
	 	

	

HETEROGENEOUS	FIRING	RESPONSES	PREDICT	DIVERSE	COUPLINGS	TO	
PRESYNAPTIC	ACTIVITY	IN	MICE	LAYER	V	PYRAMIDAL	NEURONS	

Yann	Zerlaut1,2*&	Alain	Destexhe1,3*	

ABSTRACT	
In	the	present	study,	we	present	a	theoretical	framework	combining	experimental	characterizations	and	analytical	calculus	
to	capture	the	firing	rate	input-output	properties	of	single	neurons	in	the	fluctuation-driven	regime.	We	use	this	framework	
to	investigate	the	functional	impact	of	the	heterogeneity	in	firing	responses	found	experimentally	in	young	mice	layer	V	
pyramidal	cells.	We	first	design	and	calibrate	in	vitro	a	simplified	morphological	model	of	layer	V	pyramidal	neurons	with	
a	dendritic	 tree	 following	Rall's	branching	rule.	Then,	we	propose	an	analytical	derivation	 for	 the	membrane	potential	
fluctuations	at	 the	soma	as	a	 function	of	 the	properties	of	 the	synaptic	bombardment	 in	dendrites.	This	mathematical	
description	allows	us	to	easily	emulate	various	forms	of	presynaptic	activities:	either	balanced,	unbalanced,	synchronized,	
purely	 proximal	 or	 purely	 distal	 synaptic	 activity.	 	 We	 found	 that	 those	 different	 forms	 of	 activity	 led	 to	 various	
comodulations	of	the	membrane	potential	fluctuation	properties,	thus	raising	the	question	whether	individual	neurons	
might	differentially	couple	to	specific	forms	of	activity	because	of	their	different	firing	responses.	We	indeed	found	such	a	
heterogeneous	response	for	all	types	of	presynaptic	activity.	This	heterogeneity	was	explained	by	different	levels	of	cellular	
excitability	in	the	case	of	the	balanced,	unbalanced,	synchronized	and	purely	distal	activity.	A	notable	exception	appeared	
for	proximal	activity:	increasing	activity	could	either	promote	firing	response	in	some	cells	or	suppress	it	in	some	other	
cells	whatever	their	individual	excitability.	This	behavior	could	only	be	explained	by	various	sensitivities	to	the	speed	of	
the	 fluctuations,	which	was	previously	associated	to	heterogeneous	 levels	of	sodium	channel	 inactivation	and	density.	
Because	local	network	connectivity	targets	rather	proximal	region,	our	results	suggest	that	this	biophysical	heterogeneity	
might	be	relevant	to	neocortical	processing	by	controlling	how	individual	neurons	couple	to	local	network	activity.	

	

AUTHOR	SUMMARY	
Neocortical	processing	of	 sensory	 input	 relies	on	 the	specific	activation	of	subpopulations	within	 the	cortical	network.	
Though	specific	circuitry	is	thought	to	be	the	primary	mechanism	underlying	this	functional	principle,	we	explore	here	a	
putative	complementary	mechanism:	whether	diverse	biophysical	features	in	single	neurons	contribute	to	such	differential	
activation.	In	a	previous	study,	we	reported	that,	in	young	mice	visual	cortex,	individual	neurons	differ	not	only	in	their	
excitability	but	also	in	their	sensitivities	to	the	properties	of	the	membrane	potential	fluctuations.	In	the	present	work,	we	
analyze	 how	 this	 heterogeneity	 is	 translated	 into	 diverse	 input-output	 properties	 in	 the	 context	 of	 low	 synchrony	
population	dynamics.	As	expected,	we	found	that	individual	neurons	couple	differentially	to	specific	form	of	presynaptic	
activity	(emulating	afferent	stimuli	of	various	properties)	mostly	because	of	their	differences	in	excitability.	However,	we	
also	found	that	the	response	to	proximal	activity	was	controlled	by	the	sensitivity	to	the	speed	of	the	fluctuations	(which	
can	be	linked	to	various	levels	of	density	of	sodium	channels	and	sodium	inactivation).	Our	study	thus	proposes	a	novel	
functional	 impact	 of	 biophysical	 heterogeneity:	 because	 of	 their	 various	 firing	 responses,	 individual	 neurons	 will	
differentially	couple	to	local	network	activity.	
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INTRODUCTION	
The	 specific	 activation	 of	 subpopulations	 within	
neocortical	networks	appears	to	be	the	core	mechanism	
for	 the	 cortical	 representation	 of	 sensory	 features.	 The	
details	 of	 how	 such	 specific	 activations	 happen	 are	
therefore	 key	 questions	 in	 systems	 neuroscience.	 As	 a	
primary	 source	 for	 specific	 activation,	 the	 neocortex	 is	
characterized	 by	 some	 degree	 of	 specific	 circuitry:	
neurons	 differ	 in	 their	 afferent	 connectivity.	 A	 classic	
example	can	be	found	in	the	primary	visual	cortex,	 layer	
IV	simple	cells	specifically	sample	their	input	from	ON	and	
OFF	 cells	 in	 the	 thalamic	 nucleus	 [1,2].	 Additionally,	
neocortical	neurons	also	vary	in	their	electrophysiological	
properties:	 for	 example,	 heterogeneous	 levels	 in	 the	
action	potential	threshold	are	routinely	measured	in	vivo	
[3–5].	Thus,	an	emerging	refinement	is	that	the	sensitivity	
of	a	neuron	to	a	given	feature	do	not	only	results	from	its	
stimulus	specificity	(e.g.	orientation	selectivity	as	a	result	
of	a	specific	afferent	circuitry),	but	from	the	combination	
of	 its	 stimulus	 specificity	 and	 its	 biophysical	 specificity.	
Two	 somato-sensory	 cortex	 studies	 illustrates	 this	 point	
precisely.	 In	 Crochet	 et	 al.	 [3],	 during	 active	 touch,	 the	
spiking	probability	of	a	neuron	 (its	 sensitivity	 to	whisker	
touch)	follows	from	the	combination	of	the	reached	level	
of	synaptically-driven	membrane	potential	deflection	(its	
stimulus-specificity	 resulting	 from	 afferent	 circuitry,	 as	
quantified	 by	 post-synaptic	 reversal	 potentials)	 and	 its	
threshold	 for	 action	 potential	 triggering	 (its	 biophysical	
specificity).	A	similar	result	was	found	in	the	study	of	Yang	
et	al.	[5]	for	texture	recognition,	where	the	combination	
of	 those	 two	 quantities	 was	 shown	 to	 predict	 choice-
related	 spiking.	 Those	 results	 therefore	 suggest	 that	
heterogeneity	in	the	biophysical	properties	of	neocortical	
neurons	 might	 have	 an	 impact	 on	 their	 functional	 role	
during	sensory	processing.	

In	the	present	work,	we	further	investigate	the	interaction	
between	stimulus	specificity	and	biophysical	specificity	in	
the	 light	 of	 the	 variability	 in	 the	 biophysical	 features	
reported	 in	 our	 previous	 study	 [6],	 namely	 that	 single	
neurons	 in	 juvenile	 mice	 cortex	 not	 only	 vary	 in	 their	
excitability	 (linked	to	 the	action	potential	 threshold)	but	
also	in	their	sensitivity	to	the	properties	of	the	membrane	
potential	 fluctuations.	 Our	 previous	 communication	
introduced	 those	 new	 dimensions	 in	 the	 biophysical	
specificity,	we	here	aim	at	understanding	their	functional	
impact.		To	this	purpose,	we	implemented	various	stimuli	
onto	layer	V	pyramidal	cells	(we	varied	the	properties	of	
presynaptic	activity	in	the	fluctuation-driven	regime),	and	

we	 investigated	 whether	 individual	 neurons	 would	
differentially	 respond	 to	 those	 inputs	 because	 of	 their	
various	 firing	 rate	 response	 [6]	 (their	 biophysical	
specificity).		

RESULTS	
The	 results	 are	organized	 as	 follows.	We	 first	 formulate	
our	theoretical	framework	for	cellular	computation	which	
arbitrarily	 separate	 the	question	of	dendritic	 integration	
and	 spiking	 probability.	 Then	 we	 present	 our	 simplified	
model	of	dendritic	morphology	which	we	calibrated	on	in	
vitro	 measurements.	 We	 derive	 an	 analytical	
approximation	for	the	membrane	potential	fluctuations	at	
the	soma	that	we	compare	to	numerical	simulations	using	
standard	 compartmental	 modeling.	 We	 implement	
various	 types	of	presynaptic	activity	and	we	analyze	 the	
individual	 responses	 of	 the	 layer	 V	 pyramidal	 cells	
(characterized	in	our	previous	study	[6]).	

A	THEORETICAL	FRAMEWORK	FOR	SINGLE	CELL	COMPUTATION	

IN	THE	FLUCTUATION-DRIVEN	REGIME	

Our	 study	 investigates	 the	 properties	 of	 single	 cell	
computation	 in	 the	 regime	of	 low	synchrony	population	
dynamics	[7,8]	(the	analogous,	at	the	network	level,	of	the	
fluctuation-driven	regime	at	the	cellular	level)	and	aims	at	
describing	effects	mediated	by	slow	population	dynamics	
(𝑇 ≥20-50ms).	 In	 this	 context,	 the	 cellular	 input-output	
function	 of	 a	 neocortical	 neuron	 corresponds	 to	 the	
function	that	maps	the	presynaptic	variables	to	the	spiking	
probability	 of	 the	 neuron.	 Our	 cellular	 model	 has	 five	
presynaptic	variables	(depicted	in	Figure	1A).	Four	of	them	
are	 presynaptic	 firing	 rates	 (stationary	 release	
probabilities	 at	 the	 synapses)	 as	 those	 constitute	 the	
primary	 variables	 in	 this	 rate-based	 paradigm.	 To	
investigate	 their	 differential	 contribution,	 the	 proximal	
and	distal	parts	of	the	dendritic	trees	have	been	separated	
and	each	of	them	has	two	presynaptic	rates	corresponding	
to	 the	excitatory	 and	 inhibitory	populations	 (hence	 four	
rate	 variables:	𝜈$

% ,	𝜈&
% ,	𝜈$' 	and	𝜈&' ).	 The	main	motivation	

for	this	separation	is	to	distinguish	between	two	types	of	
projections	onto	neocortical	pyramidal	neurons:	synaptic	
inputs	 from	 the	 local	 network	 are	 thought	 to	 be	 more	
proximal	while	 the	distal	 apical	 tuft	 receives	 input	 from	
more	 distant	 cortical	 areas	 and	 thalamic	 locations	 [9].	
Additionally,	 a	 global	 synchrony	 variable	 has	 been	
introduced	 for	 presynaptic	 events.	 This	 reproduces	 the	
effect	 of	 multi-innervation	 of	 a	 cell	 by	 its	 presynaptic	
afferent	 and,	 more	 importantly,	 the	 effect	 of	 pairwise	
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correlations	associated	to	neocortical	dynamics	[10].	The	
synchrony	 degree	 in	 the	 presynaptic	 activity	 has	 been	
suggested	 to	vary	with	 stimulus	 statistics	 in	 the	primary	
visual	cortex	[11,12]	what	motivates	its	introduction	as	a	
variable	in	our	model.		

To	get	the	input-output	function	of	a	single	cell,	we	split	
the	relation	from	presynaptic	quantities	(the	input)	to	the	
spiking	 probability	 (the	 output)	 into	 the	 two	 steps	
illustrated	on	Figure	1A	:	1)	passive	dendritic	 integration	
shapes	the	membrane	potential	at	the	soma	and	2)	how	
those	fluctuations	are	translated	into	spikes	is	captured	by	
a	firing	response	function	determined	in	vitro	[6].	The	idea	
behind	 this	 approach	 rely	 on	 the	 fact	 that	 the	 action	
potentials	are	initiated	at	the	axon	initial	segment	[13]	(i.e.	
electrotonically	close	to	the	soma)	so	that	the	fluctuations	
at	 the	 soma	 could	 determine	 the	 firing	 probability	
uniquely.	We	emphasize	here	that,	given	the	complexity	
of	neocortical	cells,	this	approach	only	constitutes	a	first	
approximation	of	 the	cellular	 input-output	 function	 (see	
Discussion).	

A	 SIMPLIFIED	 MORPHOLOGICAL	 MODEL	 FOR	 DENDRITIC	

INTEGRATION	

The	 morphology	 of	 our	 theoretical	 model	 is	 a	 lumped	
impedance	 somatic	 compartment	 in	 parallel	 with	 a	
dendritic	arborescence	of	symmetric	branching	following	
Rall's	3/2	branching	rule	(see	Figure	1B	and	Methods).	This	
morphology	 is	 of	 course	 a	 very	 reductive	 description	 of	
pyramidal	 cells:	 it	 does	 not	 discriminate	 between	 the	
distinct	 apical	 trunk	 and	 the	 very	 dense	 basal	
arborescence.	 Also,	 branching	 in	 pyramidal	 cell	
morphologies	have	been	shown	to	deviate	from	Rall's	3/2	
branching	 rule.	 Nonetheless	 this	 simplified	 model	
contains	the	important	ingredient	for	our	study:	the	fact	
that	 the	 transfer	 impedance	 to	 the	 soma	 of	 a	 synaptic	
input	will	strongly	depend	on	its	location	on	the	dendritic	
tree.	 Indeed,	 as	 observed	 experimentally	 [14],	 distal	
events	will	be	more	low-pass	filtered	than	proximal	events	
in	this	model.	

We	 spread	 synapses	 onto	 this	morphology	 according	 to	
physiological	densities	 [15]	and	describe	synaptic	events	
as	 transient	 permeability	 changes	 of	 ion-selective	
channels	 (see	 Methods).	 We	 arbitrarily	 separate	 the	
dendritic	 tree	 into	 two	domains:	a	proximal	and	a	distal	
domain	 (delimited	 by	 their	 distance	 to	 the	 soma,	 see	
Figure	1B).	The	distal	part	was	taken	as	the	last	eighth	of	
the	 dendritic	 tree	 to	 reproduce	 the	 large	 electronic	
distance	to	the	soma	characterizing	distal	synapses	[14].	

Figure	1.	A	theoretical	 framework	for	single	 cell	computation	 in	the	
fluctuation-driven	regime.	(A)	Theoretical	paradigm:	to	get	 the	input-
output	 function	of	a	single	cell,	we	split	 the	relation	from	presynaptic	
quantities	 (the	 input)	 to	 the	 spiking	probability	 (the	output)	 into	two	
steps.	1)	passive	dendritic	integration	shapes	the	membrane	potential	
at	the	soma	and	2)	how	those	fluctuations	are	translated	into	spikes	is	
captured	 by	 a	 firing	 response	 function	 determined	 in	 vitro.	 (B)	
Theoretical	model	 for	 dendritic	 integration.	A	 single	cell	 is	made	of	a	
lumped	 impedance	 somatic	 compartment	 and	 a	 dendritic	 tree.	 The	
dendritic	 tree	 is	composed	of	B	branches	 (here	B=5),	 the	branching	is	
symmetric	and	follow	Rall's	3/2	rule	for	the	branch	diameters.	Synapses	
are	 then	 spread	 all	 over	 the	 membrane	 according	 to	 physiological	
synaptic	 densities.	 We	 define	 3	 domains:	 a	 somatic	 and	 proximal	
domain	 as	well	 as	 a	 distal	 domain,	 excitatory	 and	 inhibitory	 synaptic	
input	can	vary	independently	in	those	domains.	An	additional	variable:	
synaptic	synchrony	controls	 the	degree	of	coincident	synaptic	 inputs.	
(C)	 A	 given	 presynaptic	 stimulation	 (here	 𝜈$

% = 	 𝜈$' = 0.2𝐻𝑧 ,	 𝜈&
% =

	𝜈&
' = 1.2	𝐻𝑧	and	𝑠 = 0.05)	creates	membrane	potential	fluctuations	at	

the	soma	characterized	by	their	mean	𝜇3 ,	their	amplitude	𝜎3	and	their	
autocorrelation	time	𝜏3.	
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Following	 experimental	 evidences	 [14],	 we	 set	 a	 higher	
synaptic	 efficacy	 for	 distal	 synapses.	 The	 synaptic	
parameters	 take	 physiological	 values	 [16]	 and	 can	 be	
found	 on	 Table	 1.	 The	 passive	 and	 morphological	
parameters	will	be	estimated	from	in	vitro	measurements.	

MODEL	CALIBRATION	ON	IN	VITRO	MEASUREMENTS	

We	will	use	 the	 firing	 response	 function	of	our	previous	
study,	 we	 therefore	 wanted	 a	 characterization	 of	 the	
passive	 and	 morphological	 properties	 on	 the	 same	
experimental	 system:	 layer	 V	 pyramidal	 neurons	 in	 the	
primary	visual	cortex	of	young	mice.	To	this	purpose,	we	
performed	measurements	of	the	input	impedance	at	the	
soma	with	 intracellular	 recordings	 in	 vitro	 in	 n=13	 cells.	
The	key	property	on	which	 this	characterization	 relies	 is	
the	fact	that	the	input	impedance	at	the	soma	cannot	be	
accounted	 for	 only	 by	 the	 isopotential	 somatic	
compartment	(i.e.	a	RC	circuit).	The	input	impedance	also	
shows	the	contribution	of	the	dendritic	tree	in	parallel	to	
the	soma	[17].	Indeed,	both	the	modulus	and	the	phase	of	
the	input	impedance	show	deviations	from	the	RC	circuit	
impedance	 (see	 the	 comparison	 in	 Figure	 22B):	 see	 for	
example	 the	 exponent	 of	 the	 power	 law	 scaling	 of	 the	
modulus	(-1	exponent	for	the	single	compartment	and	∼-
0.7	 for	 pyramidal	 cells)	 or	 the	 decreased	 phase	 shift	
around	100Hz.	

We	first	average	all	data	(shown	on	Figure	2A)	to	obtain	a	
mean	 input	 impedance	 (shown	 on	 Figure	 2B)	
representative	 of	 a	 mean	 cellular	 behavior.	 We	 then	
performed	a	minimization	procedure	 to	obtain	both	 the	
passive	properties	and	the	morphology	corresponding	to	
this	 average	 behavior	 (see	 Methods).	 The	 obtained	
passive	properties	were	compatible	with	standard	values,	
e.g.	 the	 resulting	 specific	 capacitance	 was	 1.05	𝜇F/cm2,	
close	 to	 the	 commonly	 accepted	 1	𝜇 F/cm2	 value,	 thus	
suggesting	 that	 the	 procedure	 could	 capture	 the	
physiological	parameters	of	pyramidal	cells,	see	Table	1	for	
the	other	parameters.	Most	importantly,	the	surface	area	
was	physiologically	realistic,	so	that	when	using	synaptic	
densities,	we	obtain	an	accurate	number	of	synapses	(see	
below).	A	representation	of	this	mean	morphology	can	be	
seen	on	Figure	2D.	

Pyramidal	 cells	 show	 a	 great	 variability	 in	 input	
impedance,	 for	 example	 their	 input	 resistance	 almost	
spans	one	order	of	magnitude	(both	in	the	present	n=13	
cells,	see	the	low	frequency	modulus	values	in	Figure	2A,	
as	well	 as	 in	 the	 firing	 response	 dataset,	 see	 bottom	 in	
Figure	 2C).	 We	 found	 that	 varying	 the	 size	 of	 the	

Figure	2.	Calibrating	the	model	on	in	vitro	measurements:	the	simplified	
model	and	its	size	variations	provides	an	approximation	for	the	somatic	
input	 impedance	 of	 pyramidal	 cells	 and	 its	 heterogeneity	 over	 the	
recorded	 population.	 (A)	 Input	 impedance	 (left:	 modulus	 and	 right:	
phase	shift)	measured	at	the	soma	in	intracellular	recordings	with	sine-
wave	 protocols	 in	 current-clamp	 (inset).	 The	 color	 code	 indicates	 the	
input	resistance	and	is	likely	 to	result	 from	size	variations	of	individual	
cells.	(B)	A	medium	size	model	accounts	for	the	average	data	and	varying	
the	size	of	the	dendritic	tree	and	soma	(according	to	the	sizing	rule	shown	
in	C)	partially	reproduces	the	variability	in	the	individual	measurements.	
Large	cells	 (blue)	 have	a	 lower	modulus	and	a	 lower	phase	shift	while	
small	 cells	 (red)	 have	 both	 a	 higher	modulus	 and	 phase	 shift.	 (C)	We	
obtain	 a	map	 between	 input	 resistance	 and	 size	of	 the	morphological	
model.	(D)	Representation	of	the	medium-size	model.	(E)	Additionally	the	
synaptic	 weights	 are	 rescaled	 with	 respect	 to	 the	 cell's	 somatic	 input	
resistance.	Because	the	mean	transfer	resistance	to	soma	is	linked	to	the	
input	resistance,	this	rescaling	insures	that	the	mean	synaptic	efficacy	at	
soma	is	the	same	for	all	cells	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 4, 2016. ; https://doi.org/10.1101/091587doi: bioRxiv preprint 

https://doi.org/10.1101/091587


morphological	 model	 within	 a	 given	 range	 around	 the	
mean	morphological	model	could	partially	reproduce	the	
observed	variability	 in	the	 input	 impedance	profiles	(see	
Figure	 2B).	 Size	 variations	 corresponds	 to	 a	 linear	
comodulation	of	the	1)	tree	length	𝐿8,	2)	the	diameter	of	
the	 root	 branch	𝐷8 	and	 3)	 the	 length	 of	 the	 somatic	
compartment	𝐿: 	(see	 Figure	 	 2C	 for	 the	 range	 of	 their	
variations).	On	Figure		2A,	the	cells	have	been	colored	as	a	
function	of	their	 input	resistance	while	on	Figure	2B,	we	
vary	the	size	of	the	size	of	the	morphological	model.	Large	
cells	 (blue,	 low	 input	 resistance)	 tend	 to	 have	 a	 lower	
input	resistance	and	phase	shift	than	the	small	cells	(red,	
high	input	resistance).	Note	that	this	simplistic	account	of	
morphological	variations	only	very	partially	describes	the	
observed	 behavior	 in	 pyramidal	 cells.	 In	 particular,	 1)	 it	
strongly	underestimates	the	variations	of	phase	shifts	at	
medium	 and	 high	 frequencies	 (f>20Hz)	 and	 2)	 the	
relationship	between	size	and	impedance	modulus	at	high	
frequencies	 (f>100Hz)	 is	 poorly	 captured.	 Those	
discrepancies	are	likely	to	be	due	to	the	details	of	dendritic	
arborescence	 that	 are	 not	 captured	 by	 the	 strong	
constraints	of	our	dendritic	model	(symmetric	branching,	
diameter	rules,	number	of	branches,	etc...).	Despite	those	
discrepancies,	size	variations	in	our	morphological	model	
constitute	a	reasonable	first	approximation	to	account	for	
cellular	 variety	 within	 the	 layer	 V	 pyramidal	 cell	
population.	

This	 characterization,	 combined	 with	 the	 analytical	
tractability	 of	 the	 model	 (see	 Methods)	 allow	 us	 to	
construct	a	map	between	input	resistance	at	the	soma	and	
size	 of	 the	morphological	model	 (the	 passive	 properties	
are	set	as	identical,	the	one	fitted	on	the	mean	impedance	
behavior).	 Thus,	 for	 each	 neuron	 in	 our	 previous	 "firing	
response	dataset",	because	we	have	its	input	resistance	at	
the	 soma,	 we	 can	 associate	 a	 given	 morphology.	 The	
association	rule	is	shown	in	Figure	2C.	

We	now	check	what	is	the	number	of	synapses	obtained	
from	the	combination	of	our	fitted	morphologies	with	the	
physiological	 synaptic	 densities.	We	 found	 a	 number	 of	
synapses	 of	 3953	±	1748	 (mean	 and	 standard	deviation	
across	 the	 n=30	 cells)	 with	 a	 ratio	 of	 excitatory	 to	
inhibitory	numbers	of	synapses	of	4.5	±	0.1.	The	fact	that	
those	 numbers	 fall	 within	 the	 physiological	 range	
constitutes	a	validation	of	our	approach	(the	morphology	
estimate	 through	 input	 impedance	 profile	
characterization).	

AN	 ANALYTICAL	 APPROXIMATION	 FOR	 THE	 PROPERTIES	

OF	 THE	 MEMBRANE	 POTENTIAL	 FLUCTUATIONS	 AT	 THE	

SOMA	
For	each	cell,	we	now	want	to	translate	the	five	variables	
of	the	model	in	terms	of	membrane	potential	fluctuations	
properties	at	the	soma	(𝜇3, 𝜎3, 𝜏3)	on	which	we	will	apply	
the	cell's	firing	response	function.	This	constitutes	the	first	
step	to	obtain	the	final	input-output	function	of	individual	
cells	(see	Figure	1A).	

Investigating	 dendritic	 integration	 for	 detailed	
morphological	structures	is	made	difficult	by	the	fact	that	
this	 has	 to	 be	 done	 numerically	 with	 a	 relatively	 high	
spatial	 and	 temporal	 discretization.	 In	 the	 fluctuation-
driven	regime,	one	also	needs	to	sample	over	long	times	
(T	≫ 𝜏3 ∼ 20ms)	to	obtain	the	statistical	properties	of	the	
somatic	 𝑉? 	resulting	 from	 dendritic	 integration.	 	 In	
addition,	 we	 have	 n=30	 different	 morphologies	 in	 this	
study	 and	we	will	 explore	 a	 five	dimensional	 parameter	
space	 (the	 five	 variable	 of	 our	 model).	 Under	 those	
conditions,	 if	 performed	numerically,	 the	 computational	
cost	 of	 such	 a	 study	 is	 clearly	 prohibitive.	 We	 briefly	
describe	here,	why,	in	our	simplified	model,	an	analytical	
treatment	 is	 nonetheless	 possible	 and	 thus	 render	 this	
investigation	 feasible	 (see	details	 in	 the	Methods	and	 in	
the	 Supplementary	 Material).	 The	 key	 ingredient	 is	 the	
ability	 to	 reduce	 the	 dendritic	 tree	 to	 an	 equivalent	
cylinder	 [17],	 we	 only	 adapted	 this	 reduction	 to	 the	
changes	in	membrane	permeability	associated	to	the	high	
conductance	state	[18].	Two	approximations	underlie	our	
estimation:	 1)	 the	 driving	 force	 during	 an	 individual	
synaptic	event	is	fixed	to	the	level	resulting	from	the	mean	
bombardment	 [19]	 and	 2)	 the	 effect	 at	 the	 soma	 of	 an	
synaptic	event	at	a	distance	𝑥	in	a	branch	of	generation	𝑏,	
corresponds	 to	 the	 B

CDEF
	fraction	 of	 	 the	 post-synaptic	

response	to	the	stimulation	made	of	synchronous	events	
at	distance	𝑥	in	all	the	2GHB	branches	of	the	generation	𝑏.	
Luckily,	 the	 combination	 of	 those	 approximation	 is	 a	
favorable	 situation.	 Indeed,	hypothesis	1)	overestimates	
the	size	of	post-synaptic	events	(because	the	driving	force	
is	not	fixed,	it	diminishes	during	the	PSP	time	course)	while	
hypothesis	 2)	 underestimates	 the	 size	 of	 post-synaptic	
events	 (because	 of	 the	2GHB − 1 	synchronous	 events	 in	
neighboring	 branches,	 the	 membrane	 conductance	 is	
higher	 than	 in	 the	 case	 of	 a	 single	 event,	 consequently	
neighboring	events	have	a	shunting	effect	that	artificially	
decreases	 the	 response).	 In	 addition,	 both	 of	 those	
approximation	are	likely	to	hold	when	single	events	are	of	
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low	amplitude	compared	to	the	amplitude	of	the	massive	
synaptic	bombardment	 (see	e.g.	Kuhn	et	al.	 [19]	 for	 the	
validity	of	the	first	hypothesis).	

In	Figure	3,	we	compare	the	analytical	approximation	to	
the	output	of	numerical	simulations	performed	with	the	
NEURON	software	[20].	We	varied	the	five	variables	of	the	
model	 around	 a	 mean	 synaptic	 bombardment	
configuration	 (see	 next	 section).	 Some	 discrepancies	
between	 the	 approximation	 and	 the	 simulations	
appeared,	 in	particular	one	 can	 see	a	∼1mV	shift	 in	 the	
standard	 deviation	𝜎3 	of	 the	 fluctuation	 (meaning	 that	
single	 events	 are	 underestimated	 in	 the	 analytical	
treatment,	 so	 that	hypothesis	2	 is	 the	most	problematic	

one).	Because	the	synchrony	controls	the	amplitude	of	the	
fluctuations	 (Figure	 3B	 and	 next	 section),	 the	 analytical	
estimate	could	therefore	be	seen	as	an	accurate	estimate,	
modulo	a	shift	in	the	synchrony	(see	Figure	3B,	an	increase	
of	0.18	in	the	synchrony	corrects	for	the	∼1mV	shift	in	𝜎3).	
Importantly,	the	trend	in	the	variations	of	the	fluctuations	
as	 a	 function	 of	 the	 model	 variables	 is	 globally	 kept	
between	 the	 analytical	 estimate	 and	 the	 numerical	
simulations.	 This	 relatively	 good	 agreement	 therefore	
shows	that	our	analytical	estimate	is	a	valid	tool	to	study	
dendritic	integration	in	the	fluctuation-driven	regime.	

PROPERTIES	 OF	 THE	 FLUCTUATIONS	 FOR	 DIFFERENT	
TYPES	OF	PRESYNAPTIC	ACTIVITY	
We	now	implement	various	types	of	presynaptic	activity	
and	investigate	the	properties	of	the	resulting	membrane	
potential	 fluctuations	 at	 the	 soma.	 In	 addition,	 we	
represent	the	variations	of	the	somatic	input	conductance	
(relative	 to	 the	 leak	 input	conductance)	because,	as	 it	 is	
routinely	 measured	 in	 intracellular	 studies	 in	 vivo,	 this	
quantity	 allows	 a	 comparison	 between	 the	 model	 and	
experimentally	 observed	 activity	 levels.	On	 Figure	4,	we	
present	 those	 different	 protocols,	 on	 the	 left	 (panel	A),	
one	 can	 see	 how	 the	 five	 variables	 of	 the	 model	 are	
comodulated	for	each	protocol	(color	coded,	see	bottom	
legend)	 and	 on	 the	 right	 (panel	 B),	 one	 can	 see	 the	
resulting	 properties	 of	 the	 membrane	 potential	
fluctuations.	 We	 present	 those	 results	 only	 for	 the	
medium-size	 model,	 but	 it	 was	 calculated	 for	 the	
morphologies	 associated	 to	 all	 cells.	 The	 variability	
introduced	by	the	various	morphologies	is	shown	in	Figure	
S2	and	we	found	that	the	qualitative	behavior	discussed	
in	this	section	was	preserved	in	all	cells.	

We	 first	 introduced	 a	 baseline	 of	 presynaptic	 input	

corresponding	to	a	low	level	of	network	activity:	JKLK
MLNO

JP
∼

1.7 ,	 compared	 to	∼3-4	 in	 activated	 states,	 reviewed	 in	
[18].	This	baseline	activity	is	a	mix	of	proximal	and	distal	
activity	with	a	low	degree	of	synchrony	(𝑠=0.05).	Similarly	
to	 Kuhn	 et	 al.	 [19],	 the	 inhibitory	 activity	 is	 adjusted	 to	
obtain	 a	 balance	 of	 the	𝑉? 		 fluctuations	 at	 -55mV.	 The	
firing	 values	 of	 this	 baseline	 level	 are	 very	 low	 𝜈$' =
𝜈$
% =0.2Hz	for	the	excitation	and	𝜈&' = 	 𝜈&

% =	1.2Hz	for	the	
inhibition)	 in	 accordance	 with	 the	 sparse	 activity	
characterizing	 mammalian	 neocortical	 dynamics	 [3,10].	
On	 top	 of	 this	 non-specific	 background	 activity,	 we	will	
now	add	a	specific	stimulation.	

Figure	3.	Accuracy	of	 the	analytical	 estimate	 for	 the	properties	of	 the	
membrane	 potential	 fluctuations	 at	 the	 soma:	 comparison	 between	
numerical	simulations	and	the	analytical	approximation.	Shown	for	the	
medium	 size	 model	 of	 Figure	 2D.	 (A)	 In	 the	 numerical	 simulation,	 we	
explicitly	 simulate	 the	 whole	 dendritic	 arborescence,	 we	 show	 the	
membrane	potential	variations	for	the	three	locations	shown	on	the	left.	
(B)		Properties	of	the	membrane	potential	fluctuations	(mean	𝝁𝑽,	standard	
deviation	𝝈𝑽 	and	 autocorrelation	 time	𝝉𝑽 )	 for	 different	 configuration	 of	
presynaptic	 activity:	 analytical	 predictions	 and	 output	 from	 numerical	
simulations	 in	NEURON.	In	each	column,	one	variable	 is	varied	while	the	
other	variables	are	fixed	to	the	mean	configuration	value	corresponding	to	
𝝂𝒆
𝒑 = 𝝂𝒆𝒅 =0.2Hz,	 𝝂𝒊

𝒑 = 𝝂𝒊𝒅 =1.2Hz	 and	 s=0.05.	 In	 the	 𝝈𝑽 	plots	 (middle	
panels,	 dashed	 gray	 lines),	 we	 added	 the	 prediction	 of	 the	 analytical	
estimate	after	a	+0.18	correction	for	the	synchrony	(found	with	a	Newton	
method).	
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We	 start	 with	 unbalanced	 activity.	 We	 define	 it	 as	 a	
stimulation	 that	 brings	 the	 mean	 membrane	 potential	
above	 -55mV	 corresponding	 to	 the	 previously	 defined	
balance.	The	stimulation	corresponds	to	an	increase	of	the	
excitatory	 synaptic	 activity	 (still	 running	 within	 a	 very	
sparse	range	of	activity,	𝜈$' = 𝜈$

% ∈	[0.05,	0.5]Hz)	with	an	
increasing	 inhibitory	 activity	 adjusted	 to	 linearly	 disrupt	
the	balance	between	-55mV	and	-52mV	(see	Figure	4).	The	
synchrony	is	kept	constant	and	the	activity	indifferentially	
raises	in	the	proximal	and	distal	part.	This	increase	of	total	
activity	raises	the	input	conductance	ratio	close	to	four.	In	
this	moderate	 range,	 the	 variations	 of	 the	 amplitude	 of	
the	fluctuations	𝜎3	remains	a	monotonic	increase	(unlike	
the	 non-monotonic	 variations	 found	 in	 the	 single-
compartment	study	of	Kuhn	et	al.	[19]	and	the	case	of	a	
proximal	 stimulation,	 see	 below),	 the	 fluctuations	 gets	
approximately	 twice	 faster	 (the	 normalized	
autocorrelation	time	\]

\N^
	decays	from	100%	to	50%)	and,	of	

course	 (by	design),	 the	mean	depolarization	has	a	 linear	
increase	of	3mV.	

We	now	emulate	purely	proximal	activity.	To	this	purpose,	
we	fix	the	distal	presynaptic	firing	frequencies	(𝜈$'	and	𝜈&')	
as	well	as	the	synchrony	to	their	baseline	levels.	To	remain	
in	 a	 sparse	 activity	 level,	 we	 increase	 the	 proximal	
excitatory	activity	from	the	baseline	level	to	1.7Hz	and	we	
adjust	proximal	and	somatic	inhibitory	activity	to	keep	the	
balance	at	the	soma.		This	would	nonetheless	correspond	
to	 large	network	 activity	 level,	 as	 can	be	 seen	 from	 the	
input	conductance	ratio	(that	raises	up	to	8).	This	situation	
gives	results	comparable	to	the	single-compartment	study	
of		Kuhn	et	al.	[19].		The	amplitude	of	the	fluctuations	has	
a	 non-monotonic	 profile	 and	 the	 autocorrelation	 time	
strongly	decreases.	A	notable	difference	is	that,	even	if	we	
investigated	high	activity	levels,	the	autocorrelation	time	
does	not	go	to	zero	and	the	amplitude	of	the	fluctuations	
has	only	a	moderate	decrease.	This	discrepancy	is	due	to	
1)	 the	 choice	 of	 non-negligible	 synaptic	 time	 constants	
compared	 to	 the	 membrane	 time	 constants	 (here	
𝜏_`a =5ms	 and	𝜏?b ∼ 	25ms,	 then	𝜏3/𝜏?b 	would	 saturate	
at	𝜏_`a/𝜏?b 	=	20%	and	2)	the	fact	that	the	synaptic	input	is	
distributed	 attenuates	 the	 strong	 shunting	 effects	
observed	in	the	single	compartment	case.	

For	 distal	 activity,	 we	 keep	 the	 proximal	 presynaptic	
frequencies	(𝜈$

%	and	𝜈&
%)	as	well	as	the	synchrony	to	their	

baseline	 levels.	We	 increase	the	distal	excitatory	activity	
𝜈$'	from	the	baseline	level	to	a	moderate	level:	0.7Hz.	The	
distal	 inhibitory	 frequency	𝜈&' 	is	 again	 adjusted	 to	 keep	

the	balance	at	the	soma.	Here,	we	get	a	different	picture	
than	in	the	proximal	case,	the	increase	in	activity	leads	to	
negligible	 increase	 of	 the	 somatic	 input	 conductance	 as	
expected	from	electrotonically	distant	input	[21].	Also,	the	
decrease	 of	 the	 speed	 of	 the	 fluctuations	 is	 much	
attenuated.	The	reason	for	this	phenomenon	is	that	only	
the	distal	part	has	a	high	conductance,	consequently	post-
synaptic	 events	 are	 strongly	 low-pass	 filtered	 by	 the	
proximal	 part	 of	 the	 arborescence	 before	 reaching	 the	
soma.	 Here,	 the	 amplitude	 of	 the	 fluctuations	 strongly	
increases	as	a	function	of	the	input	and	do	not	show	the	
non-monotonic	relation	found	for	proximal	 input.	This	 is	
explained	 by	 the	 combination	 of	 the	 fact	 that	 1)	 distal	
events	 are	 of	 higher	 amplitude	 and	 2)	 the	 shunting	 of	
post-synaptic	events	is	much	reduced	due	to	the	relatively	
narrow	localization	of	the	synaptic	conductances.	

Finally,	 we	 emulate	 an	 increase	 in	 the	 presynaptic	
synchrony.	 Here,	 all	 synaptic	 frequencies	 are	 kept	
constant	with	respect	to	the	baseline	level	and	we	simply	
increase	 the	 probability	 of	 coincident	 events	 for	 each	
synaptic	spike	train.	Because	there	is	no	change	in	synaptic	
activity,	 this	 stimulation	 does	 not	 affect	 the	 input	
conductance	ratio,	neither	the	mean	membrane	potential	
or	 the	 speed	 of	 the	 fluctuations.	 However,	 presynaptic	
synchrony	 strongly	 affects	 the	 amplitude	 of	 the	
fluctuations	in	a	near	linear	manner.	

Note,	that	in	addition	to	the	sparse	activity	constraints	or	
the	balance	constraints,	the	criteria	for	the	ranges	of	the	
model	 variables	 was	 manually	 chosen	 to	 have	 the	
fluctuations	 in	 the	 same	 domain.	 For	 example,	 we	
investigated	 a	 lower	 activity	 range	 for	 the	 distal	 part	
(variations	of	𝜈'&_8)	than	for	the	proximal	part		(variations	
of	𝜈%def )	 to	 avoid	 an	 explosion	 of	𝜎3 ,	 the	 range	 for	 the	
synchrony	increase	followed	the	same	criteria.	

HETEROGENEOUS	 FIRING	 RESPONSES	 INDUCE	 DIVERSE	

COUPLING	TO	PRESYNAPTIC	ACTIVITY	
For	each	one	of	the	n=30	cells	of	our	previous	study	[6],	
we	 now	 have	 1)	 a	 morphological	 model	 and	 2)	 a	 firing	
response	 function	𝜈eg8 	= 	ℱ(𝜇3, 𝜎3, 𝜏3) .	 Thanks	 to	 the	
analytical	approximation,	we	can	translate	the	five	model	
variables	 (𝜈$

%, 𝜈&
%, 𝜈$', 𝜈&', 𝑠) 	into	 the	 stationary	

fluctuations	properties	(𝜇3, 𝜎3, 𝜏3)	that,	in	turn,	the	firing	
response	 translate	 into	 a	 spiking	 probability.	 Thus,	 we	
finally	 get	 the	 full	 input-output	 function	 (within	 our	
theoretical	framework)	as	illustrated	on	Figure	1A.	
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We	 show	 on	 Figure	 5	 the	 response	 of	 four	 cells	 to	 the	
different	 types	 of	 presynaptic	 activity	 described	 in	 the	
previous	 section	 (those	 four	 cells	 were	 chosen	 as	 they	
were	 representative	 of	 different	 firing	 response	
behaviors,	 see	Figure	5	and	6B	 in	 [6]).	 The	 input-output	
relationships	 show	 qualitative	 and	 quantitative	
differences,	we	briefly	discuss	them	here	and	we	perform	
a	more	 rigorous	 analysis	 on	 the	 full	 dataset	 in	 the	 next	
section.	

First,	we	can	see	that	individual	cells	have	a	very	different	
level	of	response	to	the	baseline	level	of	synaptic	activity	
(initial	 response	 in	 Figure	 5).	 Cell	 1	 has	 a	 baseline	 at	∼
10HC	Hz	while	Cell2	or	Cell3	have	response	above	1Hz,	i.e.	
two	orders	of	magnitude	above.	

Importantly,	 those	 cells	 have	 different	 preferences	 for	
particular	types	of	stimulations.	Cell	1	responds	more	to	
unbalanced	 activity	 whereas	 Cell	 2	 and	 Cell	 4	 respond	
more	 to	 an	 increase	 in	 synchrony	 and	 Cell	 3	 responds	
preferentially	to	proximal	activity	(within	this	range).	This	
is	 what	 we	 mean	 by	 preferential	 coupling:	 individual	
neurons	will	respond	preferentially	to	a	particular	type	of	
synaptic	activity.	An	even	more	pronounced	discrepancy	
appears	for	proximal	activity:	the	response	can	be	either	

Figure	 4.	 Properties	 of	 the	 membrane	 potential	 fluctuations	 for	
various	types	of	presynaptic	activity:	either	unbalanced	(red),	purely	
proximal	(blue),	purely	distal	(green),	synchronized	(cyan).	A	common	
baseline	configuration	of	balanced	proximal	and	distal	activity	at	low	
rate	gives	rise	to	baseline	fluctuations	properties,	on	top	of	this,	the	
increase	of	a	given	type	of	presynaptic	activity	corresponds	to	a	given	
comodulations	 of	 the	 5	 model	 variables.	 (A)	 Comodulations	 of	 the	
model	 variables	 to	 achieve	 varying	 levels	 of	 the	 different	 types	 of	
activity.	 (B)	 Membrane	 potential	 fluctuations	 properties	 (mean	𝜇3 ,	
standard	deviation	𝜎3	and	autocorrelation	time	𝜏3)	and	somatic	 input	
conductance	 at	 the	 soma	 for	 the	 different	 protocols.	 Shown	 for	 the	
medium-size	 model,	 see	 Supplementary	 Material	 for	 the	 variability	
introduced	by	variations	in	cell	morphologies. 

	

Figure	 5.	 Examples	 of	 the	 firing	 response	 of	 4	 different	 cells	 for	 the	
various	types	of	presynaptic	 activity	 (color-coded)	shown	 in	Figure	4.		
The	 abscissa	 “increasing	 synaptic	 quantity”	 corresponds	 to	 the	
comodulations	of	 the	model	variables	 shown	 in	Figure	4A	 (same	color	
code).	As	an	example,	the	response	to	a	“proximal	activity	increase”	(blue	
curve)	corresponds	to	a	linear	increase	of	𝜈$

%def 	and	𝜈&
%def 	while	keeping	

𝜈$'&_8 ,	 𝜈&
'&_8 	and	 𝑠 	to	 their	 baseline	 level.	 See	 	 Figure	 4A	 for	 the	

comodulations	of	the	other	types	of	increasing	activity.	
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increased	(Cell	1	and	Cell	3)	or	decreased	(Cell	2	and	Cell	
4)	with	respect	to	the	baseline	level.	

Given	the	relative	invariance	of	the	fluctuations	properties	
for	each	cell	(see	previous	section	and	Figure	S2,	despite	
the	 various	 morphologies,	 the	 same	 input	 creates	 the	
same	 fluctuations),	 those	 differences	 are	 the	
consequences	of	the	heterogeneity	in	the	firing	responses,	
we	conclude	 that	heterogeneous	 firing	 responses	 induce	
diverse	coupling	to	presynaptic	activity.	

BIOPHYSICAL	 ORIGIN	 OF	 THE	 HETEROGENEOUS	

COUPLINGS	TO	PRESYNAPTIC	ACTIVITIES	
We	 now	 make	 this	 analysis	 more	 quantitative	 by	
computing	the	responses	for	all	n=30	cells.	We	get	their	
response	 to	 the	 baseline	 level	 𝜈G_k 	and	 their	 mean	
response	change	for	each	stimulation	type	(the	mean	over	
the	 range	 of	 scanned	 presynaptic	 input):	𝛿𝜈gGk 	for	 the	
unbalanced	 activity,	 𝛿𝜈%def 	for	 the	 proximal	 activity,	
𝛿𝜈'&_8	for	the	distal	activity	and	𝛿𝜈_`amn	for	an	 increased	
synchrony.	We	show	the	histogram	of	those	values	in	the	
left	column	of	Figure	6.	We	also	look	for	the	origin	of	the	
individual	 couplings	 by	 correlating	 them	 with	 the	
characteristics	of	the	neuronal	firing	responses	[6].	

We	 first	 analyze	 the	 response	 to	 baseline	 activity	𝜈G_k .	
When	 log-scaled	 (Figure	 6A),	 the	 distribution	 is	
approximately	normal	and	spans	2-3	orders	of	magnitude.	
This	 log-normal	distribution	of	pyramidal	cell	 firing	rates	
during	 spontaneous	 activity	 seems	 to	 be	 a	 hallmark	 of	
mammalian	neocortical	dynamics	(see	e.g.	[10]	in	human	
neocortex).		We	investigated	what	properties	of	the	firing	
responses	 could	 explain	 this	 behavior,	 we	 therefore	
looked	for	correlations	between	our	measures	of	the	firing	
responses	 in	 the	 fluctuation-driven	 regime	 [6]	 and	 the	
baseline	 responses.	 Not	 surprisingly,	 we	 found	 a	 very	
strong	 linear	 correlation	 between	 the	 excitability	

	𝑉8nd$
$oo

p	 	and	 the	 baseline	 response	 level,	 the	 other	
characteristics	 do	 not	 have	 an	 impact	 (Pearson	
correlations,	see	values	in	Figure	6A).	Again,	it	should	be	
stressed	 that	 presynaptic	 connections	 are	 non-specific,	
those	results	 therefore	show	that	 the	typical	 log-normal	
distribution	of	firing	rates	could	very	naturally	emerge	as	
a	result	of	the	normal	distribution	observed	in	pyramidal	
cell's	 excitabilities	 [6],	 thus	 suggesting	 that	 no	 specific	
circuitry	 might	 be	 needed	 to	 explain	 this	 neocortical	
property.	

Despite	the	important	differences	in	the	fluctuations	they	
create	 (see	 Figure	 6B),	 the	 responses	 over	 cells	 to	
unbalanced	 activity,	 distal	 activity	 and	 an	 increased	
synchrony	 share	 a	 very	 similar	 behavior.	 First,	 those	
stimuli	produce	systematically	(over	all	cells)	an	increase	
in	 firing	 rate.	 The	 firing	 increase	 again	 show	 a	 strong	
heterogeneity	 over	 cells,	 covering	 two	 orders	 of	
magnitude	(see	log	y-axis	on	Figure	6B,D,E).	This	variability	
in	 responses	 was	 again	 highly	 correlated	 with	 the	
excitability.	Surprisingly,	the	response	was	not	dependent	
on	any	other	of	the	characteristics	of	the	firing	response.	
For	 example,	 because	 synchrony	 controls	 the	 standard	
deviation	𝜎3,	the	variability	observed	during	an	increase	in	
synchrony	could	have	been	linked	to	the	to	the	sensitivity	

to	the	standard	deviation	 qr
qs]

		 p,	but	this	effect	was	not	

significant	 (see	 Pearson	 correlation	 in	 Figure	 6E).	 For	
those	 three	 protocols,	 none	 of	 the	 sensitivities	 to	 the	
fluctuations	 properties	 had	 a	 strong	 impact	 on	 the	
individual	 cellular	 responses	 (c<0.4	 and	p>0.01,	 Pearson	
correlations,	 see	 Figure	 6).	 This	 analysis	 therefore	
revealed	that,	for	those	type	of	synaptic	activities,	those	
properties	 of	 the	 firing	 response	 have	 negligible	 impact	
compared	 to	 the	 very	 strong	 effect	 of	 the	 variability	 in	
excitabilities	(see	Discussion).	

The	 response	 to	 proximal	 activity	 also	 showed	 a	 great	
variability	 but	 with	 a	 qualitatively	 different	 behavior	
(Figure	 6C).	 Notably,	 firing	 could	 be	 suppressed	 or	
increased.	 This	 variability	 was	 independent	 of	 the	
excitability	 of	 the	 cells	 but	 was	 correlated	 with	 the	

sensitivity	to	the	speed	of	the	fluctuations	 qr
q\]

t	 p.	Indeed,	

the	proximal	stimulation	implies	a	strong	variations	of	the	
fluctuations	 speed	 (i.e.	 decreasing	 𝜏3 ,	 while	 keeping	
moderate	variations	of	𝜎3	and,	by	design,	a	constant	𝜇3)	
thus	rendering	the	sensitivity	to	the	fluctuation	speed	the	
critical	 quantity	 for	 this	 stimulation	 type.	 Those	 results	
therefore	show	that	the	response	to	proximal	activity	of	
an	individual	cell	is	controlled	by	its	level	of	sensitivity	to	
the	speed	of	the	fluctuations	(see	Discussion).	

DISCUSSION	
In	 the	 present	 work,	 we	 introduced	 an	 analytically	
tractable	 description	 of	 single	 cell	 computation	 in	 the	
fluctuation-driven	 regime	 for	 neurons	 with	 a	 dendritic	
structure.	We	used	it	to	investigate	how	the	heterogeneity	
found	 experimentally	 in	 firing	 responses	 to	 fluctuating	
input	 shape	 the	 diverse	 input-output	 functions	 of	
neocortical	pyramidal	cells.	Focusing	on	the	regime	of		
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Figure	6.	Diverse	cellular	responses	to	the	various	types	of	presynaptic	activity	and	their	link	to	the	characteristics	of	their	
firing	 response	 function.	 Note	 the	 logarithmic	 scale	 for	 the	 firing	 responses	 in	 B,C,D.	 (A)	 Diverse	 response	 to	 baseline	
stimulation.	 (B)	Diverse	 response	to	unbalanced	activity.	 (C)	Diverse	response	to	proximal	activity.	Note	that	because	the	
response	also	show	negative	changes	of	firing	rate,	the	data	cannot	be	log-scaled.	Instead,	they	have	been	rescaled	by	the	

baseline	response	(i.e.	we	show	
urvwLx
rDMy

).	(D)	Diverse	response	to	distal	activity.	(E)	Diverse	response	to	a	synchrony	increase.	
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near	 asynchronous	 population	 dynamics,	 we	 emulated	
various	types	of	presynaptic	activity	in	a	theoretical	model	
of	dendritic	 integration.	We	showed	that	those	different	
types	 of	 synaptic	 stimulation	 correspond	 to	 various	
comodulations	 of	 the	 fluctuations	 properties.	 This	
property	 is	 what	 motivated	 to	 fully	 scan	 the	 three	
dimensional	 space	(𝜇3, 𝜎3, 𝜏3) 	in	 our	 previous	 study	 [6]	
instead	of	the	response	to	a	given	presynaptic	input	type	
that	 corresponds	 to	 an	 arbitrary	 comodulation	 of	
(𝜇3, 𝜎3, 𝜏3).	Importantly,	we	found	that,	because	of	their	
different	 response	 to	 the	 same	 fluctuations,	 individual	
neurons	would	respond	differently	to	those	stimulations.	

Very	 naturally,	 a	 key	 quantity	 to	 explain	 the	 various	
neuronal	 responses	was	 the	 cellular	 excitability.	 Indeed,	
the	response	to	unbalanced	activity,	distal	activity	or	an	
increase	in	synchrony	was	strongly	correlated	with	cellular	
excitability.	 Also	 the	 sensitivity	 to	 the	 speed	 of	 the	
fluctuations	 had	 a	 crucial	 impact	 on	 the	 response	 to	
proximal	 activity.	 In	 our	 previous	 communication	 [6],	
theoretical	modeling	suggested	that	a	high	sensitivity	 to	
the	speed	of	the	fluctuations	was	enable	by	a	high	level	of	
sodium	 inactivation	 (as	 only	 fast	 fluctuations	 allow	 to	
deinactivate	 sodium	 channels)	 and	 a	 high	 density	 of	
sodium	 channels	 (as	 it	 corresponds	 to	 a	 sharp	 spike	
initiation	 mechanism	 that	 enables	 to	 extract	 fast	
fluctuating	 input,	reviewed	in	[22]).	The	present	analysis	
thus	 proposes	 an	 important	 functional	 role	 for	 those	
biophysical	 properties:	 controlling	 the	 coupling	 to	
proximally	targeting	activity.	

	The	present	analysis	also	sheds	light	on	the	physiological	
relevance	 of	 the	 properties	 that	 we	 introduced	 in	 our	
previous	 study.	 In	 all	 four	 measures	 characterizing	 the	
cellular	 firing	 rate	 response	 function	 in	 the	 fluctuation-
driven	regime	(shown	at	the	bottom	of	Figure	6),	only	two	
of	 them	 seem	 to	 be	 physiologically	 relevant:	 the	

excitability	 	𝑉8nd$
$oo

p	 	and	 the	 sensitivity	 to	 the	 speed	 of	

the	 fluctuations	 qr
q\]

t	 p .	 The	 reason	 for	 the	 lack	 of	

functional	 impact	 of	 the	 sensitivity	 to	 depolarizations	
qr
qz]

		 p 	and	 to	 the	 sensitivity	 to	 amplitude	 of	 the	

fluctuations	 qr
qs]

		 p 		 was	 that	 they	 were	 estimated	

independently	 of	 the	 excitability	 (after	 rescaling	 by	 the	
different	 excitability	 levels).	 While	 this	 separation	 was	
useful	to	isolate	and	evidence	the	contribution	of	different	
biophysical	 mechanisms	 to	 the	 firing	 rate	 response	
function	[6],	the	effect	of	a	change	in	depolarization	or	an	
increase	 in	 amplitude	 of	 the	 fluctuations	 on	 the	 firing	

response	 of	 a	 neuron	will	 actually	 be	mainly	 led	 by	 the	
excitability	level	whereas	those	more	subtle	variations	in	
the	 firing	 rate	 response	 function	were	 shown	 to	 have	 a	
negligible	impact.		

	

The	 proposed	 theoretical	 framework	 for	 single-cell	
computation	 nonetheless	 suffers	 from	 several	
weaknesses.	 First,	 even	 if	 our	 description	 captures	 the	
various	 electrotonic	 distances	 associated	 to	 various	
synaptic	 locations	 (the	 crucial	 ingredient	 here	 to	
discriminate	 between	 proximal	 and	 distal	 inputs),	 the	
morphological	model	appears	as	a	very	poor	description	
of	 layer	V	pyramidal	cell.	Deviations	from	the	symmetric	
branching	hypothesis	and	Rall's	branching	rule	will	have	a	
significant	 impact	 on	 dendritic	 integration	 in	 the	
fluctuation-driven	 regime.	 To	 investigate	 those	 effects	
within	 the	 framework	proposed	 in	our	 study,	 one	 could	
benefit	 from	 the	 large	 body	 of	 theoretical	 work	 on	 the	
derivation	 of	 Green’s	 function	 for	 arbitrary	 branched	
passive	 dendritic	 trees	 [23–26].	 Another	 important	
limitation	 of	 our	 description	 lies	 in	 the	 absence	 active	
mechanisms	 in	dendrites	 [27].	 It	 is	 therefore	a	question	
how	 much	 those	 mechanisms	 could	 affect	 the	 picture	
provided	 in	 our	 study.	 Preliminary	 numerical	 analysis	
performed	 in	 presence	 of	NMDA	 and	 Ca2+	 currents	 [28]	
(see	 Figure	 S4	 and	 Figure	 S5),	 showed	 that,	 provided	
excitation	 balances	 inhibition	 (a	 situation	 where	 NMDA	
channels	 keeps	 a	 relatively	 low	 level	 of	 stationary	
activation)	 and	 provided	 synchrony	 do	 not	 reach	 a	 too	
high	level	(for	s≥0.4	excitatory	events	almost	systematic	
lead	 to	 NMDA	 spikes),	 the	 qualitative	 behavior	 of	 the	
cellular	 input-output	 function	 remains	 unaffected.	 Our	
preliminary	 analysis	 thus	 suggest	 the	 hypothesis	 that	
active	dendritic	mechanisms	may	not	be	crucial		for	effects	
mediated	 by	 slow	 (T ≥ 20-50ms)	 variations	 of	 weakly	
synchronous	population	dynamics	while	being	critical	for	
operations	 performed	 on	 synchronous	 synaptic	
activations	(T≤5-10ms),	consistent	with	the	current	view	
on	dendritic	processing	[29].	Future	work	should	address	
this	hypothesis	in	details.	

Despite	 the	 current	 weaknesses	 of	 our	 description,	 we	
believe	 that	 having	 an	 analytical	 model	 for	 dendritic	
integration	in	the	fluctuation-driven	regime	is	a	useful	tool	
for	many	problems	in	theoretical	neuroscience.	The	main	
advantage	of	this	model	is	that	you	can	very	naturally	plug	
in	physiological	parameters	(because	surface	area	as	well	
as	 transfer	 resistance	 to	 soma	 can	 take	 physiological	
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values)	 and	 while	 still	 allowing	 an	 analytical	 treatment	
(though	see	deviations	of	the	approximations	in	Figure	3).	
In	the	theoretical	analysis	of	neural	network	dynamics,	the	
literature	is	almost	exclusively	based	on	the	reduction	to	
the	single-compartment	(reviewed	in	[30]).	Though	being	
approximate,	our	framework	thus	opens	the	path	toward	
a	 detailed	 mathematical	 analysis	 of	 recurrent	 network	
dynamics	 containing	 neurons	 with	 extended	 dendritic	
structures.	

	

Additionally,	it	must	be	stressed	that	formulating	the	cell	
response	 with	 the	 somatic	 fluctuations	 properties	
(𝜇3, 𝜎3, 𝜏3)	as	 an	 intermediate	 variable	 is	 very	powerful	
because	it	allows	one	to	apply	the	same	measurements	to	
various	models.		For	example,	with	a	single-compartment	
model	it	is	easy	to	translate	these	variables	into	excitatory	
and	 inhibitory	activities	 [19].	 	We	showed	here	 that	 it	 is	
also	 possible	 to	 obtain	 relations	 with	 synaptic	 inputs	
occurring	 in	 dendrites	 in	 a	 simplified	 morphological	
neuron	 model.	 	The	 latter	 model	 uses	 the	 same	
measurements,	so	no	experiments	need	to	be	redone.	We	
could	in	principle	also	apply	the	same	approach	to	more	
complex	 models	 and	 obtain	 more	 realistic	 transfer	
functions.	 This	 phenomenological	 two-step	 procedure	
thus	 offers	 a	 flexible	 complementary	 approach	 to	 the	
analytical	approaches	tackling	the	problem	of	the	spiking	
behavior	 in	presence	of	an	extended	dendritic	 structure	
[31–33].	

	

Finally,	 we	 speculate	 about	 a	 putative	 link	 between	 a	
recent	observation	and	 the	present	 findings.	The	 in	vivo	
study	 in	 mice	 visual	 cortex	 of	 Okun	 and	 colleagues	 [4]	
reported	a	strong	heterogeneity	in	the	coupling	between	
individual	 cell's	 responses	 and	 the	 locally	 recorded	
population	 activity.	 The	 authors	 explained	 those	
observations	 by	 a	 variability	 in	 the	 local	 recurrent	
connectivity	and	found	that	this	diverse	coupling	did	not	
seem	 to	be	explained	by	biophysical	 heterogeneity	 (e.g.	
the	coupling	was	 independent	 from	the	action	potential	
threshold,	 somehow	 a	 measure	 of	 the	 excitability).	
However,	as	 local	connectivity	 is	thought	to	target	more	
proximal	 regions	 such	 as	 the	 basal	 dendrites,	 our	 study	
proposes	 a	 biophysical	 mechanism	 that	 could	 also	
contribute	to	their	observation.	 	The	diverse	coupling	to	
proximal	activity	was	here	explained	by	the	sensitivity	to	
the	speed	of	the	fluctuations,	and	similarly	to	their	results,	
this	coupling	was	found	to	be	independent	on	the	cellular	

excitability	(see	Figure	6B	in	Zerlaut	et	al.	[6]).	Part	of	their	
results	could	 therefore	be	explained	by	 this	mechanism.	
Also,	 even	 if	 this	 electrophysiological	 heterogeneity	
disappears	 in	 mature	 phenotypes,	 the	 preferential	
coupling	present	in	young	animals	could	be	amplified	by	
long	 term	 plasticity	 to	 form	 this	 strongly	 coupled	 local	
network.	 Future	 work	 could	 therefore	 address	 this	
hypothesis	by	combining	recordings	of	population	activity	
with	a	 subtle	and	 functionally-relevant	analysis	of	 single	
cell	properties.	

METHODS		

ETHICS	STATEMENT	

Experiments	 were	 performed	 at	 Unité	 de	 Neurosciences,	
Information	et	Complexité,	Gif	sur	Yvette,	France.	Experimental	
procedures	 with	 animals	 were	 performed	 following	 the	
instructions	of	the	European	Council	Directive	2010	86/609/EEC	
and	its	French	transposition	(Décret	2013/118).	

MORPHOLOGICAL	MODEL	

The	 morphology	 of	 our	 theoretical	 model	 is	 the	 following	
(depicted	 in	 Figure	 1B):	 it	 is	 made	 of	 an	 isopotential	 somatic	
compartment	(i.e.	a	leaky	RC	circuit)	in	parallel	with	a	dendritic	
structure.	 The	 dendritic	 tree	 is	 an	 arborization	 of	 total	 length	
𝑙8	 containing	 𝐵 	generation	 of	 branches.	 For	 simplicity	 all	

branches	of	a	generation	𝑏 ∈ 	 [1, 𝐵]	have	a	 length	kK
�
.	From	one	

generation	 to	 the	 other,	 a	 branch	 divides	 into	 two	 branches	
where	the	diameter	of	the	daughter	branches	follows	Rall's	3/2	

branching	rule	[17]	 𝑑G�B
�
� 	= 'D

�
�

C
	,	i.e.	𝑑G = 	2

H�
�	𝑑8	where	𝑑8	

is	 the	 diameter	 of	 the	 root	 branch	 of	 the	 dendritic	 tree.	
Excitatory	and	inhibitory	input	are	then	spread	homogeneously	
over	the	soma	and	dendritic	 tree	according	to	the	densities	of	
synapses	𝒟&_e?�, 𝒟$_e?�, 𝒟$8d$$, 𝒟&8d$$ .	 The	 parameters	 of	 the	
model	are	presented	on	Table	1.		

MODEL	EQUATIONS:	SYNAPTIC	INPUT	AND	PASSIVE	PROPERTIES	

The	cable	equation	describes	the	temporal	evolution	and	spatial	
spread	 of	 the	membrane	 potential	 along	 the	 branches	 of	 the	
dendritic	tree	[17]:	

1
𝑟&
𝜕C𝑣
𝜕𝑥C

		= 	 𝑖? 𝑣, 𝑥, 𝑡

= 	 𝑐?
𝜕𝑣
𝜕𝑡
	+

𝑣 − 𝐸�
𝑟?

−	 𝑖_`a(𝑣, 𝑥, 𝑡)	

(1)	
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the	membrane	current	𝑖?(𝑣, 𝑥, 𝑡)	is	 a	 linear	density	of	 current	
(the	 presented	 cable	 equation	 already	 includes	 the	 radial	

symmetry,	 i.e	 	 𝑟? = B
�P�p

, 𝑟& =
�	��
�	p�		

, 𝑐? = 𝐶?𝜋	𝐷 ,	 where	

𝐺�, 𝑅&, 𝐶?	are	the	passive	membrane	parameters,	see	Table	1).	
Though	the	modeled	system	has	several	branches,	the	equation	
can	 be	 written	 as	 a	 single	 spatial	 dependency	𝑥 	because	 the	
symmetry	 of	 the	 model	 across	 branches	 imply	 that	 the	
properties	of	 the	 input	are	 identical	at	a	given	distance	 to	 the	
soma.	

Synaptic	input	is	modeled	by	local	(infinitely	small)	and	transient	
changes	of	membrane	permeability	to	selective	ionic	channels.	
Both	excitatory	(accounting	for	AMPA	synapses)	and	inhibitory	
synapses	(accounting	for	GABAa	synapses)	are	considered,	their	
reversal	 potential	 is	𝐸$=0mV	 and	𝐸&=-80mV	 respectively.	 Each	
synaptic	event	is	generated	by	a	point	process	and	its	effect	on	
the	conductance	is	an	increase	of	a	quantity	𝑄_∈ $,& 	followed	by	
an	exponential	decay	𝜏_∈ $,& .	The	form	of	the	synaptic	current	is	
therefore:	

	

	

𝑖_`a(𝑣, 𝑥, 𝑡) 	= 	𝑔$(𝑥, 𝑡)(𝐸$ − 𝑣) + 𝑔&(𝑥, 𝑡)(𝐸& − 𝑣)

𝑔$ 𝑥, 𝑡 = 𝛿 𝑥 − 𝑥$ 	 ℋ 𝑡 − 𝑡$ 	𝑄$ 𝑥 	𝑒H
8H8�
\�

	8�f�, 8�

𝑔& 𝑥, 𝑡 = 𝛿 𝑥 − 𝑥& 	 ℋ 𝑡 − 𝑡& 	𝑄& 𝑥 	𝑒H
8H8�
\�

	8�f�, 8�

			

	

(2)	

	

where	 𝑔$ 	and	 𝑔& 	are	 linear	 densities	 of	 conductances.	 Each	
synapse,	indexed	by	𝑠,	has	a	position	𝑥_		and	a	set	of	presynaptic	
events	{𝑡_},	hence	the	iteration	over	 𝑥_, 𝑡_ 	for	the	sum	over	
synapses	 for	 each	 synaptic	 type.	 ℋ 	is	 the	 Heaviside	 step	
function.	 The	 presynaptic	 events	{𝑡_} 	are	 generated	 by	 point	
processes	 at	 fixed	 frequencies	 {𝜈_} 	with	 a	 given	 degree	 of	
synchrony,	see	details	in	the	next	section.	

The	model	distinguishes	two	domains	:	a	proximal	domain	(𝑥 ∈
[0, 𝑙%])		with	the	upper	index	𝑝	and	a	distal	domain	(𝑥 ∈ [	𝑙%, 𝑙])	
with	the	upper	index	𝑑	(see	Figure	1),	where	𝑙%	is	the	length	of	
the	 somatic	 compartment	 and	 𝑙 	is	 the	 total	 length	 of	 the	
dendritic	 tree.	 The	 space-dependent	 quantities	 (presynaptic	
frequencies,	synaptic	quantal	and	synaptic	decay	time	constant)	
can	be	written	as:	

ν¢(x) 	= ν¢¤ 	+ 	(ν¢¥ 	− ν¢
¦)	ℋ(x − l¦)

ν¨(x) 	= ν¨¤ 	+ 	(ν¨¥ 	− ν¨
¦)	ℋ(x − l¦)

Q¢(x) 	= 	Q¢¤ 	+ 	(Q¢¥ 	− 	Q¢
¦)	ℋ(x − l¦)

Q¨(x) 	= 	Q&¤ 	+ 	(Q¨¥ 	− 	Q¨
¦)	ℋ(x − l¦)

	 (3)	

The	continuity	of	the	membrane	potential	and	of	the	current	at	
the	boundaries	between	the	proximal	and	distal	part	imply:	

v(l¦H, t) 	= 	v(l¦�, t)
1
r¨

∂v
∂x ®¯E

			= 	
1
r¨

∂v
∂x ®¯°

		 (4)	

where	the	limit	with	upper	index	±	indicate	the	limit	taken	from	
the	left	or	the	right	respectively.	

At	 the	 soma,	 𝑥 = 0 ,	 we	 have	 a	 lumped	 impedance	
compartment.	It	has	leaky	RC	circuit	properties	and	also	receives	
synaptic	 inhibition,	 the	somatic	membrane	potential	 therefore	
follows:	

C²
dV
dt
	+

V − E¶
R²

	+ 	G¹ t V − E¨ + 	I t = 0	

G¨(t) 	= Q¨
¦

»¼

	e
H »H»¼

¾¼
¯
		ℋ(t − t¨)

¿¼

		
	

where	𝐼(𝑡)	is	the	time-dependent	input	current	from	the	soma	
into	 the	 dendrite.	𝑅Á 	and	𝐶Á 	are	 the	 RC	 properties	 of	 the	
lumped	 compartment	 (capital	 letters	will	 indicate	 the	 somatic	
properties	throughout	the	calculus).	𝑁&	is	the	number	of	somatic	
synapses,	 each	 of	 them	 generates	 a	 point	 process	 {𝑡&} 	of	
inhibitory	 synaptic	 events.	 The	 properties	 of	 the	 somatic	
synapses	𝜈&:, 𝑄&:	are	equivalent	to	the	proximal	ones.	

This	 equation	 with	 the	 membrane	 potential	 continuity	 will	
determine	 the	 boundary	 condition	 at	 the	 soma	 (𝑥 = 0 ).	 We	
identify	𝑉(𝑡) = 𝑣(0, 𝑡),	 then	𝐼(𝑡)	is	 the	 current	 input	 into	 the	
dendritic	tree	at	𝑥 = 0	so	it	verifies:	

∂v
∂x ÃÄb

	= 	−	𝑟&	𝐼(𝑡)	

So:	

∂v
∂x ÃÄb

		= 	 r¨ C² 	
∂v
∂t ÃÄb

	+
v 0, t − E¶

RÅ

+ G¹(t)	(v 0, t − E¨)	 	
(5)	
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Finally,	the	last	boundary	condition	is	that	all	branches	terminate	
with	an	infinite	resistance	that	impede	current	flow	(sealed-end	
boundary	conditions):	

∂v
∂x ÃÄ®

		= 	0	 (6)	

Together	with	the	biased	Poisson	process	for	event	generation	
(see	the	next	section),	the	final	set	of	equations	that	describes	
the	model,	is	therefore	the	combination	of	Equations	1,	2,	3,	4,	
5,	6.	

MODEL	OF	PRESYNAPTIC	ACTIVITY	

Presynaptic	activity	is	modelled	as	a	discrete	set	of	presynaptic	
events.	Because	of	the	apparent	random	spiking	activity	 in	the	
fluctuation-driven	regime,	the	basis	for	the	generation	of	those	
discrete	events	is	the	Poisson	process.	Nonetheless,	we	want	to	
reproduce	the	additional	degree	of	presynaptic	synchrony	found	
in	neocortical	assemblies	that	result	mainly	for	two	phenomena:	
1)	 pairwise	 correlation	 between	 neurons	 and	 2)	 multi-
innervation	 of	 a	 cell	 by	 a	 presynaptic	 neuron.	 We	 therefore	
introduce	a	variable	𝑠	that	will	bias	the	event	generation	of	the	
Poisson	 process	 ( 𝑠 ∈ 	 [0,1] ).	 For	 simplicity	 in	 the	 analytical	
treatment,	synchrony	in	presynaptic	activity	is	not	shared	across	
different	synapses.	We	arbitrarily	limit	the	number	of	coincident	
events	 to	 four	 events,	 therefore	 for	 a	 degree	 of	 synchrony	𝑠:	
single	 events	 have	 a	 probability	1 − 𝑠 ,	 double	 events	 have	 a	
probability	𝑠 − 𝑠C,	 triple	events	have	a	probability	𝑠C − 𝑠Æ	and	
quadruple	 events	 have	 a	 probability	𝑠Æ .	 To	 generate	 a	 biased	
Poisson	process	of	frequency	𝜈	with	a	degree	of	synchrony	𝑠,	we	
therefore	generate	a	Poisson	process	of	frequency:	

νÇÈÉÊË =
ν

1 + s + sC + sÆ3
	 (7)	

and	we	duplicate	(from	up	to	four	events)	each	event	according	
to	their	probabilities	of	occurrence.	

This	 is	 a	 very	 simplistic	 and	 limited	 model	 of	 presynaptic	
synchrony	 but	 it	 is	 sufficient	 for	 reproducing	 the	 impact	 of	
synchrony	on	the	quantities	investigated	in	this	paper	(only	the	
variance	of	the	membrane	potential	fluctuations).	

NUMERICAL	IMPLEMENTATION	

The	 full	 model	 has	 been	 implemented	 numerically	 using	 the	
NEURON	software	[20].	The	branched	morphology	was	created	
and	passive	cable	properties	were	introduced	(see	Table	1).	The	
spatial	discretization	was	nseg=30	segments	per	branch.	On	each	

segment,	 one	 excitatory	 and	 one	 inhibitory	 synapse	 were	
created,	the	shotnoise	frequency	was	then	scaled	according	to	
the	 segment	 area	 and	 the	 synaptic	 density	 to	 account	 for	 the	
number	of	synapses	on	this	segment	(using	the	properties	of	the	
Poisson	 process,	 N	 synapses	 at	 frequency	 𝜈 	is	 a	 synapse	 at	
frequency	𝑁𝜈).	 Custom	event	 generation	was	 implemented	 to	
introduce	 correlations	 (instead	 of	 classical	 NetStim)	 and	 fed	
NetCon	 objects	 attached	 to	 each	 synapses	 (ExpSyn	 synapses).	
Each	simulation	had	a	time	step	dt=0.01ms	and	a	length	of	10s,	
the	simulation	was	repeated	over	4	seeds	to	yield	a	mean	and	a	
standard	deviation	 in	 the	estimate	of	 the	membrane	potential	
fluctuations	at	the	soma	(see	Figure	3B).	

ANALYTICAL	 DERIVATION	 OF	 THE	 FLUCTUATION	 PROPERTIES:	
STRATEGY	

We	 present	 here	 a	 derivation	 that	 provides	 an	 analytical	
approximation	 for	 the	 properties	 of	 the	 fluctuations	 of	 the	
membrane	potential	at	the	soma	for	our	model.	Summing	up	its	
properties,	 we	 get:	 1)	 a	 morphology	 with	 a	 lumped	 somatic	
compartment	 and	 a	 dendritic	 tree	 of	 symmetric	 branching	
following	 Rall's	 rule	 2)	 conductance-based	 synapses	 3)	
independent	excitatory	and	inhibitory	shotnoise	input	spread	all	
over	 the	 morphology	 4)	 asymmetric	 properties	 between	 a	
proximal	 part	 and	 a	 distal	 part	 and	 5)	 a	 certain	 degree	 of	
synchrony	in	the	pre-synaptic	spikes.	

The	 properties	 of	 the	membrane	 potential	 fluctuations	 at	 the	
soma	correspond	to	three	stationary	statistical	properties	of	the	
fluctuations:	 their	 mean	𝜇3 ,	 their	 standard	 deviation	𝜎3 	and	
their	 global	 autocorrelation	 time	 𝜏3 .	 Following	 [6],	 we	
emphasize	 that	 the	 global	 autocorrelation	 time	 is	 a	 partial	
description	 of	 the	 autocorrelation	 function	 (as	 the	
autocorrelation	function	is	not	exponential)	but	it	constitutes	the	
first	 order	 description	 of	 the	 temporal	 dynamics	 of	 the	
fluctuations.	

A	commonly	adopted	strategy	 in	 the	 fluctuation-driven	 regime	
to	obtain	statistical	properties	is	to	use	stochastic	calculus	after	
having	 performed	 the	 diffusion	 approximation,	 i.e.	
approximating	 the	 synaptic	 conductance	 time	 course	 by	 a	
stochastic	process	[34].	This	approach	is	nonetheless	not	easily	
generalizable	to	conductance	input	in	an	extended	structure	and	
render	 the	 inclusion	 of	 asymmetric	 properties	 (proximal	 vs	
distal)	 complicated.	We	 rather	propose	here	an	approach	 that	
combines	 simplifying	 assumptions	 and	 analytical	 results	 from	
point	process	theory,	it	extends	the	approach	proposed	in	Kuhn	
et	al.	[19]	to	dendritic	structures	following	Rall’s	branching	rule.	

For	 each	 set	 of	 synaptic	 stimulation	 {𝜈%$, 𝜈&
%, 𝜈$', 𝜈&', 𝑠} ,	 the	

derivation	corresponds	to	the	following	steps:	

I. 	We	 transform	 the	 dendritic	 structure	 to	 its	 equivalent	
cylinder.	 The	 reduction	 to	 the	 equivalent	 cylinder	 is	
"activity-dependent"	 and	 captures	 the	 changes	 in	
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membrane	 properties	 that	 results	 from	 the	 mean	
synaptic	conductance	levels.	

II. We	 derive	 a	 mean	 membrane	 potential	 𝜇3(𝑥)	
corresponding	 to	 the	 stationary	 response	 to	 constant	
densities	 of	 conductances	 given	 by	 the	 means	 of	 the	
synaptic	 stimulation.	 We	 use	 this	 space-dependent	
membrane	 potential	𝜇3(𝑥) 	to	 fix	 the	 driving	 force	 all	
along	 the	 membrane	 for	 all	 synapses.	 The	 relation	
between	 synaptic	 events	 and	 the	membrane	 potential	
now	becomes	linear.	

III. We	 derive	 a	 new	 cable	 equation	 that	 describes	 the	
variations	of	the		membrane	potential	around	this	𝜇3(𝑥)	
solution.		

IV. We	calculate	the	effect	of	one	synaptic	event	on	a	branch	
𝑏 ,	𝑏 ∈ 	 [1, 𝐵] 	at	 a	 distance	𝑥 .	 We	 calculate	 the	 post-
synaptic	 membrane	 potential	 event	𝑃𝑆𝑃G(𝑥, 𝑡) 	at	 the	
soma	 resulting	 from	 𝑏 		 synchronous	 synaptic	 events	
occurring	 at	 the	 distance	 𝑥 	from	 the	 soma.	 We	
approximate	the	effect	of	only	one	event	by	rescaling	the	

response	by	the	number	of	input	Ð:ÐD f,8
G

.	

V. 	We	 use	 shotnoise	 theory	 to	 compute	 the	 power	
spectrum	density	of	the	membrane	potential	fluctuations	
resulting	 from	 all	 excitatory	 and	 inhibitory	 synaptic	
events	(including	the	synchrony	between	events).	

The	 full	 derivation	 has	 been	 conducted	 with	 the	 help	 of	 the	
python	modulus	for	symbolic	computation:	sympy.	The	resulting	
expression	were	then	exported	to	numpy	functions	for	numerical	
evaluation.	Details	are	provided	in	Text S1 

	

FROM	FLUCTUATION	PROPERTIES	TO	SPIKING	PROBABILITY	

How	 layer	V	pyramidal	 neurons	 translate	membrane	potential	
fluctuations	 into	 a	 firing	 rate	 response	 was	 the	 focus	 of	 our	
previous	communication	[6].	We	re-use	here	the	same	dataset,	
i.e.	the	individual	characterizations	over	n=30	single	neurons	of	
the	firing	responses	𝜈eg8 = 	ℱ(𝜇3, 𝜎3, 𝜏3).	

Importantly,	our	study	introduced	four	quantities	to	describe	the	
mean	properties	of	a	single	neuron	response	in	the	fluctuation-
driven	regime:	(i)	a	measure	of	the	excitability	given	by	the	mean	

phenomenological	 threshold	 𝑉8nd$
$oo

𝒟 	of	 the	 firing	 response	

function,	(ii)	a	sensitivity	to	the	mean	of	the	fluctuations	 qrLÑK
qz] 𝒟,	

quantifying	how	much	a	mean	depolarization	is	translated	into	a	
change	 in	 firing	 rate,	 (iii)	 a	 sensitivity	 to	 the	 amplitude	 of	 the	

fluctuations		 qrLÑK
qs] 𝒟,	quantifying	how	much	an	increase	of	the	

standard	deviation	of	the	fluctuations	is	translated	into	a	change	
in	firing	rate,	and	(iv)	a	sensitivity	to	the	speed	of	the	fluctuations		

qrLÑK
q\]t

𝒟,	quantifying	how	much	a	change	in	the	autocorrelation	

time	of	the	fluctuations	is	translated	into	a	change	in	firing	rate.		

Note	that	in	the	main	text,	we	removed	the	n=3/30	cells	that	had	
too	 low	excitabilities,	 as	 it	 is	hard	 to	 conduct	an	analysis	on	6	
orders	 of	 magnitudes,	 	 𝜈 ∈ 	 [10HÒ, 10B] 	Hz	 (for	 data	
visualization).	This	reduction	limited	the	output	variations	to	𝜈 ∈
	[10HC, 10B]	Hz.	In	the	supplementary	figure	S3,	we	reintroduce	
the	 discarded	 cells	 and	 we	 show	 that	 they	 do	 not	 affect	 the	
results	presented	in	the	main	text.	

EXPERIMENTAL	 PREPARATION	 AND	 ELECTROPHYSIOLOGICAL	

RECORDINGS	

Experimental	methods	were	identical	to	those	presented	in	[6].	
Briefly,	 we	 performed	 intracellular	 recordings	 in	 the	 current-
clamp	mode	 using	 the	 perforated	 patch	 technique	 on	 layer	 V	
pyramidal	 neurons	 of	 coronal	 slices	 of	 juvenile	 mice	 primary	
visual	 cortex.	 For	 the	 n=13	 cells	 presented	 in	 this	 study,	 the	
access	 resistance	𝑅: 	was	 13.3M𝛺 ±5.4,	 the	 leak	 current	 at	 -
75mV	was	 -25.7pA±17.3,	 cells	 had	 an	 input	 resistance	𝑅? 	of	
387.3M𝛺 ±197.2	 and	 a	 membrane	 time	 constant	 at	 rest	 of	
32.4ms±23.1.	

INPUT	IMPEDANCE	CHARACTERIZATION	

	To	 determine	 the	 input	 impedance	 at	 the	 soma,	 we	 injected	
sinusoidal	currents	 in	the	current-clamp	mode	of	the	amplifier	
(Multiclamp	 700B,	 Molecular	 Devices),	 we	 recorded	 the	
membrane	 potential	 response	 to	 a	 current	 input	 of	 the	 form	
𝐼 𝑡 = 𝐼	𝑠𝑖𝑛(2𝜋𝑓𝑡) 	,	 we	 varied	 the	 frequencies	 𝑓 	and	
amplitudes	 𝐼 	over	 40	 episodes	 per	 cell.	 The	 frequency	 range	
scanned	 was	 [0.1,	 500]	 Hz.	 For	 each	 cell,	 we	 determined	
manually	the	current	amplitude	𝐼b	that	gave	a	∼5mV	amplitude	
in	 a	 current	 step	 protocol,	 from	 this	 value,	 the	 value	 of	𝐼 	was	
scaled	exponentially	between	𝐼b	at	0.1	Hz	and	50	𝐼bat	500Hz.	The	
reason	 for	 varying	 the	 current	 amplitude	 (and	 not	 only	 the	
oscillation	frequency)	 in	those	 input	 impedance	protocols	 is	 to	
anticipate	for	the	low	pass	filtering	of	the	membrane	and	insure	
that	the	membrane	potential	response	at	high	frequencies	is	far	
above	the	electronic	noise	level	∼	0.1	mV.	

After	 removing	 the	 first	 3	 periods	 of	 the	oscillations	 (to	 avoid	
transient	effects),	we	fitted	the	membrane	potential	response	to	
the	 form: 𝑉(𝑡) 	= 	𝐸� 	+ 	𝑅	𝐼	𝑠𝑖𝑛(2𝜋𝑓𝑡 − 𝜙) ,	 where	
𝐸�, 𝑅, 𝜙	were	fitted	with	a	least-square	minimization	procedure.	
The	 frequency	 dependent	 values	 of	𝑅 	and	𝜙	give	 the	modulus	
and	phase	shift	of	the	input	impedance	presented	in	Figure	2A.	

FITTING	PASSIVE	PROPERTIES	AND	A	MEAN	MORPHOLOGY	

Because	 the	variables	 combined	discrete	 (the	branch	number)	
and	continuous	variables,	 the	minimization	consisted	 in	 taking	
the	minimum	over	a	grid	of	parameters.	The	parameter	 space	
had	7	dimensions:	the	branch	number	(𝐵 ∈ 2,7 ),	the	somatic	
length	 ( 𝑙: ∈ 	 5, 20 𝜇m),	 the	 total	 length	 of	 the	 tree	 ( 𝑙8 ∈
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	 300, 800 𝜇 m),	 the	 diameter	 of	 the	 root	 branch	 ( 𝑑8 ∈
	 0.5, 4 𝜇 m),	 the	 leak	 specific	 resistance	 ( 𝑟? ∈
	100, 1000]𝜇 S/cm2),	 the	 intracellular	 resistivity	 ( 𝑟& ∈
	[10, 90]	𝛺 .cm),	 the	 specific	 capacitance	 ( 𝑐? ∈
[0.8, 1.8]	𝜇F/cm2).	 Each	dimension	was	discretized	 in	5	points,	
the	scan	of	the	7	dimensional	space	then	consisted	in	finding	the	
least	square	residual	of	the	product	of	the	modulus	and	phase	of	
the	impedance	over	this	5Ú	points.	The	resulting	parameters	are	
shown	on	Table	1.	
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SUPPORTING	INFORMATION	

TEXT	S1	

Supplementary	material	 contains	 the	detailed	mathematical	derivation	of	 the	membrane	potential	 fluctuations	at	 the	
soma	as	a	function	of	the	model	variables	(see	PDF	added	at	the	end	of	the	manuscript).		

FIGURE	S1	

	
Heterogeneity	 in	morphologies.	Graphical	 representation	of	 the	estimated	morphologies	of	 the	 largest	 (the	 lowest	 input	
resistance)	and	the	smallest	(the	highest	input	resistance)	cells	present	in	the	dataset.		

	

FIGURE	S2	

	

Variability	in	the	fluctuations	properties	introduced	by	different	morphologies.	(A)	Variability	in	the	model	variables	across	
protocols	 introduced	by	 the	 different	morphologies	 (sizes).	We	 show	only	 the	 quantities	 that	 vary	 across	 cells,	 all	 other	
variables	(𝜈$

%	, 𝜈$'	, 𝑠)	are	fixed	across	cells.	The	balance	𝜇3	is	adjusted	for	each	cells	and	the	cells	have	different	surfaces,	so	
different	number	of	synapses	(and	especially	different	ratio	of	excitatory	to	inhibitory	numbers)	hence	the	need	to	adjust	
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inhibitory	activity	slightly	differently	for	each	cell.	 (B)	Variability	 in	the	properties	of	the	membrane	potential	fluctuations	
(standard	deviation	𝜎3	and	autocorrelation	time	𝜏3)	across	protocols	introduced	by	the	different	morphologies	(sizes).	We	
show	only	the	quantities	that	vary	across	cells,	𝜇3	is	fixed	across	cells	by	design.	(C)	Dependency	of	the	fluctuations	properties	
as	a	function	of	the	morphology	parameters	(all	parameters	are	varied	of	-70%	and	+70%	around	those	of	the	mean	model,	
one	 parameter	 is	 varied	 while	 all	 others	 are	 fixed	 to	 those	 of	 the	mean	model,	 see	 Table	 1).	We	 fixed	 the	 presynaptic	
stimulation	 to	 a	 level	 of	𝜈$

% = 	 𝜈$' = 0.3𝐻𝑧, 𝜈&
% = 	 𝜈&' = 1.7	𝐻𝑧 and 𝑠 = 0.05 .	 Globally,	 the	 mean	 polarization	𝜇3 	is	

poorly	affected	by	the	morphology,	given	the	balanced	nature	of	the	input	and	the	homogenous	spread	of	synapses	on	the	
membrane.	On	the	other	hand,	the	morphology	parameters	strongly	affect	the	properties	of	the	amplitude	and	speed	of	the	
fluctuations.	(i)	Dependency	on	the	branching	number.	Because	the	branching	number	has	an	impact	on	the	area,	the	number	
of	synapses	increases	with	the	number	of	branches,	then	the	amplitude	𝜎3	of	the	fluctuations	strongly	decreases	with	the	
number	of	branches	because	of	the	law	of	large	numbers.	(ii)	Dependency	on	the	tree	length.	The	same	argument	as	in	(i)	
holds.	The	 length	of	 the	 tree	 increases	 the	number	of	 synapses	 so	 that	 it	 reduces	 the	amplitude	of	 the	 fluctuations.	 (iii)	
Dependency	on	the	tree	diameter.	The	same	argument	as	in	(i)	holds	again.	The	diameter	of	the	tree	increases	the	number	
of	synapses	so	that	it	reduces	the	amplitude	of	the	fluctuations.	(iv)	Dependency	on	the	size	of	the	soma.	Here,	this	increases	
only	 the	number	of	 inhibitory	synapses	at	 the	soma.	Within	 this	 range	this	has	very	weak	effects	on	the	 fluctuations.	 (v)	
Dependency	on	the	 leak	conductance.	The	 leak	conductance	sets	 the	amplitude	and	 low	pass	 filtering	of	 individual	post-
synaptic	events	(because	𝜏? ∼ 𝐶?/𝐺�,	see	correction	introduced	by	the	ongoing	activity	in	the	main	text).	An	increasing	leak	
conductance	 will	 “shunt”	 post-synaptic	 events.	 This	 lowers	 the	 amplitude	 of	 the	 fluctuations	 𝜎3 	and	 lowers	 the	
autocorrelation	 time	of	 the	 fluctuations	𝜏3 .	 (vi)	Dependency	on	 the	 specific	 capacitance.	Again	because	𝜏? ∼ 𝐶?/𝐺� ,	 an	
increasing	capacitance	renders	the	fluctuations	much	slower	(increasing	𝜏3).	Also	because	PSP	events	have	a	much	 lower	
frequency	content,	they	lead	to	a	reduced	amplitude	of	the	fluctuations	𝜎3.	(vii)	Dependency	on	the	intracellular	resistivity.	
This	has	a	moderate	effect	within	this	range.	

FIGURE	S3	

	

Re-including	all	cells	 in	the	study	of	the	correlation	between	the	firing	rate	responses	and	the	firing	response	function	
characteristics.	We	re-introduce	here	the	recorded	cells	of	very	low	excitability	that	produce	very	low	firing	rate	responses	
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(𝜈eg8 < 10HÆ)	and	partially	impede	data	visualization	(because	they	shift	extend	the	axis	limits	far	from	the	majority	of	the	
data).	Note	that	the	strong	correlations	discussed	in	the	result	are	not	affected.	

FIGURE	S4	

	

Including	dendritic	non-linearities	(numerically)	within	our	framework	for	single	cell	computation.	Active	mechanisms	are	
taken	from	Larkum	et	al.	[28].	On	top	of	each	panel,	we	present	the	recording	of	the	membrane	potential	in	the	far	distal	
dendrite	(depicted	with	the	upper	electrode	on	the	drawing)	in	the	Control	and	Control+NMDA	case.	On	the	bottom,	we	
present	the	membrane	potential	recorded	at	the	soma	(depicted	with	the	lower	electrode	on	the	drawing)	in	four	cases,	
the	 Control,	 the	 Control+NMDA	 case,	 the	 Control	 case	 with	 a	 HH	 model	 inserted	 in	 the	 soma	 and	 the	
Control+NMDA+Ca2+spikes+HH(soma).	 (A)	 Response	 to	 baseline	 activity.	𝜈$

% = 	 𝜈$' =	0.2Hz,	𝜈&
% = 	 𝜈&' =1.2Hz	 and	𝑠=0.05.	

(B)	Response	to	baseline	activity	with	the	synchronous	activation	of	20	synapses	every	500ms	(marked	by	a	triangle),	note	
the	impact	of	the	NMDA	mechanism	under	this	stimulation	type.	(C)	Response	to	an	increase	of	proximal	activity	with	respect	
to	the	baseline	level	(𝜈$

% =1.6Hz,	𝜈&
% =10Hz).	(D)	Response	to	an	increase	in	distally	targeting	presynaptic	activity	(𝜈$' =0.6Hz,	

𝜈&' =3Hz).	(E)	Response	to	an	increase	in	unbalanced	activity	(𝜈$
% = 0.4Hz,	𝜈&

% =2Hz,	𝜈$
% =0.5Hz,	𝜈&

% =1.7Hz).	(F)	Response	to	
an	increase	in	presynaptic	synchrony	(𝑠 =0.4).	
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FIGURE	S5	

	

Active	 dendritic	 mechanisms	 do	 not	 qualitatively	 affect	 the	 relationship	 between	 presynaptic	 activity	 and	 firing	 rate	
provided	that	excitation	does	not	unbalance	inhibition	(𝝁𝑽 ≲ −𝟓𝟎mV),	and	provided	that	synchrony	remains	in	a	relatively	
low	range	(𝒔 ≲ 𝟎. 𝟒).	Because	our	framework	for	single	cell	computation	consists	in	(i)	evaluating	analytically	the	somatic	
subthreshold	membrane	potential	fluctuations	at	the	soma	as	a	function	of	the	presynaptic	quantities	and	(ii)	convert	those	
fluctuations	into	a	spiking	probability	thanks	to	a	firing	response	function	determined	in	vitro	in	individual	neuron	thanks	to	
somatic	recordings,	it	needs	to	be	tested	against	two	phenomena:	(I)	whether	active	dendritic	mechanisms	qualitatively	affect	
the	relationship	between	presynaptic	quantities	and	somatic	membrane	potential	fluctuations,	i.e.	checking	the	validity	of	
step	(i),	and	(II)	whether	dendritic	non-linearities	introduce	a	coupling	between	presynaptic	activity	and	spike	emission	that	
renders	the	decomposition	into	the	successive	steps	i	&	ii	problematic.	Those	phenomena	will	naturally	appear	to	some	extent	
and	will	produce	quantitative	deviations	with	respect	to	our	predictions	(that	do	not	include	dendritic	non-linearities,	e.g.	
trivially,	all	cells	should	be	more	excitable).	As	our	results	do	not	rely	on	the	absolute	values	of	the	input-output	functions	but	
rather	on	the	relative	behaviors	from	cell	to	cell	(that	emerge	from	differences	across	individual	firing	response	functions),	
we	only	look	for	putative	"qualitative	deviations".	(A)	We	first	investigate	whether	active	dendritic	mechanisms	qualitatively	
affect	the	relationship	between	presynaptic	quantities	and	somatic	membrane	potential	fluctuations.	We	observe	that	NMDA	
channels	exert	an	additional	small	depolarization	(increased	𝜇3),	they	also	increase	the	standard	deviation	of	the	fluctuations	
because	they	increase	the	amplitude	of	depolarizing	events	(increased	𝜎3)	and	they	slow	down	the	fluctuations	because	they	
increase	the	low	frequency	content	of	post-	synaptic	depolarization	(increased	𝜏3).	We	also	observe,	that,	despite	this	small	
shift	in	all	quantities,	the	qualitative	trend	of	all	curves	remains	identical.	Only	for	high	excitation,	a	qualitative	difference	can	
be	 seen	 (see	bottom	 left	plot):	 increasing	excitation	makes	𝑉?	fluctuations	 faster	 in	 the	passive	case,	whereas	 increasing	
excitation	makes	fluctuations	slower	in	the	presence	of	NMDA	currents	(decreasing	vs	increasing	𝜏3	curve	respectively).	(B)	
We	then	investigate	whether	dendritic	non-linearities	introduce	a	coupling	between	presynaptic	activity	and	spike	emission	
that	would	complicate	our	picture.	This	was	tested	by	including	both	NMDA	and	Ca2+	currents.	We	first	included	numerically	
a	spike	emission	model	at	the	soma	(Hodgkin-Huxley	 like,	Na+	and	K+	currents)	 in	the	morphological	model,	to	allow	the	
model	to	produce	the	full	input-output	function	(from	presynaptic	quantities	to	spiking	probability).	Trivially,	we	observe	an	
increased	spiking	probability	because	cells	are	more	excitable	(NMDA	and	Ca2+	currents	are	depolarizing	currents).	Notably,	
when	excitation	does	not	balance	 inhibition	 (𝜈$

% =	0.4Hz	or	𝜈&
% =0Hz),	 the	spiking	probability	 is	greatly	enhanced	 (almost	

doubled).	For	the	other	variables,	those	effects	are	much	more	moderate.		
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FIGURES	

FIGURE	1	
Figure	1.	A	theoretical	framework	for	single	cell	computation	in	the	fluctuation-driven	regime.	(A)	Theoretical	paradigm:	to	
get	 the	 input-output	 function	of	 a	 single	 cell,	we	 split	 the	 relation	 from	presynaptic	quantities	 (the	 input)	 to	 the	 spiking	
probability	(the	output)	into	two	steps.	1)	passive	dendritic	integration	shapes	the	membrane	potential	at	the	soma	and	2)	
how	those	fluctuations	are	translated	into	spikes	is	captured	by	a	firing	response	function	determined	in	vitro.	(B)	Theoretical	
model	for	dendritic	integration.	A	single	cell	is	made	of	a	lumped	impedance	somatic	compartment	and	a	dendritic	tree.	The	
dendritic	tree	is	composed	of	B	branches	(here	B=5),	the	branching	is	symmetric	and	follow	Rall's	3/2	rule	for	the	branch	
diameters.	 Synapses	 are	 then	 spread	 all	 over	 the	membrane	 according	 to	 physiological	 synaptic	 densities.	We	 define	 3	
domains:	 a	 somatic	 and	 proximal	 domain	 as	 well	 as	 a	 distal	 domain,	 excitatory	 and	 inhibitory	 synaptic	 input	 can	 vary	
independently	in	those	domains.	An	additional	variable:	synaptic	synchrony	controls	the	degree	of	coincident	synaptic	inputs.	
(C)	A	given	presynaptic	stimulation	(here	𝜈$

% = 	 𝜈$' = 0.2𝐻𝑧,	𝜈&
% = 	 𝜈&' = 1.2	𝐻𝑧	and	𝑠 = 0.05)	creates	membrane	potential	

fluctuations	at	the	soma	characterized	by	their	mean	𝜇3,	their	amplitude	𝜎3	and	their	autocorrelation	time	𝜏3.	

	

FIGURE	2	
Figure	 2.	 Calibrating	 the	 model	 on	 in	 vitro	 measurements:	 the	 simplified	 model	 and	 its	 size	 variations	 provides	 an	
approximation	for	the	somatic	input	impedance	of	pyramidal	cells	and	its	heterogeneity	over	the	recorded	population.	(A)	
Input	 impedance	 (left:	modulus	 and	 right:	 phase	 shift)	measured	 at	 the	 soma	 in	 intracellular	 recordings	with	 sine-wave	
protocols	in	current-clamp	(inset).	The	color	code	indicates	the	input	resistance	and	is	likely	to	result	from	size	variations	of	
individual	cells.	(B)	A	medium	size	model	accounts	for	the	average	data	and	varying	the	size	of	the	dendritic	tree	and	soma	
(according	to	the	sizing	rule	shown	in	C)	partially	reproduces	the	variability	in	the	individual	measurements.	Large	cells	(blue)	
have	a	lower	modulus	and	a	lower	phase	shift	while	small	cells	(red)	have	both	a	higher	modulus	and	phase	shift.	(C)	We	
obtain	a	map	between	input	resistance	and	size	of	the	morphological	model.	(D)	Representation	of	the	medium-size	model.	
(E)	Additionally	 the	 synaptic	weights	 are	 rescaled	with	 respect	 to	 the	 cell's	 somatic	 input	 resistance.	 Because	 the	mean	
transfer	resistance	to	soma	is	linked	to	the	input	resistance,	this	rescaling	insures	that	the	mean	synaptic	efficacy	at	soma	is	
the	same	for	all	cells.	

FIGURE	3	
Figure	 3.	 Accuracy	 of	 the	 analytical	 estimate	 for	 the	 properties	 of	 the	membrane	 potential	 fluctuations	 at	 the	 soma:	
comparison	between	numerical	simulations	and	the	analytical	approximation.	Shown	for	the	medium	size	model	of	Figure	
2D.	 (A)	 In	 the	 numerical	 simulation,	 we	 explicitly	 simulate	 the	 whole	 dendritic	 arborescence,	 we	 show	 the	 membrane	
potential	variations	for	the	three	locations	shown	on	the	left.	(B)		Properties	of	the	membrane	potential	fluctuations	(mean	
𝜇3 ,	 standard	 deviation	𝜎3 	and	 autocorrelation	 time	 𝜏3 )	 for	 different	 configuration	 of	 presynaptic	 activity:	 analytical	
predictions	 and	 output	 from	 numerical	 simulations	 in	NEURON.	 In	 each	 column,	 one	 variable	 is	 varied	 while	 the	 other	
variables	are	fixed	to	the	mean	configuration	value	corresponding	to	𝜈$

% = 𝜈$'=0.2Hz,	𝜈&
% = 𝜈&'=1.2Hz	and	s=0.05.	In	the	𝜎3	

plots	(middle	panels,	dashed	gray	lines),	we	added	the	prediction	of	the	analytical	estimate	after	a	+0.18	correction	for	the	
synchrony	(found	with	a	Newton	method).	

FIGURE	4	
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Figure	4.	Properties	of	the	membrane	potential	fluctuations	for	various	types	of	presynaptic	activity:	either	unbalanced	
(red),	purely	proximal	 (blue),	purely	distal	 (green),	 synchronized	 (cyan).	A	 common	baseline	 configuration	of	balanced	
proximal	and	distal	activity	at	low	rate	gives	rise	to	baseline	fluctuations	properties,	on	top	of	this,	the	increase	of	a	given	
type	of	presynaptic	activity	corresponds	to	a	given	comodulations	of	the	5	model	variables.	(A)	Comodulations	of	the	model	
variables	to	achieve	varying	levels	of	the	different	types	of	activity.	(B)	Membrane	potential	fluctuations	properties	(mean	
𝜇3 ,	 standard	 deviation	𝜎3 	and	 autocorrelation	 time	𝜏3 )	 and	 somatic	 input	 conductance	 at	 the	 soma	 for	 the	 different	
protocols.	Shown	for	the	medium-size	model,	see	Supplementary	Material	for	the	variability	introduced	by	variations	in	cell	
morphologies.	

FIGURE	5	
Figure	5.	Examples	of	 the	 firing	 response	of	4	different	cells	 for	 the	various	 types	of	presynaptic	activity	 (color-coded)	
shown	in	Figure	4.	 	The	abscissa	“increasing	synaptic	quantity”	corresponds	to	the	comodulations	of	the	model	variables	
shown	in	Figure	4A	(same	color	code).	As	an	example,	the	response	to	a	“proximal	activity	increase”	(blue	curve)	corresponds	
to	 a	 linear	 increase	 of	𝜈$

%def 	and	𝜈&
%def 	while	 keeping	𝜈$'&_8 ,	𝜈&'&_8 	and	𝑠 	to	 their	 baseline	 level.	 See	 	 Figure	 4A	 for	 the	

comodulations	of	the	other	types	of	increasing	activity.	

FIGURE	6	
Figure	6.	Diverse	cellular	responses	to	the	various	types	of	presynaptic	activity	and	their	link	to	the	characteristics	of	their	
firing	 response	 function.	Note	 the	 logarithmic	 scale	 for	 the	 firing	 responses	 in	 B,C,D.	 (A)	Diverse	 response	 to	 baseline	
stimulation.	 (B)	Diverse	response	to	unbalanced	activity.	 (C)	Diverse	response	to	proximal	activity.	Note	that	because	the	
response	also	show	negative	changes	of	firing	rate,	the	data	cannot	be	log-scaled.	Instead,	they	have	been	rescaled	by	the	

baseline	response	(i.e.	we	show	
urvwLx
rDMy

).	(D)	Diverse	response	to	distal	activity.	(E)	Diverse	response	to	a	synchrony	increase.	
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TABLES	

TABLE	1	
	

	

	

Parameters	 Name	 Symbol	 Value	 Unit	

Passive	 	 	 	 	

	 Leak	conductance	density	 𝐺� 	 325	 𝜇S/cm2	

	 Intracellular	resistivity	 𝑅& 	 30	 𝛺.cm	

	 Specific	capacitance	 𝐶? 	 1.05	 𝜇F/cm2	

	 Leak	reversal	potential	 𝐸� 	 -65	 mV	

Synaptic	 	 	 	 	

	 Inhibitory	reversal	potential	 𝐸& 	 -80	 mV	

	 Excitatory	reversal	potential	 𝐸$ 	 0	 mV	

	 Somatic	inhibitory	density	 𝒟&
_e?� 	 20	 Synapses/(100𝜇m2)	

	 Somatic	excitatory	density	 𝒟$
_e?� 	 0	 Synapses/(100𝜇m2)	

	 Dendritic	inhibitory	density	 𝒟&
8d$$ 	 6	 Synapses/(100𝜇m2)	

	 Dendritic		excitatory	density	 𝒟$
8d$$ 	 30	 Synapses/(100𝜇m2)	

	 Proximal	inhibitory	weight	 𝑄&
b,% 	 1.0	 nS	

	 Proximal	excitatory	weight	 𝑄$
b,% 	 0.7	 nS	

	 Distal	inhibitory	weight	 𝑄&
b,' 	 1.5	 nS	

	 Distal	excitatory	weight	 𝑄$
b,' 	 1.05	 nS	

	 Inhibitory	decay	time	 𝜏& 	 5	 ms	

	 Excitatory	decay	time	 𝜏$ 	 5	 ms	

Mean	Morphology	 	 	 	 	

	 Soma	length	 𝑙: 	 5.0	 𝜇m	

	 Soma	diameter	 𝑑: 	 15.0	 𝜇m	

	 Root	branch	diameter	 𝑑8 	 2.25	 𝜇m	

	 Tree	length	 𝑙8 	 550.0	 𝜇m	

	 Branch	number	 B	 5	 	

	 Proximal	tree	fraction	 𝑓%def 	 7/8	 	

TABLE	1.	MODEL	PARAMETERS	
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1 Reduction to the equivalent cylinder
The key of the derivation relies on having the possibility to reduce the complex
morphology to an equivalent cylinder (Rall, 1962). We adapted this procedure
to capture the change in integrative properties of the membrane that results
from the mean synaptic bombardment during active cortical states, reviewed in
Destexhe et al. (2003).

For a set of synaptic stimulation {νep, ν
p
i , ν

d
e , ν

d
i , s}, let’s introduce the fol-

lowing stationary densities of conductances:{
gpe0 = π dDe νpe τpe Qpe ; gpi0 = π dDi νpi τ

p
i Q

p
i

gde0 = π dDe νde τde Qde ; gdi0 = π dDi νdi τdi Qdi
(1)

where De and Di are the excitatory and inhibitory synaptic densities.
We introduce two activity-dependent electrotonic constants relative to the

proximal and distal part respectively:

λp =

√
rm

ri(1 + rmg
p
e0 + rmg

p
i0)

λd =

√
rm

ri(1 + rmgde0 + rmgdi0)
(2)

For a dendritic tree of total length l, whose proximal part ends at lp and
with B evenly spaced generations of branches, we define the space-dependent
electrotonic constant:

λ(x) =
(
λp +H(x− lp)(λd − λp)

)
2−

1
3 b

B x
l c (3)

where b.c is the floor function. Note that λ(x) is constant on a given gener-
ation, but it decreases from generation to generation because of the decreasing
diameter along the dendritic tree. It also depends on the synaptic activity and
therefore has a discontinuity at x = lp.

Following Rall (1962), we now define a dimensionless length X:

X(x) =

∫ x

0

dx

λ(x)
(4)

We define L = X(l) and Lp = X(lp), the total length and proximal part
length respectively (capital letters design rescaled quantities).

2 Mean membrane potential
We derive the mean membrane potential µV (x) corresponding to the station-
ary response to constant densities of conductances given by the means of the
synaptic stimulation. We obtain the stationary equations by removing tempo-
ral derivatives in Equation, the set of equation governing this mean membrane
potential in all branches is therefore:

2
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

1

ri

∂2µv
∂x2

=
µv(x)− EL

rm
− gpe0 (µv(x)− Ee)− g

p
0i (µv(x)− Ei) ∀x ∈ [0, lp]

1

ri

∂2µv
∂x2

=
µv(x)− EL

rm

− gde0 (µv(x)− Ee)− gd0i (µv(x)− Ei) ∀x ∈ [lp, l]

∂µv
∂x |x=0

= ri
(µv(0)− EL

Rm
+GSi0 (µv(0)− Ei)

)
µv(l

−
p , t) = µv(l

+
p , t)

∂µv
∂x l−p

=
∂µv
∂x l+p

∂µv
∂x x=l

= 0

(5)

Because the reduction to the equivalent cylinder conserves the membrane
area and the previous equation only depends on density of currents, the equation
governing µv(x) in all branches can be transformed into an equation on an
equivalent cylinder of length L. We rescale x by λ(x) (see Equation 4) and we
obtain the equation verified by µV (X):

∂2µv
∂X2

= µv(X)− vp0 ∀X ∈ [0, Lp]

∂2µv
∂X2

= µv(X)− vd0 ∀X ∈ [Lp, L]

∂µv
∂X
|X=0 = γp

(
µv(0)− V0

)
µv(L

−
p ) = µv(L

+
p )

∂µv
∂X L−

p

=
λp

λd
∂µv
∂X L+

p

∂µv
∂X X=L

= 0

(6)

where:

vp0 =
EL + rmg

p
e0Ee + rmg

p
i0Ei

1 + rmg
p
e0 + rmg

p
i0

vd0 =
EL + rmg

d
e0Ee + rmg

d
i0Ei

1 + rmgde0 + rmgdi0

γp =
riλ

p (1 +G0
iRm)

Rm

V0 =
EL +G0

iRmEi
1 + +G0

iRm

(7)
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We write the solution on the form:

{
µv(X) = vp0 +A cosh(X) + C sinh(X) ∀X ∈ [0, Lp]

µv(X) = vd0 +B cosh(X − L) +D sinh(X − L) ∀X ∈ [LpL]
(8)

• Sealed-end boundary condition at cable end implies D = 0

• Somatic boudary condition imply: C = γp (vp0 − V0 +A)

• Then v continuity imply : vp0 +A cosh(Lp) + γp (vp0 − V0 +A) sinh(Lp) =
vd0 +B cosh(Lp − L)

• Then current conservation imply: A sinh(Lp)+γ
p (vp0−V0+A) cosh(Lp) =

λp

λd B sinh(Lp − L)

We rewrite those condition on a matrix form:

(cosh(Lp) + γp sinh(Lp) − cosh(Lp − L)
sinh(Lp) + γp cosh(Lp) −λ

p

λd sinh(Lp − L)

)
·
(A
B

)
=
(
vd0 − v

p
0 − γp (v

p
0 − V0) sinh(Lp)

−γp (vp0 − V0) cosh(Lp)
)

(9)
And we solved this equation with the solve_linear_system_LU method of

sympy
The coefficients A and B are given by:

A =
α

β
B =

γ

δ
(10)

where:

α = V0γ
PλD cosh (Lp) cosh (L− Lp) + V0γ

PλP sinh (Lp) sinh (L− Lp)
− γPλDvd0 cosh (Lp) cosh (L− Lp)− γPλP vd0 sinh (Lp) sinh (L− Lp)
− λP vd0 sinh (L− Lp) + λP vp0 sinh (L− Lp)

β = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)+
λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

γ = λD
(
V0γ

P + γP vd0 cosh (Lp)− γP vd0
− γP vp0 cosh (Lp) + vd0 sinh (Lp)− v

p
0 sinh (Lp)

)
δ = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)

+ λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

(11)

3 Membrane potential response to a synaptic event
We now look for the response to nsrc = bB xsrc

l c synaptic events at position
xsrc on all branches of the generation of xsrc, those events have a conductance
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g(t)/nsrc and reversal potential Erev. We make the hypothesis that the initial
condition correspond to the stationary mean membrane potential µV (x). This
potential will also be used to fix the driving force at the synapse to µv(xsrc)−
Erev, this linearizes the equation and will allow an analytical treatment. To
derive the equation for the response around the mean µv(x), we rewrite Equation
9 in main text with v(x, t) = δv(x, t)+µv(x), we obtain the equation for δv(x, t):

1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

p
e0 + rm g

p
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [0, lp]

1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

d
e0 + rm g

d
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [lp, l]

1

ri

∂δv

∂x |x=0
= CM

∂δv

∂t |x=0
+
δv(0, t)

Rm
(1 +RmG

S
i0)

δv(l−p , t) = δv(l+p , t)

∂δv

∂x l−p
=
∂δv

∂x l+p

∂δv

∂x x=l
= 0

(12)

Because this synaptic event is concomitant in all branches at distance xsrc,
we can use again the reduction to the equivalent cylinder (note that the event
has now a weight multiplied by nsrc so that its conductance becomes g(t)), we
obtain: 

∂2δv

∂X2
=
(
τpm + (τdm − τpm)H(X − Lp)

)∂δv
∂t

+ δv

−
(
µv(Xsrc)− Erev

)
δ(X −Xsrc)×

g(t)

cm

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
)

∂δv

∂X |X=0
= γp

(
τSm

∂δv

∂t |X=0
+ δv(0, t)

)
δv(L−p , t) = δv(L+

p , t)

∂δv

∂X L−
p

=
λp

λd
∂δv

∂X L+
p

∂δv

∂X X=L
= 0

(13)

where we have introduced the following time constants:
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τDm =
rm cm

1 + rm gde0 + rm gdi0

τPm =
rm cm

1 + rm g
p
e0 + rm g

p
i0

τSm =
Rm Cm

1 +RmGSi0

(14)

We now use distribution theory (see Appel (2008) for a comprehensive text-
book) to translate the synaptic input into boundary conditions at Xsrc, phys-
ically this corresponds to: 1) the continuity of the membrane potential and 2)
the discontinuity of the current resulting from the synaptic input.

δv(X−src, f) = δv(X+
src, f)

∂δv

∂X X+
src

− ∂δv

∂X X−
src

= −
(
µv(Xsrc)− Erev

)
×

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
) g(t)
cm

(15)

We will solve Equation 13 by using Fourier analysis. We take the following
convention for the Fourier transform:

F̂ (f) =

∫
R
F (t) e−2iπft dt (16)

We Fourier transform the set of Equations 13, we obtain:

∂2δ̂v

∂X2
=
(
αpf + (αdf − α

p
f )H(X − Lp)

)2
δ̂v

∂δ̂v

∂X |X=0
= γpf δ̂v(0, f)

δ̂v(X−src, f) = δ̂v(X+
src, f)

∂δ̂v

∂X X−
src

=
∂δ̂v

∂X X+
src

−
(
µv(Xsrc)− Erev

)
×(

rpf + (rdf − r
p
f )H(Xsrc − Lp)

) ˆg(f)

δ̂v(L−p , f) = δ̂v(L+
p , f)

∂δ̂v

∂X L−
p

=
λp

λd
∂δ̂v

∂X L+
p

∂δ̂v

∂X X=L
= 0

(17)
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where

αpf =
√
1 + 2iπfτpm rpf =

τpm
cm λp

αdf =
√
1 + 2iπfτdm rdf =

τdm
cm λd

γpf = γp (1 + 2iπfτSm)

(18)

To obtain the solution, we need to split the solution into two cases:

1. Xsrc ≤ Lp
Let’s write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L):

δ̂v(X,Xsrc, f) =

Af (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)
if :0 ≤ X ≤ Xsrc ≤ Lp ≤ L

Bf (Xsrc) cosh(α
p
f (X − Lp)) + Cf (Xsrc) sinh(α

p
f (X − Lp))

if :0 ≤ Xsrc ≤ X ≤ Lp ≤ L
Df (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Xsrc ≤ Lp ≤ X ≤ L

(19)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

M =


cosh(αpf Xsrc) + γpf sinh(αpf Xsrc) − cosh(αpf (Xsrc − Lp)) − sinh(αpf (Xsrc − Lp)) 0

αpf
(
sinh(αpf Xsrc) + γpf cosh(αpf Xsrc)

)
−αpf sinh(α

p
f (Xsrc − Lp)) −αpf cosh(α

p
f (Xsrc − Lp)) 0

0 1 0 − cosh(αdf (Lp − L))

0 0 αpf −αdf
λp

λd sinh(αdf (Lp − L))


(20)

M ·


Af
Bf
Cf
Df

 =


0

−rpfIf
0
0

 (21)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Af (Xsrc) coefficient, we obtain:

Af (Xsrc) =
a1f (Xsrc)

a2f (Xsrc)
(22)

with:
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a1f (Xsrc) = Ifr
P
f

(
−αDf λP cosh

(
LαDf − LpαDf − LpαPf +Xsα

P
f

)
+ αDf λ

P cosh
(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)
+ αPf λ

D cosh
(
LαDf − LpαDf − LpαPf +Xsα

P
f

)
+ αPf λ

D cosh
(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)
a2f (Xsrc) = αPf

(
−αDf γPf λP cosh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf γ

P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)
−

αDf λ
P sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf λ

P sinh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf λ

D sinh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf λ

D sinh
(
LαDf − LpαDf + Lpα

P
f

)

(23)

2. Lp ≤ Xsrc

Let’s write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L:

δ̂v(X,Xsrc, f) =

Ef (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)
if :0 ≤ X ≤ Lp ≤ Xsrc ≤ L

Ff (Xsrc) cosh(α
d
f (X − Lp)) +Gf (Xsrc) sinh(α

d
f (X − Lp))

if :0 ≤ Lp ≤ X ≤ Xsrc ≤ L
Hf (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Lp ≤ Xsrc ≤ X ≤ L

(24)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

We rewrite this condition on a matrix form:

M2 =


cosh(αpf Lp) + γpf sinh(αpf Lp) −1 0 0 0

αpf
(
sinh(αpf Lp) + γpf cosh(αpf Lp)

)
0 −αdf

λp

λd 0

0 cosh(αdf (Xsrc − Lp)) sinh(αdf (Xsrc − Lp)) − cosh(αdf (Xsrc − L))

0 αdf sinh(αdf (Xsrc − Lp)) αdf cosh(αdf (Xsrc − Lp)) −αdf sinh(αdf (Xsrc − L))


(25)
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M ·


Ef
Ff
Gf
Hf

 =


0
0
0

−rdfIf

 (26)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Ef (Xsrc) coefficient, we obtain:

Ef (Xsrc) =
e1f (Xsrc)

e2f (Xsrc)
(27)

with:

e1f (Xsrc) = 2Ifλ
P rDf cosh

(
αDf (L−Xs)

)
e2f (Xsrc) = −αDf γPf λP cosh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf γ

P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)
− αDf λP sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf λ

P sinh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf λ

D sinh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf λ

D sinh
(
LαDf − LpαDf + Lpα

P
f

)

(28)

From this calculus, we can write the PSP at the soma on the form:

δ̂v(X = 0, Xsrc, f) = Kf (Xsrc)
(
µv(Xsrc)− Erev

) ˆg(f) (29)

where Kf (Xsrc) given by:

Kf (Xsrc) =

{
Af (Xsrc) ∀Xsrc ∈ [0, Lp]

Ef (Xsrc) ∀Xsrc ∈ [Lp, L]
(30)

This is obtained by taking a unitary current If = 1 in the previous calculus.

4 Deriving the power spectrum of the membrane
potential fluctuations

The calculus rely on the ability to obtain the power spectrum of the membrane
potential fluctuations at the soma PV (f).
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This can be obtained from shotnoise theory (Daley and Vere-Jones, 2007)
(see also El Boustani et al. (2009) for an application similar to ours), the general
form of the power spectrum density can be expressed as:

PV (f) =
∑
{syn}

Nsyn Fsynch νsyn ‖ ˆPSPsyn(f)‖2

(31)

where {syn} is the set of identical synapses, each having Nsyn synapses, a
Poisson release probability: νsyn and creating a post-synaptic event PSPsyn(t).
In addition, Fsynch is a synchrony factor (depending on the variable s in the
model), it accounts for the effects of the synchronous arrivals of presynaptic
events. Given the synchrony generator considered in the main text, the syn-
chrony factor takes the form:

Fsynch = (1− s) + (s− s2)22 + (s2 − s3)32 + s342

(32)

because single events arise with a probability 1 − s, double events with a
probability s−s2 (and the PSP are squared in Eq. 4, hence the 22 factor), etc...

Now obtaining the power spectrum density PV (f) in our situation requires
to explicit the sum over synapses:

∑
{syn}, In our cases, we need to sum over 1)

their type (excitatory/inhibitory,
∑
s∈{e,i} ), 2) their location (we will integrate

over the dendritic length
∫ L
0
dx) 3) branches.

PV (f) =
∑

s∈{e,i}

∫ L

0

dxπDs
(
dt 2
− 2

3 b
B x
l c
)
2b

B x
l c Fsynch νs(x) ‖δ̂vs(0, x, f)‖2

+ πDi lS dS Fsynch νi(0) ‖δ̂vi(0, 0, f)‖2

(33)

where δ̂vs(0, x, f) is given by Eq. 29 (note that the dependency on synaptic
type s comes from the reversal potential term Erev in Eq. 29). The factor
2b

B x
l c corresponds to the sum of the synapses over the different branches at

the distance x. The term
(
dt 2
− 2

3 b
B x
l c
)
is the diameter of the branches at the

distance x.
The last term in Eq. 33 corresponds to the contribution of somatic inhibitory

synapses (number of somatic inhibitory synapses: πDi lS dS .

5 Deriving the fluctuations properties (µV , σV , τV )

The final expressions for the fluctuation propeorties as a function of (νpe , ν
p
i , ν

d
e , ν

d
i , s)

are thus given by:
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• µV : we obtain the mean of the fluctuations at the soma by taking µV (0)
in Equation 8.

• σV : we obtain the standard deviation of the fluctuations from the power
spectrum density in Equation 33 and the expression:

σ2
V =

∫
R
PV (f) df (34)

This integral expression was discretized and evaluated numerically

• τV : we obtain the autocorrelation time of the fluctuations from the power
spectrum density in Equation 33 and the expression (Zerlaut et al., 2016):

τV =
1

2

(∫R PV (f) df
PV (0)

)−1 (35)

This integral expression was discretized and evaluated numerically
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