables for each375

month of the year to allow for variation in environmental effects (e.g. wet/dry376

season), population processes (birth pulse, dispersal, etc.) and challenges in data377

collection that likely affect the expected number of jackals observed at carcasses.378

To be precise, let yi be the response variable for the number of jackals observed at379

a carcass when there are i carcasses. Then380

log(yi) = β0 +
11

∑
j=1

β j1{month=j} + βcarci. (5)381

For example, in an April with i total carcasses, the expected number visitors ob-382

served at a carcass would be exp(β0 + β3 + βcarci). Using this statistical model,383

we found a significant negative correlation between the number of observed car-384

casses and the observed number of jackals at a carcass (βcarc = −0.025, 95% CI:385

[−0.029,−0.021]).386
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3.3 The relationship between defendable territory size and the distance of detection387

and response388

Though there are three parameters in the mathematical model, we found that389

there are truly only two degrees of freedom in the parameter space. As shown in390

Appendix A.3, for every triplet (ρ, κ, `), there is a corresponding triplet (1, κ̃, ˜̀),391

where κ̃ = κ/ρ and ˜̀ =
√

ρ `, such that the expected numbers of encounters for392

the focal consumers are the same, i.e.393

E(ρ, κ, `) = E(1, κ̃, ˜̀).394

Notably, κ̃ and ˜̀ are nondimensional quantities and all formulas introduced in the395

previous section can be expressed using them:396

small-κ approximation: π2κ̃ ˜̀4 , large-κ approximation: κ̃−1 ,

peak resource density: (π ˜̀2)−1 , encounter rate peak: π ˜̀2.
397

Both nondimensional quantities have informative biological interpretations. While398

it is straightforward to understand the significance of κ̃ = κ/ρ (the ratio of the399

resource density to the consumer density), the meaning of ˜̀ =
√

ρ` is more subtle.400

If we imagine dividing the landscape into even partitions, one for each consumer,401

then each consumer would be allocated a region of area 1/ρ. If the regions are402

square, then 1/
√

ρ would be the length of each side and we can view ˜̀ as ˜̀ =403

`/(1/
√

ρ), so that it is the ratio of the distance of detection to the typical length of404

a consumer’s space allocation. In biological terms, we might think of these regions405

as the consumers’ defendable territories and therefore ˜̀ is roughly the number of406

defendable territories a consumer is willing to cross in order to visit a resource.407

Our estimate of the resource density, κ, is based on carcass surveillance data408

from the Berkeley Etosha Anthrax Project during 2009 and 2010. The average409

number of carcasses recorded each month (left panel of Figure 6) was divided by410

four to get a weekly number of carcasses available. Since not all carcasses are411

observed, we followed Bellan et al. (2013) [26] in multiplying by a scaling factor of412

four to account for expected unobserved carcasses. We then divided the expected413

weekly number of carcasses available in each month by the area of the study414

region from Bellan et al. (2012) [15], roughly 1000 km2. This area contains all of415

the locations where carcasses were observed and jackal positions recorded. The416

resulting κ estimates ranged from 0.005 km−2 (August and November) to 0.043417

km−2 (April).418

As suggested by the nondimensionalisation argument above, we interpret ρ419

as the density of defendable jackal territories. Non-overlapping jackal territories420
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Figure 7: Left: Relative positions of jackals plotted with respect to the location of
each known carcass. Jackal locations were calculated as the average of their GPS
pings that occurred between two days before and after the carcass was estimated
to be present. Right: Stacked histogram for the times that jackals chose to visit a
carcass (teal bars) and the times that jackals refrained from visiting a carcass (gray
bars).

in ENP were estimated to be between 4 km2 to 12 km2. This is comparable to421

estimates that were made for jackal populations in coastal Namibia (0.2 - 11.11422

km2 [27]) and South Africa (3.4 - 21.5 km2 [28]). Noting the observation from423

Bellan et al. (2012) that jackals are "unusually dense" in ENP [15], we set the424

typical jackal territory size to be 5 km2, so that ρ = 0.2 km−2.425

The interpretation of the parameter ` from the data requires some discussion.426

In the mathematical model, ` is the maximum distance at which a consumer can427

detect and then respond to a resource. We can think of the model as assuming428

that the probability of detecting a resource is one within a distance ` and zero out-429

side that distance. Of course, in reality, this detection probability likely decreases430

steadily as a function of distance. Rather than identify a specific value that we431

definitively claim to be the best estimate of `, we used the jackal movement data432

to find a range of reasonable values.433

In Figure 7, we display a scatter plot of all jackal average positions relative to434

known carcasses and mark each with a teal dot or a gray x depending on whether435

the jackal visited the carcass or not. Jackals were observed to visit known carcass436

sites as far as 15 km away, but a large majority of carcasses visited were in a range437

of 0 to 4 km. As expected, the probability that a jackal visited a resource decreased438

with distance, but it is not known whether this was because the jackals were not439

aware of more distant carcasses, or because there were other carcasses or alternate440
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resources nearer by. In Section 3.4 we use the two values ` = 4 and 10, and the441

associated encounter-rate curves are displayed in Figure 8. Each was generated442

by averaging the results of 10,000 simulations at each of 300 values for κ.443
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Figure 8: Simulated number of resource-driven encounters for two choices of the
the detection distance parameter over a range of resource intensities. The vertical
lines indicate the estimated month-by-month carcass densities observed in the
ENP data set.

3.4 Placing model results in the context of Disease Ecology444

In Section 2.2, we described our stochastic small-population model for pathogen445

invasion. We say that an invasion is “successful” if it achieves a population level446

equivalent to what would be the endemic equilibrium of the deterministic version447

of the model. There exists an explicit formula for the probability of invasion, but448

it is difficult to interpret in terms of the parameters of the model. So, following449

Ball & Donnelly [24], we use an approximation for the true value (see Equation 3450

and further discussion in Appendix A). This reduces our analysis to determining451

whether the total rate of transmission (which is affected by the resource-driven452

encounter rate) is greater than the disease-related mortality rate ν.453

To assess whether a change in the consumer encounter rate is “large” in the454

context of jackals and rabies, we followed Rhodes et al. [29] in establishing a455

background rate of pathogen transmission (b = 1 wk−1) and a disease-related456

mortality rate (ν = 1.4 wk−1) yielding the reproductive ratioR0 ≈ 0.7. SinceR0 <457

1, rabies is found to be sub-critical. To connect the resource-driven encounter458
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Value Units Definition Source

b 1 wk−1 transmission rate [29]
ν 1.4 wk−1 rabies mortality rate [29]
κ 0.005 - 0.043 km−2 carcass density ENP data analysis
ρ 0.2 km−2 jackal territory density [15, 28, 27]
` 4-10 km max distance of detection ENP data analysis
τ 1 wk timescale of resource ENP data analysis

availability and visitation

Table 1: Parameters used in the Disease Ecology analysis.
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Figure 9: Time-dependent reproductive ratio based on the corresponding number
of resource-driven encounters for each month in Figure 8 with b = 1, ν = 1.4 and
` = 4 (Left) or ` = 10 (Right).

rate at a given time t, E(t), to the pathogen-transmission model, we first note459

that not all encounters involving infectious and susceptible individuals lead to a460

new infection. For example, in our model, a resource-driven encounter is defined461

to occur if two individuals visit the same resource site in the same week, but462

this does not mean they visit concurrently. Even if they visit concurrently this463

does not ensure pathogen transmission. Define pinf to be the probability that a464

resource-driven encounter results in transmission. Then our expected number of465

new infections arising from a single infectious individual is b + pinfE(t) and the466

reproductive ratio is467

R0(t) =
b + pinfE(t)

ν
. (6)468
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Using the month-by-month encounter rate values appearing in Figure 8, we calcu-469

lated the time-dependent reproductive ratio for six scenarios and displayed them470

in Figure 9. The left and right panels correspond to the distance of detection471

choices ` = 4 and ` = 10, respectively. In each case, we varied the probability of472

infection parameter pinf to demonstrate its impact on the final result.473

When ` = 4, the resource density for each month is below the critical resource474

density κ∗, i.e. the density for which the maximal encounter rate occurs. So an475

increase in resource density leads to increases in the resource-driven encounter476

rate and resulting reproductive ratio, regardless of the pinf value. However, be-477

cause the peak of the encounter rate curve is relatively low (approximately five478

per week, see Figure 8) the reproductive ratio remains below the critical value of479

one. On the other hand, when ` = 10, most of the monthly resource densities480

are greater than κ∗. In those cases, increases in resource density lead to decreases481

in the resource-driven encounter rate and resulting reproductive ratio. In this482

regime, we see that the months with low carcass availability are most vulnerable483

to pathogen invasion.484

We note that the magnitude of change in R0 is directly dependent on the485

estimate for jackal territory density ρ (recall Equations 4). If pinf = 0.02 and if486

ρ = 1 instead of ρ = 0.2, for example, then the April R0 for ` = 4 would be487

approximately 1.07. This constitutes a setting where indirect induction of disease488

is possible. A similar modification for ` = 10 would result in an August R0 of489

2.86. These results can readily be translated to a probability of successful invasion490

over the course of a resource increase of duration T. As described in Section491

2.2, successful pathogen invasions arrive according to a Poisson process with rate492

γspillover pinvasion. Assuming the transmission rate is constant over the period of493

interest, the probability of invasion is 1− exp
(
γspillover(1−R−1

0 )T
)
.494

4 Discussion495

In this work, we have developed a framework for analyzing the impact of changes496

in resource availability on the rate of conspecific encounters among consumers497

and express our results in the context of disease ecology. Given a landscape of498

consumers and resources we essentially ask the question: would adding one more499

resource site lead to more or fewer encounters among the consumers?500

We have proposed a novel consumer-resource interaction model to investigate501

this question. Through a combination of numerical simulation and mathematical502

analysis, we have identified and characterized two qualitatively distinct param-503

eter regimes. In a scarce resource regime, adding more resources leads to more504
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consumer-consumer encounters; in an abundant resource regime, adding more505

resources leads to fewer consumer-consumer encounters. The utility of our model506

is that it can be used to predict the qualitative dynamics of a system once certain507

fundamental parameters are estimated: the consumer density (ρ), the resource508

density (κ) and the maximum distance of detection and response (`).509

To work through a specific case study, we used location data for a population510

of jackals and the carcasses upon which they scavenge in Etosha National Park.511

While some model parameters (κ and ρ) are fairly straightforward to estimate, oth-512

ers are not (see Section 3.3 for our approach to estimating the parameter ` in par-513

ticular). One notable challenge that arises is that the definition of an “encounter”514

is intrinsically subjective, depending strongly on the question of interest (also see515

Gurarie et al. [2] for a full discussion on this point). To relate our resource-driven516

encounter rate to a rate of pathogen transmission from infectious to susceptible in-517

dividuals, we introduced a corrective “probability of infection” factor pinf. Because518

pathogen transmission is essentially impossible to directly observe, proper infer-519

ence for such a parameter would likely require population-level disease incidence520

data that does not currently exist. In response to this uncertainty in parameter val-521

ues, we display model results that emerge from a range of reasonable values for522

both pinf and `. The key takeaway is that for certain combinations of biologically523

relevant parameters, we confirm that small changes in the resource landscape can524

lead to substantial changes in pathogen transmission dynamics. In fact, we show525

that sudden scarcity of a resource can have a larger effect on encounter rates than526

a resource pulse.527

Building upon existing investigations into how changes in resource and con-528

sumer densities induce changes in disease dynamics, our work suggests that the529

relationship between territory size and the distance of resource detection plays a530

crucial role in determining infectious disease outcomes. To use the present context531

for an example, we note that jackals may use visual cues from vultures to iden-532

tify carcass sites ([30] and anecdotal observations by an author and colleagues).533

If vulture populations decline, as has now been documented in both Asia and534

Africa [31], the detection distance for jackals could decrease, potentially causing535

a pathogen invasion regime shift. Interestingly though, the specific example of536

declining vulture populations exemplifies the complexity of consumer-resource537

interactions. In an experiment conducted by Ogada et al. [32], the authors found538

that there were increased encounters among mammalian scavengers when vul-539

tures could not see and react to carcasses (in contrast to the right hand panel of540

our Figure 5).541
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4.1 Opportunities for integrating more detailed animal behavior542

The complex relationship between resource allocation, consumer behavior, and543

pathogen spread deserves further study. We constructed our model to be detailed544

enough to examine our primary question, but simple enough to permit rigorous545

mathematical analysis. While there are many ways to extend the model to account546

for more nuanced behavior, we highlight a few.547

Resource detection and selection. There are other natural models for the con-548

sumer’s ability to detect resources, as well as for the algorithm determining which549

resource is visited, if any. For example, one could posit that there is imperfect de-550

tection and that the probability of detection decreases with a consumer’s distance551

from the resource. Also, one could relax the restriction that the consumer always552

picks the closest detected resource. An informal investigation suggested that, as553

long as we pose assumptions consistent with those outlined at the beginning of554

Section 2.1, adopting alternative model specifications does not change the quali-555

tative description of our results reported in Section 3.1. We opted for the version556

that yields the most explicit analytical results, but note that changes to model as-557

sumptions would likely change the value of the critical resource density κ∗ as well558

as the height of the associated encounter rate peak.559

One major factor that we did not consider is heterogeneity in the resource560

sites. Variation in resource quality, geographical characteristics and local environ-561

mental factors can affect the model through multiple parameters. Resource sites562

that attract vultures might be detectable from larger distances than resources that563

do not, causing variation in `. Small carcasses may be rapidly depleted, decreas-564

ing τ1, and may not satiate consumers, decreasing τ2. In terms of the selection565

algorithm, a consumer might not choose the closest available resource if one of566

greater quality is just a little bit farther away. Our model assumes uniformity567

in resources and, compared to predictions that would follow from each of these568

possible modifications, it produces a lower variance in the number of visitors to a569

given site.570

The reduction in variance is significant in the following sense. As we report571

in Appendix A, Equation 9, the number of visitors to a given site is Poisson dis-572

tributed with a mean parameter that decreases with the total number of available573

resources. While this prediction for the mean is consistent with the available car-574

cass visitation data (see Figure 6), the variance of a Poisson random variable is575

much less than the variance of the observed distribution. In February of 2010,576

for example, there are values as high as thirty when the mean is less than five.577

However, this is extremely unlikely for a Poisson distribution. To be precise,578

if {Xi}60
i=1 are independent and identically distributed Pois(5) random variables,579
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then P(maxi Xi ≥ 20) ≤ 0.0001.580

Modified behavior of infectious individuals. Behavioral changes associated with581

the disease status of an individual may affect its expected encounter rate. Devel-582

oping a theory for susceptible-infectious encounter rates that considers both types583

of individuals will be especially important for infections that alter host behavior584

(e.g. rabies). Specifically, we note that the manner in which a rabid animal de-585

tects and selects resource sites could be much different than that of a susceptible586

individual.587

Off-site encounters. At present, our model considers the relationship between588

resource availability and the consumer encounter rate specifically at resource sites.589

However, a change in resource availability will likely influence other types of590

encounters as well. For example, when consumers are forced to make long treks591

to scarce resources, they may be exposed to unfamiliar individuals. Distinguishing592

between typical encounters (e.g. with family members and territorial neighbors)593

and unique encounters with new individuals could be important for determining594

transmission dynamics [33, 13].595

Dynamic population counts. We considered a fixed population density (i.e. ρ,596

the jackal territory density). However, population sizes change on multiple time597

scales. Jackals have birth pulses that will change the local jackal population size598

on an annual basis (although, pups may not contribute dramatically to pathogen599

spread). In the long term, consumer population size may respond to resource600

availability; when resources are abundant more consumers can be supported in601

the same area. This allows for smaller territories (increases in ρ). Specifically in602

Etosha, zebras are attracted to a grassland foraging area south of the salt pan. The603

jackal density in this area may be higher than the density in other areas due to604

greater average resource availability. Considering Figure 4 and Equations 4, we605

see that if the consumer density varies with the resource density, then there are606

two competing effects: while increasing κ can decrease the number of encounters607

for fixed ρ, a simultaneously increasing ρ can overcome this effect.608

4.2 Using seasonality as a tool for investigation609

Large-scale ecological experiments are expensive and challenging to conduct. It610

can therefore be very useful to observe and characterize systems with naturally611

changing resource conditions [9, 11]. Being able to observe the same system in612

multiple states provides the opportunity to investigate responses to the altered613

system components while keeping other characteristics constant. Seasonality, in614

particular, is frequently observed in time-series data for incidence of disease and615

has been shown to affect infection rates through multiple mechanisms. Seasonal616
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changes can result in a fluctuating population size and affect both the quantity617

and type of conspecific interactions. Moreover, periodic changes in population618

count due to birth pulses [34] and migration [35] have both been shown to affect619

the potential for infectious disease outbreaks. We believe that coupling temporally620

varying environmental information in multi-state systems with rigorous analysis621

of GPS location data can provide a basis for more mechanistic models of consumer622

response to resource change. Ultimately this can lead to more meaningful and623

more accurate predictions for the consequences of habitat alteration.624
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A Mathematical Analysis660

The simplicity of the resource-driven encounter model invites a rigorous asymp-661

totic analysis. More than demonstrating the non-monotone relationship between662

resource density and the consequent encounter rate in the consumer population,663

we can obtain the exponents of the power laws that govern the relationship.664

In what follows (and in the main text) when we write ϕ(x) ∼ xα as x → a, we665

mean that there exists some constant C ∈ (0, ∞) such that666

lim
x→a

ϕ(x)
xα

= C.667

For example, a result we will use below is that if Y ∼ Pois(λ) for some λ > 0,668

then P {Y > 1} ∼ λ2 as λ→ 0. This is because669

P {Y > 1} = 1−P {Y = 0} −P {Y = 1}
= 1− e−λ − λe−λ

670

and using the Taylor series expansion for the exponential (or simply L’Hôpital’s671

rule), we have672

lim
λ→0

1
λα

P {Y > 1} = lim
λ→0

1− e−λ − λe−λ

λα
=


0, if α < 2
1
2 , if α = 2

∞, if α > 2
. (7)673

For higher order terms we will use Big-Oh notation: we say that f (x) = O(g(x))674

near x = a if there exist constants C > 0 and L > 0 such that if |x− a| < L, then675

| f (x)| ≤ C|g(x)|.676

As in the main text, κ and ` denote the resource intensity and maximum dis-677

tance of detection respectively. In the presentation of our results we will assume678
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that the consumer density ρ = 1. In Section A.3 we will discuss how to modify679

the results when ρ 6= 1.680

We take the domain O to be a circle of radius R > 3` centered at the origin.681

There is a focal consumer located exactly at the origin. Resources are distributed682

throughout O as a Poisson spatial process with intensity κ. Other, non-focal con-683

sumers are distributed throughout O as a Poisson spatial process with intensity684

one. Let ~x0 = (0, 0) and enumerate the non-focal consumer locations {~x1, . . . ,~xN}685

where N ∼ Pois(|O|). Furthermore let ~z1, . . . ,~zZ be the resource locations where686

Z ∼ Pois(κ|O|). For each pair 1 ≤ i ≤ N and 1 ≤ j ≤ Z, let δij := |~xi −~zj|. For687

each i ∈ {0, . . . , N}, let ηi := {j : δij = min1≤j≤Z δij}. In other words, ηi is the688

index of the resource that is closest to the ith consumer. For notational expediency689

we will write the index of the resource closest to the focal consumer, η0, to simply690

be η.691

In the above notation, we can express β, the number of resource-driven en-692

counters experienced by the focal consumer, to be693

β := |{i ∈ {1, . . . , N} : ηi = η}| and E := E(β) . (8)694

Given a set of resource locations, it is useful to think of the landscape partitioned695

according to the associated Voronoi tessallation. That is, neglecting a set of mea-696

sure zero,697

O =
Z⋃

i=1

Oi, where Oi :=
{
~x ∈ O : |~x−~zi| = min

j∈{1,...,Z}
|~x−~zj|

}
.698

We say that Oi is a basin of attraction for resource i: all consumers located in Oi699

will choose resource i as their resource to visit if it is within their detection radius.700

We define B(~x; r) to be the circle of radius r centered at the location ~x. Then the701

distribution of the encounter variable β conditioned on a given resource landscape702

L = {~zi}Z
i=1 is703

β|L ∼ Pois
(
|Oη ∩ B(~zη ; `)|

)
1|~zη |≤` (9)704

where we recall that η is the index of the resource chosen by the focal consumer705

and 1A = 1 if the event A occurs, and is zero otherwise.706

A.1 Small resource density and/or small detection distance707

Theorem A.1. Let E = E(κ, `) be defined as in (8). Then E ∼ κ and E ∼ `4 as κ and `708

go to zero, respectively. To be precise,709

lim
κ→0

1
κ
E(κ, `) = π2`4, and lim

`→0

1
`4 E(κ, `) = π2κ. (10)710
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Proof. We first introduce some notation. Let N(r) and Z(r) denote the number of711

consumers and resources within a distance r of the focal consumer. We proceed712

by conditioning on the number of resources that are near the focal consumer. We713

partition the sample space Ω as follows:714

Ω0 = {Z(`) = 0}
Ω10 = {Z(`) = 1, Z(3`)− Z(`) = 0}
Ω11 = {Z(`) = 1, Z(3`)− Z(`) ≥ 1}
Ω2 = {Z(`) ≥ 2}.

715

Naturally, it follows that E(β) = ∑i E(β |Ωi)P {Ωi} and we will find that the716

dominant term is the one associated with Ω10. Looking at the other terms, first717

observe that E(β |Ω0) = 0 since, if there are no resources to consume, the focal718

consumer will not have any encounters.719

To deal with the event Ω2, we apply Eq 7 above, noting that the number of720

resources within detection distance of the focal consumer has the distribution721

Z(`) ∼ Pois (κπ`2). It follows that for small κ, P {Ω2} ∼ κ2 and for small `,722

P {Ω2} ∼ `4. To bound the conditional expectation E(β |Ω2), observe that the723

number of resource-driven encounters experienced by the focal consumer must be724

less than or equal to the number of consumers that are located within a distance725

of ` of the focal resource (the resource chosen by the focal consumer). Because726

this is a region of size π`2, we have E(β |Ω2) ≤ π`2. Together we have that727

E(β |Ω2)P {Ω2} = O(κ2`6).728

For the event Ω11 we again exploit that, when the detection distance or re-729

source density is small, it is unlikely that there will be more than one resource730

near the focal consumer. By independence of the resource distribution in disjoint731

regions732

P {Ω11} = P {Z(`) = 1}P {Z(3`)− Z(`) ≥ 1}
= (κπ`2e−κπ`2

)(1− e−8κπ`2
)

733

since the area of the annulus covering the region that is between a distance of `734

and 3` of the origin is 8π`2. It follows that P {Ω11} = O(κ2`4). Meanwhile, using735

the same upper bound on the number of resource-driven encounters experienced736

by the focal consumer, we have E(β |Ω11) ≤ π`2. Therefore737

E(β |Ω11)P {Ω11} = O(κ2`6).738

Turning our attention to the event Ω10, if there is only one resource in the739

focal consumer’s detection radius, and the resource is the only one in the larger740
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3` radius circle centered at the origin, then all consumers within a radius ` of the741

focal resource will choose the same resource as the focal consumer. In other words,742

the number of encounters conditioned on Ω10 is β|Ω10 ∼ Pois(π`2). What was an743

upper bound in previous cases is now equality. It follows that E(β |Ω10) = π`2.744

To compute the event’s probability we argue as before,745

P {Ω10} = P {Z(`) = 1}P {Z(3`)− Z(`) = 0} = (κπ`2e−κπ`2
)(e−8κπ`2

). (11)746

Therefore747

lim
κ→0

1
κ

E(β) = lim
κ→0

1
κ

κπ2`4e−9κπ`2
= π2`4

748

and749

lim
`→0

1
`4 E(β) = lim

`→0

1
`4 κπ2`4e−9κπ`2

= π2κ750

as claimed.751

A.2 Analysis in the high resource and large distance of detection regimes752

In the high resource density and large distance of detection we are unable to get753

exact results. This is due to a fundamental barrier in the analysis that we will754

describe below. In the high density regime we can provide what appears to be a755

lower bound on E that, from the numerics, seems to scale with E as κ → ∞.756

Conjecture: E(κ, `) ∼ 1
κ

as κ → ∞.757

Our conjecture is based on the following heuristic. Recall that Oη is the basin758

of attraction that contains the focal consumer. Then:759

– Conditioned on the landscape of resources, the number of encounters expe-760

rienced by the focal consumer is Poisson distributed with mean equal to its761

containing basin of attraction. Therefore E(β) = E
(
|Oη |

)
.762

– Unconfirmed estimate: E
(
|Oη | | Z = z

)
≥ |O|/z.763

– E(|O|1Z>0/Z) ∼ 1/κ as κ → ∞.764

The third part of the heuristic is established by Lemma A.3 below. The second765

part of the heuristic is justified by the following.766

Lemma A.2. Let a resource landscape be given as described above and let the total region767

O be partitioned according to a Voronoi diagram generated using the resource locations768

{~z1, . . . ,~zZ}. We denote the areas of each of these basins of attraction {A1, . . . , AZ}.769

Let ~x ∼ Uni f (O) be a random location in the landscape and define η to be the index770

of the basin of attraction that contains this point. Then771

E
(

Aη | Z = z
)
≥ |O|/z772
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Remark 1. Unfortunately, at this time, we are not able to extend the result to establish773

the claim that the basin of attraction specifically containing the origin has an expected area774

that is larger than O/z. Numerics strongly support this conclusion.775

Proof.

E
(

Aη | Z = z
)
=

z

∑
i=1

AiP {η = i}

=
z

∑
i=1

A2
i
|O|

= |O|
z

∑
i=1

(
Ai

|O|

)2

≥ |O|
z

(
z

∑
i=1

Ai

|O|

)2

=
|O|

z

776

where, in the last line, we have used the Cauchy-Schwarz inequality.777

Lemma A.3. Suppose Y ∼ Pois(λ). Then778

lim
λ→∞

λE

(
1{Y>0}

Y

)
= 1 (12)779

Proof. Recall the exponential integral function780

Ei(x) =
∫ x

−∞

et

t
dt781

for x > 0, where the integral is taken in the sense of the Cauchy principal value.782

The exponential integral function can be written in terms of the series [36].783

Ei(x) = γ + ln(x) +
∞

∑
k=1

xk

kk!
.784

For large x, Ei(x) has the asymptotic expansion [37],785

Ei(x) ∼ ex

x

(
1 +

1
x
+

2
x2 +

3!
x3 + . . .

)
. (13)786

Following the suggestion of Grab and Savage [38], we note that787

E

(
1{Y>0}

Y

)
=

∞

∑
k=1

1
k

λke−λ

k!
= e−λ(Ei(λ)− γ− ln(λ)) (14)788

where γ is the Euler-Mascheroni constant. Combining (13) and (14) we arrive at789

the desired result.790
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There is a fundamental mathematical barrier to making more progress on this791

problem. The preceding analysis reduces the problem to analyzing the distri-792

bution of areas of cells generated by Poisson Voronoi Tessellations, but this an793

outstanding mathematical problem [17]. In particular, we there is no known ex-794

pression for E
(
|Oη |

)
, the expected area of the basin of attraction that contains the795

focal consumer. This prevents us from obtaining a result for the high distance-of-796

detection regime that is explicit in κ.797

Theorem A.4. E(κ, `) is an increasing function in ` and798

lim
`→∞
E(κ, `) = E

(
|Oη |

)
. (15)799

Proof. For a given κ > 0, let Lκ denote a landscape of resources generated by a800

spatial Poisson process with intensity κ. For each such landscape, let β|Lκ
(`) be the801

number of encounters for the focal consumer. As noted above in Equation (9), this802

is the number of consumers located in a radius ` of the focal resource multiplied803

by one or zero depending on whether the focal resource is within radius ` of the804

focal consumer. For a fixed landscape, note that805

lim
`→∞
Oη ∩ B(~zη ; `) = Oη and lim

`→∞
1|~zη |≤` = 1.806

As such,807

lim
`→∞

E(β|Lκ
(`)) = E

(
|Oη | | Lκ

)
.808

Because this holds for all Lκ, the proposition follows.809

A.3 Converting results for non-unit consumer density810

All of the preceding results have been expressed under the consumer density as-811

sumption ρ = 1. Similarly all simulations were conducted with ρ = 1. Extending812

the earlier notation, let E(ρ, κ, `) be the expected number of encounters for the813

focal consumer for the given triplet of parameters. We claim that, although there814

are three fundamental parameters in the model, there are only two degrees of815

freedom in the parameter space. That is to say, given a triplet (ρ, κ, `) there exists816

a unique pair (κ̃, ˜̀) such that E(ρ, κ, `) = E(1, κ̃, ˜̀). Namely,817

E(ρ, κ, `) = E
(

1,
κ

ρ
,
√

ρ `
)

.818

To see this, let N(3`) and Ñ(3˜̀) denote the number of consumers in the model for819

the parameter triplets (ρ, κ, `) and (1, κ̃, ˜̀) respectively. Let Z(3`) and Z̃(3˜̀) de-820

note the same for resources. Because consumers and resources are distributed821
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as Poisson spatial processes, these values completely define the system. Fur-822

thermore, because Poisson random variables are completely parameterized by823

their means, it follows that E(ρ, κ, `) = E(1, κ̃, ρ̃) if E(N(3`)) = E
(

Ñ(3˜̀)
)

and824

E(Z(3`)) = E
(
Z̃(3˜̀)

)
. For the first constraint,825

E(N(3`)) = E
(

Ñ(3˜̀)
)
⇐⇒ ρπ9`2 = π9˜̀2,826

from which it follows that ˜̀ =
√

ρ`. Meanwhile827

E(Z(3`)) = E
(
Z̃(3˜̀)

)
⇐⇒ κπ9`2 = κ̃π9˜̀2,828

meaning that κ̃ = κ`2/˜̀2 = κ/ρ.829

We note that this reduction of the problem to two parameters amounts to a830

nondimensionalization of the three parameter model. The units of ρ and κ are831

both [length]−2, while ` has units of [length]. As a result, κ̃ = κ/ρ and ˜̀ =
√

ρ`832

are both dimensionless.833

Revisiting the theorems of the previous sections we have the results:834

lim
κ→0

1
κ
E(ρ, κ, `) = π2ρ`4, lim

`→0

1
`4 E(ρ, κ, `) = π2ρκ, (16)835

and836

E(ρ, κ, `) ∼ ρ

κ
as κ → ∞. (17)837

A.4 Branching process approximation838

There exist exact solutions to the hitting probability problem introduced in Section839

2.2, however, such a presentation makes it difficult to understand how pinvasion840

depends on b and ν. Under the assumption that the size of the susceptible pool841

is very large with respect to the initial infectious population, it is common to842

introduce the approximation that (N− I)/N ≈ 1 [39]. The modified rate functions843

for the CTMC are linear and take the form844

λ(i) = bi and µ(i) = νi.845

The infectious population process is then a Galton-Watson branching process.846

The only two outcomes for such a process are extinction or explosion to infin-847

ity. The analysis reduces to recasting the CTMC as a discrete time generation-by-848

generation branching process that is defined in terms of the offspring distribution,849

i.e., the distribution of the number of offspring an individual might have before850

dying. In our case, the “offspring” are the infections spawned by a single in-851

dividual. Since the infection events occur according to a Poisson process with852
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rate parameter b and the death of the individual occurs at rate ν, the number of853

successful infections before death is Geometrically distributed with success prob-854

ability m := b/(b + ν). One can then show that, under the assumption that b > ν,855

lim
t→∞

I(t) =

{
∞ w.p. 1− ν

b
0 w.p. ν

b .
856

If b ≤ ν, the process goes extinct with probability one.857
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