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Abstract	

Do	 the	 frequencies	 of	 disease	 mutations	 in	 human	 populations	 reflect	 a	 simple	

balance	 between	mutation	 and	 purifying	 selection?	What	 other	 factors	 shape	 the	

prevalence	of	disease	mutations?	To	begin	to	answer	these	questions,	we	focused	on	

one	 of	 the	 simplest	 cases:	 recessive	mutations	 that	 alone	 cause	 lethal	 diseases	 or	

complete	sterility.	To	 this	end,	we	generated	a	hand-curated	set	of	417	Mendelian	

mutations	in	32	genes,	reported	to	cause	a	recessive,	 lethal	Mendelian	disease.	We	

then	considered	analytic	models	of	mutation-selection	balance	in	infinite	and	finite	

populations	 of	 constant	 sizes	 and	 simulations	 of	 purifying	 selection	 in	 a	 more	

realistic	 demographic	 setting,	 and	 tested	 how	 well	 these	 models	 fit	 allele	

frequencies	 estimated	 from	33,370	 individuals	 of	 European	 ancestry.	 In	 doing	 so,	

we	distinguished	between	CpG	 transitions,	which	occur	at	a	substantially	elevated	

rate,	 and	other	mutation	 types.	Whereas	observed	 frequencies	 for	CpG	 transitions	

are	close	to	expectation,	 the	 frequencies	observed	for	other	mutation	types	are	an	

order	 of	 magnitude	 higher	 than	 expected;	 this	 discrepancy	 is	 even	 larger	 when	

subtle	fitness	effects	 in	heterozygotes	or	 lethal	compound	heterozygotes	are	taken	

into	 account.	 In	 principle,	 higher	 than	 expected	 frequencies	 of	 disease	mutations	

could	 be	 due	 to	widespread	 errors	 in	 reporting	 causal	 variants,	 compensation	 by	

other	mutations,	or	balancing	selection.	It	is	unclear	why	these	factors	would	affect	

CpG	 transitions	differently	 from	other	mutations,	 however.	We	 argue	 instead	 that	

the	unexpectedly	high	 frequency	of	 non-CpGti	 disease	mutations	 likely	 reflects	 an	

ascertainment	bias:	of	all	 the	mutations	 that	cause	recessive	 lethal	diseases,	 those	

that	 by	 chance	 have	 reached	 higher	 frequencies	 are	 more	 likely	 to	 have	 been	
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identified	 in	medical	studies	and	thus	 to	have	been	 included	 in	 this	study.	Beyond	

the	specific	application,	this	study	highlights	the	parameters	likely	to	be	important	

in	shaping	the	frequencies	of	Mendelian	disease	alleles.	
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Author	Summary	

What	 determines	 the	 frequencies	 of	 disease	mutations	 in	 human	 populations?	 To	

begin	to	answer	this	question,	we	focus	on	one	of	the	simplest	cases:	mutations	that	

cause	completely	recessive,	Mendelian	disease.	We	first	review	theory	about	what	to	

expect	 from	 mutation	 and	 selection	 in	 a	 population	 of	 finite	 size	 and	 further	

generate	predictions	based	on	simulations	using	a	realist	demographic	scenario	of	

human	 evolution.	 For	 a	 highly	mutable	 type	 of	mutations,	 involving	 transitions	 at	

CpG	 sites,	we	 find	 that	 the	predictions	 fit	 observed	 frequencies	of	 recessive	 lethal	

disease	mutations	well.	For	less	mutable	types,	however,	predictions	tend	to	under-

estimate	 the	 observed	 frequency.	 We	 discuss	 possible	 explanations	 for	 the	

discrepancy	 and	 point	 to	 a	 complication	 that,	 to	 our	 knowledge,	 is	 not	 widely	

appreciated:	 that	 there	 exists	 ascertainment	 bias	 in	 disease	 mutation	 discovery.	

Specifically,	we	suggest	 that	alleles	 that	have	been	 identified	 to	date	are	 likely	 the	

ones	that	by	chance	have	drifted	to	higher	frequencies	and	are	thus	more	likely	to	

have	 been	 mapped.	 More	 generally,	 our	 study	 highlights	 the	 parameters	 that	

influence	 the	 frequencies	 of	 Mendelian	 disease	 alleles,	 helping	 to	 interpret	 the	

relevance	of	variants	of	unknown	significance	based	on	their	allele	frequencies.		
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Introduction	

New	 disease	 mutations	 arise	 in	 heterozygotes	 and	 either	 drift	 to	 higher	

frequencies	or	are	rapidly	purged	from	the	population,	depending	on	the	strength	of	

selection	 and	 the	 demographic	 history	 of	 the	 population	 [1-6].	 Elucidating	 the	

relative	 contributions	 of	mutation,	 natural	 selection	 and	 genetic	 drift	will	 help	 to	

understand	why	disease	alleles	persist	 in	humans.	Answers	 to	 these	questions	are	

also	of	practical	importance,	in	informing	how	genetic	variation	data	can	be	used	to	

identify	additional	disease	mutations	[7].		

In	 this	 regard,	 rare,	 Mendelian	 diseases,	 which	 are	 caused	 by	 single	 highly	

penetrant	 and	 deleterious	 alleles,	 are	 perhaps	 most	 amenable	 to	 investigation.	 A	

simple	model	 for	 the	 persistence	 of	mutations	 that	 lead	 to	Mendelian	 diseases	 is	

that	 their	 frequency	 is	 determined	 by	 a	 balance	 between	 their	 introduction	 by	

mutation	and	elimination	by	purifying	selection,	i.e.,	that	we	expect	to	find	them	at	

“mutation-selection	balance”	(MSB)	[4].	In	finite	populations,	random	drift	leads	to	

stochastic	 changes	 in	 the	 frequency	 of	 any	 mutation,	 so	 demographic	 history,	 in	

addition	 to	mutation	and	natural	 selection,	plays	an	 important	 role	 in	shaping	 the	

frequency	distribution	of	deleterious	mutations	[3].		

Another	 factor	 that	 may	 be	 important	 in	 shaping	 the	 frequency	 of	 highly	

penetrant	disease	mutations	is	genetic	interactions.	For	instance,	a	disease	mutation	

may	be	rescued	by	another	mutation	in	the	same	gene	[8-10]	or	by	a	modifier	locus	

elsewhere	 in	 the	 genome	 that	modulates	 the	 severity	 of	 the	disease	 symptoms	or	

the	penetrance	of	the	disease	allele	(e.g.	[11-13]).		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091579doi: bioRxiv preprint 

https://doi.org/10.1101/091579


For	a	subset	of	disease	alleles	that	are	recessive,	an	alternative	model	 for	their	

frequency	in	the	population	is	that	there	is	an	advantage	to	carrying	one	copy	but	a	

disadvantage	 to	 carrying	 two	 or	 none,	 such	 that	 the	 alleles	 persist	 due	 to	

overdominance,	a	form	of	balancing	selection.	Well	known	examples	include	sickle	

cell	 anemia,	 thalassemia	 and	 G6PD	 deficiency	 in	 populations	 living	 where	 the	

malaria	 is	 endemic	 [14].	Beyond	 these	 cases,	 the	 importance	of	overdominance	 in	

maintaining	the	high	frequency	of	disease	mutations	is	unknown.		

Here,	we	tested	hypotheses	about	the	persistence	of	mutations	that	cause	lethal,	

recessive,	 Mendelian	 disorders.	 This	 case	 provides	 a	 good	 starting	 point	 towards	

elucidating	the	determinants	of	disease	mutations	in	human	populations,	because	a	

large	 number	 of	 recessive	 lethal	 disorders	 have	 been	 mapped	 (e.g.,	 genes	 have	

already	 been	 associated	 with	 >66%	 of	 Mendelian	 disease	 phenotypes;	 [15])	 and,	

while	the	fitness	effects	of	most	diseases	are	hard	to	estimate,	for	lethal	diseases,	the	

selection	coefficient	is	clearly	1	for	homozygote	carriers	(at	 least	 in	the	absence	of	

modern	medical	 care).	 Moreover,	 the	 simplest	 expectation	 for	 mutation-selection	

balance	would	suggest	that,	given	a	per	base	pair	mutation	rate	on	the	order	of	10-8	

per	generation	[16],	the	frequency	of	such	alleles	would	be	 u ,	i.e.,	~10-4	[4].	Thus,	

sample	sizes	in	human	genetics	are	now	sufficiently	large	that	we	should	be	able	to	

observe	recessive	disease	alleles	segregating	in	heterozygotes.		

To	this	end,	we	compiled	genetic	information	for	a	set	of	417	mutations	reported	

to	 cause	 fatal,	 recessive	Mendelian	 diseases	 and	 estimated	 the	 frequencies	 of	 the	

disease-causing	alleles	from	large	exome	datasets.	We	then	compared	these	data	to	

the	expected	frequencies	of	deleterious	alleles	based	on	models	of	MSB	in	order	to	
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evaluate	 the	 effects	 of	 demography	 and	 other	 mechanisms	 in	 influencing	 these	

frequencies.	

Results	

Mendelian	recessive	disease	allele	set	

We	 relied	 on	 two	 datasets,	 one	 that	 describes	 173	 autosomal	 recessive	

diseases	 [17]	 and	 another	 from	 a	 genetic	 testing	 laboratory	 (Counsyl;	

<https://www.counsyl.com/>)	 that	 includes	 110	 recessive	 diseases	 of	 clinical	

interest.	 From	 these	 lists,	 we	 obtained	 a	 set	 of	 44	 “recessive	 lethal”	 diseases	

associated	 with	 42	 genes	 (Table	 S1)	 requiring	 that	 at	 least	 one	 of	 the	 following	

conditions	is	met:	(i)	in	the	absence	of	treatment,	the	affected	individuals	die	of	the	

disease	before	reproductive	age,	(ii)	reproduction	is	completely	impaired	in	patients	

of	both	sexes,	(iii)	the	phenotype	includes	severe	mental	retardation	that	in	practice	

precludes	 reproduction,	 or	 (iv)	 the	 phenotype	 includes	 severely	 compromised	

physical	 development,	 again	 precluding	 reproduction.	 Based	 on	 clinical	 genetics	

datasets	 and	 the	 medical	 literature	 (see	 Methods	 for	 details),	 we	 were	 able	 to	

confirm	that	417	Single	Nucleotide	Variants	(SNVs)	in	32	(of	the	42)	genes	had	been	

reported	as	associated	with	 the	severe	 form	of	 the	corresponding	disease	with	an	

early-onset,	 and	no	 indication	of	 incomplete	penetrance	or	effects	 in	heterozygote	

carriers	(Table	S2).	By	this	approach,	we	obtained	a	set	of	mutations	 for	which,	at	

least	in	principle,	there	is	no	heterozygote	effect	(i.e.,	the	dominance	coefficient	h	=	0	

in	a	model	with	genotype	fitnesses	1,	1-hs	and	1-s)	and	the	selective	coefficient	s	for	

the	recessive	allele	is	1.		
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A	large	subset	of	these	mutations	(29.3%)	consists	of	transitions	at	CpG	sites	

(henceforth	 CpGti),	 which	 occur	 at	 a	 highly	 elevated	 rates	 (~17-fold	 higher)	

compared	 to	 other	 mutation	 types,	 namely	 CpG	 transversions,	 and	 non-CpG	

transitions	and	transversions	[16].	This	proportion	is	in	agreement	with	Cooper	and	

Youssoufian	[18],	who	found	that	~31.5%	of	disease	mutations	in	exons	are	CpGti.		

	

Empirical	distribution	of	disease	alleles	in	Europe	

Allele	 frequency	 data	 for	 the	 417	 variants	 were	 obtained	 from	 the	 Exome	

Aggregation	Consortium	(ExAC)	for	60,706	individuals	[19].	Out	of	the	417	variants	

associated	with	putative	recessive	lethal	diseases,	three	were	found	homozygous	in	

at	 least	 one	 individual	 in	 this	 dataset	 (rs35269064,	 p.Arg108Leu	 in	 ASS1;	

rs28933375,	 p.Asn252Ser	 in	 PRF1;	 and	 rs113857788,	 p.Gln1352His	 in	 CFTR).	

Available	 data	 quality	 information	 for	 these	 variants	 does	 not	 suggest	 that	 these	

genotypes	are	due	 to	 calling	artifacts	 (Table	S2).	 Since	 these	diseases	have	severe	

symptoms	that	lead	to	early	death	without	treatment	and	these	ExAC	individuals	are	

purportedly	 healthy	 (i.e.,	 do	 not	 manifest	 severe	 diseases)	 [19],	 the	 reported	

mutations	 are	 likely	 errors	 in	 pathogenicity	 classification	 or	 cases	 of	 incomplete	

penetrance	 (see	 a	 similar	observation	 for	CFTR	 and	DHCR7	 in	 [20]).	We	 therefore	

excluded	 them	 from	 our	 analyses.	 In	 addition	 to	 the	 mutations	 present	 in	

homozygotes,	 we	 also	 filtered	 out	 sites	 that	 had	 lower	 coverage	 in	 ExAC	 (see	

Methods),	resulting	in	a	final	dataset	of	385	variants	in	32	genes	(Table	S2).	

Genotypes	for	a	subset	(N	=	91)	of	these	mutations	were	also	available	for	a	

larger	 sample	 size	 (76,314	 individuals	 with	 self-reported	 European	 ancestry)	
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generated	 by	 the	 company	 Counsyl	 (Table	 S3).	 A	 comparison	 of	 the	 allele	

frequencies	 in	 this	 larger	 dataset	 to	 that	 of	 ExAC	 data	 [19]	 showed	 excellent	

concordance	(Wilcoxon	signed-rank	test	 for	paired	samples,	p-value=0.34;	Fig	S1).	

Thus,	 both	 data	 sets	 appear	 to	 accurately	 reflect	 European	 frequencies	 of	 these	

disease	 alleles,	 despite	 slight	 differences	 in	 the	 populations	 included.	 In	 what	

follows,	we	focus	on	ExAC,	which	includes	a	greater	number	of	disease	mutations.	

	

Models	of	mutation-selection	balance	

To	 generate	 expectations	 for	 the	 frequencies	 of	 these	 disease	 mutations	

under	 mutation-selection	 balance,	 we	 considered	 models	 of	 infinite	 and	 finite	

populations	 of	 constant	 size	 [3],	 and	 conducted	 forward	 simulations	 using	 a	

plausible	 demographic	 model	 for	 African	 and	 European	 populations	 [21]	 (see	

Methods	for	details).	In	the	models,	there	is	a	wild-type	allele	(A)	and	a	deleterious	

allele	 (a,	which	could	also	 represent	a	 class	of	distinct	deleterious	alleles	with	 the	

same	 fitness	 effect)	 at	 each	 site,	 such	 that	 the	 relative	 fitness	 of	 individuals	 of	

genotypes	AA,	Aa,	or	aa	is	given	by:	

• wAA=1;	

• wAa=1-hs;	

• waa=1-s;	

The	mutation	rate	from	A	to	a	is	u	and	there	are	no	back	mutations.	

For	 a	 constant	 population	 of	 infinite	 size,	 Wright	 [22]	 showed	 that	 under	

these	conditions,	there	exists	a	stable	equilibrium	between	mutation	and	selection,	

when	 the	 selection	 pressure	 is	 sufficiently	 strong	 (s>>u).	 In	 particular,	 when	 the	
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deleterious	effect	of	allele	a	is	completely	recessive	(h=0),	its	equilibrium	frequency	

q	is	given	by:	

	 	 	 	 ! = !/!.	 	 	 	 	 	 (1)	

For	 a	 finite	 population	 of	 constant	 size,	 Nei	 [3]	 derived	 the	mean	 (eq.	 2)	 and	

variance	 (eq.	 3)	 of	 the	 frequency	 of	 a	 fully	 recessive	 deleterious	 mutation	 (h=0)	

based	on	a	diffusion	model,	leading	to:	

,	 	 	 	 	 (2)	

,	 	 	 	 	 	 (3)	

where	N	is	the	diploid	population	size	and	! is the gamma function	(see	Simons	et	al.	

[1]	for	a	similar	approximation).		

In	 a	 finite	 population,	 the	 mean	 frequency,	 ,	 therefore	 depends	 on	

assumptions	about	the	population	mutation	rate	(2Nu).	 If	 the	population	mutation	

rate	is	high,	such	that	2Nu>>1,	 	is	approximated	by	

						 ,	 	 	 	 		 	 (4)	

which	is	independent	of	the	population	size	and	equal	to	frequency	expected	in	an	

infinite	 size	 population;	 in	 particular,	 for	 a	 recessive	 lethal	 mutation,	 the	 mean	

frequency	 is	 equal	 to	 the	 right	 hand	 side	 of	 eq.	 (1).	 The	 important	 difference	

between	models	is	that	in	a	finite	population,	there	is	a	distribution	of	frequencies	q	

(because	of	genetic	drift),	rather	than	a	single	value,	whose	variance	is	given	in	eq.	

(3).		 	 	 	 	

)2(2
)2/12(

NuNs
Nuq
Γ

+Γ
=

22 / qsuq −=σ

q

q

q ≈ u / s
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In	 contrast,	 when	 the	 finite	 population	 has	 a	 low	 population	 mutation	 rate	

(2Nu<<1),	the	mean	allele	frequency,	 ,	is	approximated	by:		

			 ,			 	 	 	 	 	

which	depends	on	 the	population	 size.	 In	humans,	 the	mutation	 rate	 at	 each	base	

pair	is	very	small	(on	the	order	of	10-8),	so	the	second	approximation	should	apply	

when	 considering	 each	 single	 site	 independently.	The	 expectation	and	variance	of	

the	frequency	of	a	fatal,	fully	recessive	allele	(i.e.,	s=1,	h=0)	are	then	given	by:	

			 	 	 	 ,			 	 	 	 	 	 (6)	

and	

.	 	 	 	 (7)	

All	 models	 assume	 complete	 penetrance,	 complete	 recessivity	 (h	 =	 0),	

lethality	 of	 homozygous	 mutations	 (s	 =	 1)	 and	 consider	 a	 single	 site,	 thereby	

ignoring	the	possibility	of	compound	heterozygosity	(unless	otherwise	noted).	

	

Comparing	mutation-selection	balance	models	

Although	an	infinite	population	size	has	often	been	assumed	when	modeling	

deleterious	allele	frequencies	(e.g.	[5,23-26]),	predictions	under	this	assumption	can	

differ	 markedly	 from	 what	 is	 expected	 from	 models	 of	 finite	 population	 sizes,	

assuming	 plausible	 parameter	 values	 for	 humans.	 For	 example,	 the	 long-term	

estimate	of	the	effective	population	size	from	total	polymorphism	levels	is	~20,000	

individuals	 (assuming	a	per	base	pair	mutation	rate	of	1.2x10-8	 [16]	and	diversity	

levels	 of	 0.1%	 [27]).	 In	 this	 case,	 the	 average	 deleterious	 allele	 frequency	 in	 the	

q

sNuq /2π≈

q = u 2πN

σ q
2 = u− q 2 = u(1− 2πNu) ≈ u
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model	of	finite	population	size	is	>25-fold	lower	than	that	in	the	infinite	population	

model	(Fig	1).		

Because	the	human	population	size	has	not	been	constant,	and	changes	in	the	

population	size	can	affect	the	frequencies	of	deleterious	alleles	in	the	population	(as	

recently	 reviewed	by	 Simons	 and	 Sella	 [2]),	we	 also	 simulated	mutation-selection	

balance	 under	 a	 plausible	 demographic	 model	 for	 the	 population	 history	 of	

European	 populations	 [21].	 With	 our	 parameters,	 the	 mean	 allele	 frequency	

obtained	from	this	model	was	8.1	x	10-6,	~2-fold	higher	than	expected	for	a	constant	

population	 size	 model	 with	 Ne=20,000	 (Fig	 1).	 The	 mean	 frequency	 seen	 in	

simulations	instead	matches	the	expectation	for	a	constant	population	size	of	~72k	

individuals	 (see	 Methods	 and	 Fig	 S2a).	 This	 finding	 is	 expected:	 the	 estimate	 of	

20,000	 is	 based	on	 total	 genetic	 variation;	 assuming	 that	most	 of	 this	 variation	 is	

neutral,	 it	 therefore	 reflects	 an	 average	 timescale	 over	 millions	 of	 years.	 For	

recessive	lethal	mutations,	however,	which	are	relatively	rapidly	purged	by	natural	

selection,	a	more	recent	time	depth	is	relevant	(e.g.,	[1]).	Indeed,	in	our	simulations,	

most	of	the	disease	alleles	(65.6%)	segregating	at	present	arose	very	recently,	such	

that	they	were	not	segregating	in	the	population	205	generations	ago,	the	time	point	

after	 which	Ne	 is	 estimated	 to	 have	 increased	 from	 9,300	 to	 512,000	 individuals	

[21].	Increasing	the	effective	population	size	is	not	enough	to	model	disease	alleles	

appropriately	 however.	 For	 example,	 if	 we	 compare	 simulation	 results	 obtained	

under	the	more	complex	Tennessen	et	al.	[21]	demographic	model	[21]	to	those	for	

simulations	of	a	constant	population	size	of	Ne	=	72,348,	the	mean	allele	frequencies	

match,	but	the	distributions	of	allele	frequencies	are	significantly	different	(Fig	S2b).	
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These	 findings	 thus	 confirm	 the	 importance	of	 incorporating	demographic	history	

into	models	for	understanding	the	population	dynamics	of	disease	alleles	[5,28,29].	

In	what	 follows,	we	 therefore	 test	 the	 fit	 of	 the	 results	 based	 on	 a	more	 realistic	

demographic	model	[21]	to	the	observed	allele	frequencies.		

	

Comparing	empirical	and	expected	distributions	of	disease	alleles		

The	 mutation	 rate,	 u,	 from	 wild-type	 allele	 to	 disease	 allele	 is	 a	 critical	

parameter	 in	 predicting	 the	 frequencies	 of	 a	 deleterious	 allele	 [4,30].	 To	 model	

disease	 alleles,	 we	 considered	 four	 mutation	 types	 separately,	 with	 the	 goal	 of	

capturing	most	of	the	fine-scale	heterogeneity	in	mutation	rates	[31-34]:	transitions	

in	methylated	CpG	sites	(CpGti)	and	three	less	mutable	types,	namely	transversions	

in	CpG	sites	(CpGtv)	and	transitions	and	transversions	outside	a	CpG	site	(nonCpGti	

and	nonCpGtv,	 respectively).	 In	order	 to	control	 for	 the	methylation	status	of	CpG	

sites,	 which	 has	 an	 important	 influence	 on	 transition	 rates	 [31],	 we	 excluded	 12	

CpGti	 that	 occurred	 in	 CpG	 islands,	 which	 tend	 not	 to	 be	 methylated	 (following	

Moorjani	et	al.	[35]).	To	allow	for	heterogeneity	in	mutation	rates	within	each	one	of	

these	 four	 classes	 considered,	 we	modeled	 the	within-class	 variation	 in	mutation	

rates	according	to	a	lognormal	distribution	(see	details	in	Methods	and	[33]).		

For	 each	mutation	 type,	we	 then	 compared	 results	 from	 the	 simulations	 to	

what	 is	 observed	 in	 ExAC,	 focusing	 on	 the	 largest	 sample	 of	 the	 same	 common	

ancestry,	namely	Non-Finnish	Europeans	 (N	=	33,370)	 (Fig	2).	We	 find	 significant	

differences	between	empirical	and	expected	mean	frequencies	for	nonCpGti	(51-fold	

on	average;	 two-tailed	p-value	<	10-3;	 see	Methods	 for	details)	and	nonCpGtv	(25-
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fold	on	average,	 two-tailed	p-value	<	10-3),	 to	a	 lesser	extent	 for	CpGtv	 (p-value	=	

0.05),	 but	 not	 for	 CpGti	 (p-value	 =	 0.16).	 Intriguingly,	 the	 discrepancy	 between	

observed	and	expected	frequencies	becomes	smaller	as	the	mutation	rate	increases	

(Fig	2).	

	 Two	 additional	 factors	 should	 further	 decrease	 the	 expected	 frequencies	

relative	 to	 our	 predictions,	 and	 will	 thus	 exacerbate	 the	 discrepancy	 observed	

between	 empirical	 and	 expected	 distribution	 of	 deleterious	 alleles.	 First,	we	 have	

ignored	the	existence	of	compound	heterozygosity,	the	case	in	which	combinations	

of	 two	distinct	pathogenic	alleles	 in	 the	same	gene	 lead	to	 lethality.	We	know	that	

this	phenomenon	is	common	[36],	and	indeed	58.4%	of	the	417	disease	mutations	

considered	 in	 this	 study	 were	 initially	 identified	 in	 compound	 heterozygotes.	

Because	 of	 compound	 heterozygosity,	 each	 deleterious	 mutation	 will	 be	 selected	

against	not	only	when	present	in	two	copies	within	the	same	individual,	but	also	in	

the	presence	of	 certain	 lethal	mutations	at	other	sites	of	 the	same	gene.	Thus,	 the	

frequency	 of	 a	 deleterious	 mutation	 will	 be	 lower	 under	 a	 model	 incorporating	

compound	 heterozygosity	 than	 under	 a	 model	 that	 does	 not	 include	 this	

phenomenon.	

In	order	to	model	the	effect	of	compound	heterozygosity	in	our	simulations,	

we	reran	our	simulations	considering	a	gene	rather	than	a	site.	In	these	simulations,	

we	used	 the	 same	setup	as	 in	 the	 site	 level	 analysis,	 except	 for	 the	mutation	 rate,	

here	defined	as	U,	 the	 sum	of	 the	mutation	 rates	ui	at	each	site	 i	 that	 is	known	 to	

cause	 a	 severe	 and	 early	 onset	 form	 of	 the	 disease	 (Table	 S2;	 see	 Methods	 for	

details).	This	approach	does	not	consider	the	contribution	of	other	mutations	in	the	
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genes	 that	 cause	 the	 mild	 and/or	 late	 onset	 forms	 of	 the	 disease,	 and	 implicitly	

assumes	 that	 all	 combinations	 of	 known	 recessive	 lethal	 alleles	 of	 the	 same	 gene	

have	 the	 same	 fitness	 effect	 as	 homozygotes.	 Comparing	 observed	 frequencies	 to	

those	generated	by	simulation,	one	third	of	the	genes	differ	at	the	5%	level,	with	a	

clear	 trend	 for	 empirical	 frequencies	 to	 be	 above	 expectation	 (Table	 S4;	 Fig	 3;	

Fisher’s	combined	probability	test	p-value	<	10-14).		

This	 finding	 is	 even	more	 surprising	 than	 it	may	 seem,	 because	we	 do	 not	

know	 the	 complete	mutation	 target	 for	 each	 gene	 and	 are	 therefore	 ignoring	 the	

contribution	of	additional	sites	at	which	disease	mutations	could	arise.	If	there	are	

undiscovered	recessive	lethal	mutations	that	cause	death	when	forming	compound	

heterozygotes	with	the	ascertained	ones,	the	purging	effect	of	purifying	selection	on	

the	 known	 mutations	 will	 be	 under-estimated,	 leading	 us	 to	 over-estimate	 the	

expected	frequencies	 in	simulations.	Therefore,	our	predictions	are,	 if	anything,	an	

over-estimate	 of	 the	 expected	 allele	 frequency	 and	 the	 discrepancy	 between	

predicted	and	the	observed	is	likely	even	larger	than	what	we	found.	

The	other	 factor	 that	we	did	not	 consider	 in	 simulations	but	would	 reduce	

the	 expected	 allele	 frequencies	 is	 a	 subtle	 fitness	 decrease	 in	 heterozygotes.	 To	

evaluate	potential	fitness	effects	in	heterozygotes	when	none	had	been	documented	

in	 humans,	 we	 considered	 the	 phenotypic	 consequences	 of	 orthologous	 gene	

knockouts	in	mouse.	We	were	able	to	retrieve	information	on	phenotypes	for	both	

homozygote	and	heterozygote	mice	for	only	eight	out	of	the	32	genes,	namely	ASS1,	

CFTR,	 DHCR7,	NPC1,	 POLG,	 PRF1,	 SLC22A5,	and	 SMPD1.	 For	 all	 eight,	 homozygote	

knockout	mice	presented	similar	phenotypes	as	affected	humans,	and	heterozygotes	
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showed	a	milder	but	detectable	phenotype	(Table	S5).	The	extent	to	which	the	same	

phenomenon	 applies	 to	 the	 mutations	 with	 no	 clinically	 reported	 effects	 in	

heterozygous	 humans	 is	 unclear,	 but	 the	 finding	 with	 knockout	 mice	 makes	 it	

plausible	that	there	exists	a	very	small	fitness	decrease	in	heterozygotes	in	humans	

as	 well,	 potentially	 enough	 to	 have	 a	marked	 impact	 on	 the	 allele	 frequencies	 of	

deleterious	 mutations,	 but	 not	 enough	 to	 have	 been	 recognized	 in	 clinical	

investigations.	Indeed,	even	if	the	fitness	effect	in	heterozygotes	were	h	=	1%,	a	68%	

decrease	in	the	mean	allele	frequency	of	the	disease	allele	is	expected	(Fig	S3).	

Discussion	

To	 investigate	 the	 population	 genetics	 of	 human	 disease,	 we	 focused	 on	

mutations	 that	 cause	 Mendelian,	 recessive	 disorders	 that	 lead	 to	 early	 death	 or	

completely	 impaired	 reproduction.	 We	 sought	 to	 understand	 to	 what	 extent	 the	

frequencies	 of	 these	 mutations	 fit	 the	 expectation	 based	 on	 a	 simple	 balance	

between	 the	 input	of	mutations	 and	 the	purging	by	purifying	 selection,	 as	well	 as	

how	 other	mechanisms	might	 affect	 these	 frequencies.	Many	 studies	 implicitly	 or	

explicitly	compare	known	disease	allele	frequencies	to	expectations	from	mutation-

selection	 balance.	 We	 tested	 whether	 known	 disease	 alleles	 as	 a	 class	 fit	 these	

expectations,	 and	 found	 that,	 under	 a	 sensible	 demographic	 model	 for	 European	

population	history	with	purifying	selection	only	in	homozygotes,	the	expectations	fit	

the	 observed	 disease	 allele	 frequencies	 well	 when	 the	mutation	 rate	 is	 high	 (see	

CpGti	in	Fig	2).	If	mutation	rate	is	low,	however,	as	is	the	case	for	CpGtv,	nonCpGti	

and	 nonCpGtv,	 the	 mean	 empirical	 frequencies	 of	 disease	 alleles	 are	 above	
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expectation	(Fig	2).	Further,	including	possible	effects	of	the	disease	in	heterozygote	

carriers	or	for	the	effect	of	compound	heterozygotes	in	these	models	only	increases	

the	discrepancy.		

In	principle,	higher	than	expected	disease	allele	frequencies	could	be	explained	

by	 at	 least	 four	 (non-mutually	 exclusive)	 factors:	 (i)	 misspecification	 of	 the	

demographic	 model,	 (ii)	 widespread	 errors	 in	 reporting	 the	 causal	 variant,	 (iii)	

overdominance	 of	 disease	 alleles	 and	 (iv)	 low	 penetrance	 of	 disease	 mutations.	

Notably,	 it	 has	been	estimated	 that	population	growth	 in	Europe	 could	have	been	

stronger	that	we	considered	in	our	simulations	[37,38].	Stronger	population	growth	

does	increase	the	expected	frequency	of	recessive	disease	alleles	(Fig	S4,	columns	A-

D).	However,	the	impact	of	more	intense	growth	is	likely	insufficient	to	explain	the	

observed	discrepancy:	 the	allele	 frequencies	observed	 in	ExAC	are	still	on	average	

an	order	of	magnitude	 larger	 than	expected	based	on	a	model	with	 ten-fold	more	

intense	growth	than	in	[21]	(Fig	S4).	Similarly,	while	errors	in	reporting	the	causal	

variants	are	known	 to	be	 common	 [19,39,40],	we	attempted	 to	minimize	 them	by	

filtering	 out	 any	 case	 for	which	 there	was	 not	 compelling	 evidence	 of	 association	

with	a	recessive	 lethal	disease,	 reducing	our	 initial	 set	of	769	mutations	 to	385	 in	

which	we	had	greater	confidence	(see	Methods	for	details).		

The	 other	 two	 factors,	 overdominance	 and	 low	 penetrance,	 are	 likely	

explanations	for	a	subset	of	cases.	For	instance,	CFTR,	the	gene	in	which	mutations	

lead	to	cystic	 fibrosis,	 is	 the	 furthest	above	expectation	(p-value	=	0.002;	Fig	3).	 It	

was	long	noted	that	there	is	an	unusually	high	frequency	of	the	CFTR	deletion	ΔF508	

in	 Europeans,	 which	 led	 to	 speculation	 that	 disease	 alleles	 of	 this	 gene	 may	 be	
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subject	to	over-dominance	([41],	but	see	[42]).	Whether	or	not	this	is	the	case,	there	

is	evidence	 that	disease	mutations	 in	 this	gene	can	complement	one	another	 [8,9]	

and	 that	 modifier	 loci	 in	 other	 genes	 also	 influence	 their	 penetrance	 [9,12].	

Consistent	with	 variable	 penetrance,	 Chen	 et	 al.	 [20]	 identified	 three	 purportedly	

healthy	individuals	carrying	two	copies	of	disease	mutations	in	this	gene.	Similarly,	

DHCR7,	 the	 gene	 associated	 with	 the	 Smith-Lemli-Opitz	 syndrome,	 is	 somewhat	

above	expectation	 in	our	analysis	 (p-value	=	0.052;	Fig	3)	and	healthy	 individuals	

were	 found	 to	be	homozygous	 carriers	of	putatively	 lethal	disease	alleles	 in	other	

studies	 [20].	 These	 observations	 make	 it	 plausible	 that,	 in	 a	 subset	 of	 cases	

(particularly	for	CFTR),	the	high	frequency	of	deleterious	mutations	associated	with	

recessive,	lethal	diseases	are	due	to	genetic	interactions	that	modify	the	penetrance	

of	certain	recessive	disease	mutations.		

Nonetheless,	 two	 factors	 argue	 against	 modifiers	 alleles	 being	 a	 sufficient	

explanation	 for	 the	 site-level	 analysis.	 First,	 when	 we	 remove	 130	 mutations	 in	

CFTR	and	12	in	DHCR7,	two	genes	that	were	outliers	at	the	gene-level	(Fig	3;	Table	

S4)	 and	 for	 which	 healthy	 individuals	 were	 reported	 to	 be	 homozygous	 for	 a	

deleterious	 allele	 [20],	 the	 discrepancy	 between	 observed	 and	 expected	 allele	

frequencies	is	barely	impacted	(Fig	S5).	Second,	there	is	no	obvious	reason	why	this	

explanation	would	apply	differently	to	distinct	types	of	mutations,	yet	the	extent	to	

which	 observed	 allele	 frequencies	 exceed	 the	 expected	 depends	 on	 the	 mutation	

rate,	with	no	departure	seen	at	CpGti	(Fig	2).		

Instead,	 it	 seems	plausible	 that	 there	 is	 likely	an	ascertainment	bias	 in	disease	

allele	discovery	and	mutation	identification.	Since	not	all	mutations	that	can	cause	a	
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specific	Mendelian	disease	are	known,	those	mutations	that	were	discovered	to	date	

are	 likely	 the	ones	that	by	chance	have	drifted	to	higher	 frequencies,	and	are	 thus	

more	 likely	 to	 have	 been	mapped	 and	 be	 reported	 in	 the	medical	 literature.	 One	

clear	implication	of	that	is	that	there	are	numerous	sites	at	which	mutations	cause	

recessive	 lethal	 diseases	 yet	 to	 be	 discovered,	 particular	 at	 non-CpG	 sites.	 More	

generally,	this	ascertainment	bias	complicates	the	interpretation	of	observed	allele	

frequencies	in	terms	of	the	selection	pressures	acting	on	disease	alleles.	

Beyond	this	specific	point,	our	study	illustrates	how	the	large	sample	sizes	now	

made	available	to	researchers	in	the	context	of	projects	like	ExAC	[19]	can	be	used	

not	 only	 for	 direct	 discovery	 of	 disease	 variants,	 but	 also	 to	 test	 why	 there	 are	

disease	alleles	segregating	in	the	population	and	to	understand	at	what	frequencies	

we	might	expect	to	find	them.	

Methods	

Disease	allele	set	

In	order	to	identify	single	nucleotide	variants	within	the	42	genes	associated	

with	 lethal,	 recessive	 Mendelian	 diseases	 (Table	 S1),	 we	 initially	 relied	 on	 the	

ClinVar	dataset	[43]	(accessed	on	June	3rd,	2015).	We	filtered	out	any	variant	that	is	

an	indel	or	a	more	complex	copy	number	variant	or	that	is	ever	classified	as	benign	

or	likely	benign	in	ClinVar	(whether	or	not	it	is	also	classified	as	pathogenic	or	likely	

pathogenic).	 By	 this	 approach,	we	 obtained	 769	 SNVs	 described	 as	 pathogenic	 or	

likely	 pathogenic.	 For	 each	 one	 of	 these	 variants,	 we	 searched	 the	 literature	 for	

evidence	 that	 it	 is	 exclusively	 associated	 to	 the	 lethal	 and	 early	 onset	 form	of	 the	
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disease	and	was	never	reported	as	causing	 the	mild	and/or	 late-onset	 form	of	 the	

disease.	 We	 considered	 effects	 in	 the	 absence	 of	 medical	 treatment,	 as	 we	 were	

interested	 in	 the	selection	pressures	acting	on	 the	alleles	over	evolutionary	scales	

rather	than	in	the	last	one	or	two	generations.	Variants	with	mention	of	incomplete	

penetrance	 (i.e.	 for	which	 homozygotes	were	 not	 always	 affected)	 or	with	 known	

effects	 in	 heterozygote	 carriers	 were	 removed	 from	 the	 analysis.	 This	 process	

yielded	 417	 SNVs	 in	 32	 genes	 associated	with	 distinct	Mendelian	 recessive	 lethal	

disorders	 (Table	 S2).	 Although	 these	mutations	were	purportedly	 associated	with	

complete	 recessive	 diseases,	 we	 sought	 to	 examine	 whether	 there	 would	 be	

possible,	 unreported	 effects	 in	 heterozygous	 carriers.	 To	 this	 end,	 we	 used	 the	

Mouse	 Genome	Database	 (MGD)	 [44]	 (accessed	 July	 29th,	 2015)	 and	were	 able	 to	

retrieve	information	for	both	homozygote	and	heterozygote	mice	for	eight	out	of	the	

32	genes	(all	of	which	with	a	homologue	in	mice)	(Table	S5).	

In	 addition	 to	 the	 information	 provided	 by	 ClinVar	 for	 each	 one	 of	 these	

variants,	we	considered	the	 immediate	sequence	context	of	each	SNV,	 to	tailor	the	

mutation	rate	estimate	accordingly	[16].	For	doing	so,	we	used	an	in-house	Python	

script	 and	 the	 human	 genome	 reference	 sequence	 hg19	 from	 UCSC	

(<http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/>).			

	

Genetic	datasets	

	 	The	Exome	Aggregation	Consortium	(ExAC)	[19]	was	accessed	on	August	9th,	

2016.	 The	 data	 consist	 of	 genotype	 frequencies	 for	 60,706	 individuals,	 assigned	
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after	PCA	analysis	to	one	of	seven	population	labels:	African	(N=10,406),	East	Asian	

(N=8,654),	 Finnish	 (N=6,614),	 Latino	 (N=11,578),	 Non-Finnish	 European	

(N=66,740),	South	Asian	(N=16,512)	and	“other”	(N=908).	We	focused	our	analyses	

on	those	individuals	of	Non-Finnish	European	descent,	because	they	constitute	the	

largest	 sample	 size	 from	 a	 single	 ancestry	 group.	 We	 note	 that,	 some	 diseases	

mutations,	for	instance,	those	in	ASPA,	HEXA	and	SMPD1,	are	known	to	be	especially	

prevalent	 in	 Ashkenazi	 Jewish	 populations,	 and	 that	 could	 potentially	 bias	 our	

results	if	Ashkenazi	Jewish	individuals	constituted	a	great	portion	of	the	sample	we	

considered.	 However,	 this	 sample	 includes	 only	 ~2,000	 (~3%)	 Ashkenazi	

individuals	(Dr.	Daniel	MacArthur,	personal	communication).		

	 From	the	initial	417	mutations,	we	filtered	out	three	that	were	homozygous	

in	at	 least	one	 individual	 in	ExAC	and	29	 that	had	 lower	coverage,	 i.e.,	 fewer	 than	

80%	of	the	individuals	were	sequenced	to	at	least	15x.	This	approach	left	us	with	a	

set	of	385	mutations	with	a	minimum	coverage	of	27x	per	sample	and	an	average	

coverage	 of	 69x	 per	 sample	 (Table	 S2).	 For	 248	 sites	 with	 non-zero	 sample	

frequencies,	 ExAC	 reported	 the	 number	 of	 non-Finnish	 European	 individuals	 that	

were	sequenced,	which	was	on	average	32,881	individuals	[19].	For	the	remaining	

137	 sites,	 we	 did	 not	 have	 this	 information.	 Nonetheless,	 the	 mean	 coverage	 is	

reported	for	all	sites	and	does	not	differ	between	the	two	sets	of	sites	(Fig	S6).	We	

therefore	assumed	that	mean	number	of	individuals	covered	for	all	sites	was	32,881	

[45]	 and	 used	 this	 number	 to	 obtain	 sample	 frequencies	 from	 simulations,	 as	

explained	below.		
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A	 second	 genetic	 dataset	 was	 obtained	 from	 Counsyl	

(<https://www.counsyl.com/>).	 Counsyl	 is	 a	 commercial	 genetic	 screening	

laboratory	 that	 offers,	 among	 other	 products,	 the	 “Family	 Prep	 Screen”,	 a	 genetic	

screening	 test	 intended	 to	detect	 carrier	 status	 for	up	 to	110	 recessive	Mendelian	

diseases	 in	 couples	 that	 are	 planning	 to	 have	 a	 child.	 A	 subset	 of	 294,000	 of	 its	

customers	 was	 surveyed	 by	 genotyping	 or	 sequencing	 for	 “routine	 carrier	

screening”.	This	subset	excludes	individuals	with	indications	for	testing	because	of	

known	 personal	 or	 family	 history	 of	 Mendelian	 diseases,	 infertility,	 and	

consanguinity.	It	therefore	represents	a	more	random	(with	regard	to	the	presence	

of	disease	alleles),	population-based	survey.	For	these	individuals,	we	had	details	on	

self-reported	 ancestry	 (14	 distinct	 ethnic/ancestry/geographic	 groups)	 and	 the	

allele	 frequencies	 for	 98	 mutations	 that	 match	 those	 that	 passed	 our	 variant	

selection	criteria	described	above,	of	which	92	are	also	sequenced	to	high	coverage	

in	 the	 ExAC	 database	 (Table	 S2).	 We	 focused	 our	 analysis	 of	 this	 dataset	 on	 the	

76,314	individuals	with	self-reported	Northern	or	Southern	European	ancestry.	

	

Simulating	the	evolution	of	disease	alleles	with	population	size	change	

	 We	also	modeled	the	frequency	of	a	deleterious	allele	in	human	populations	

by	 forward	 simulations	 based	 on	 a	 crude	 but	 plausible	 demographic	 model	 for	

human	populations	from	Africa	and	Europe,	 inferred	from	exome	data	for	African-

Americans	and	European-Americans	[21].	To	this	end,	we	used	a	program	described	

in	[1].	 In	brief,	 the	demographic	scenario	consists	of	an	Out-of-Africa	demographic	

model,	with	changes	in	population	size	throughout	the	population	history,	including	
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a	severe	bottleneck	in	Europeans	following	the	split	from	the	African	population	and	

a	rapid,	recent	population	growth	in	both	populations	[21].	As	 in	Simons	et	al.	 [1],	

we	simulated	genetic	drift	and	two-way	gene	flow	between	Africans	and	Europeans	

in	recent	history.	Negative	selection	acting	on	a	single	bi-allelic	site	was	modeled	as	

in	the	analytic	models.	

Allele	 frequencies	 follow	 a	 Wright-Fisher	 sampling	 scheme	 in	 each	

generation	according	 to	 these	viabilities,	with	migration	 rate	and	population	 sizes	

varying	 according	 to	 the	 demographic	 scenario	 considered.	 Whenever	 a	

demographic	event	(e.g.	growth)	altered	the	number	of	individuals	and	the	resulting	

number	was	not	an	integer,	we	rounded	it	to	the	nearest	integer,	as	in	Simons	et	al.	

[1].	A	burn-in	period	of	10Ne	generations	with	constant	population	size	Ne	=	7,310	

individuals	 was	 implemented	 in	 order	 to	 ensure	 an	 equilibrium	 distribution	 of	

segregating	alleles	at	the	onset	of	demographic	changes	in	Africa,	148	Kya.		

In	 contrast	 to	 Simons	 et	 al.	 [1],	 our	 simulations	 always	 start	 with	 the	

ancestral	 allele	 A	 fixed	 and	 mutation	 occurs	 exclusively	 from	 this	 allele	 to	 the	

deleterious	one	(a),	i.e.	a	mutation	occurs	with	mean	probability	u	per	gamete,	per	

generation,	and	there	is	no	back-mutation.	 	However,	recurrent	mutations	at	a	site	

are	allowed,	as	in	Simons	et	al.	[1].	

When	 implementing	 the	model,	 we	 used	mean	mutation	 rates	u	estimated	

from	a	large	human	pedigree	study	[16],	considering	the	genomic	average	(1.2	x	10-8	

per	base	pair,	per	generation)	and	four	distinct	mutation	types	(CpGti	=	1.12	x	10-7;	

CpGtv	=	9.59	x	10-9;	nonCpGti	=	6.18	x	10-9;	and	nonCpGtv	=	3.76	x	10-9).	While	these	

four	 categories	 capture	 much	 of	 the	 variation	 in	 germline	 mutation	 rates	 across	
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sites,	a	number	of	other	factors	(e.g.,	the	larger	sequence	context	or	the	replication	

timing)	 also	 influence	 mutation	 rates,	 introducing	 heterogeneity	 in	 the	 mutation	

rate	within	each	class	considered	[31-33,46].	To	allow	for	this	heterogeneity	as	well	

as	for	uncertainty	in	the	point	mutation	rates	estimates,	in	each	simulation,	instead	

of	using	a	fixed	rate	u	for	each	mutation	type,	we	drew	the	mutation	rate	M	from	a	

lognormal	distribution	with	the	following	parameters:	

log10M | u ~ N(log10 u−
σ 2

2
ln(10),σ 2 ) 	 	 	 (7)	

such	that	that	E[M]=u.	σ	was	set	to	0.57	(following	[33]).	

By	 this	 procedure,	we	 ran	 two	million	 simulations	 for	 each	mutation	 type,	

thus	 obtaining	 the	 distribution	 of	 deleterious	 allele	 frequencies	 expected	 for	 the	

European	population.	In	order	to	compare	simulation	results	to	the	empirical	data,	

we	 subsampled	 the	 simulated	 population	 to	 match	 the	 average	 number	 of	

autosomal	 chromosomes	 in	 the	 non-Finnish	 European	 sample	 from	 ExAC	 (N	 =	

65,762	chromosomes).	

To	measure	the	significance	of	the	deviation	between	observed	and	expected	

allele	 frequencies,	we	proceeded	as	 follows:	First,	we	sampled	K	allele	 frequencies	

from	 the	 2M	 simulations	 implemented	 for	 each	 mutation	 type,	 where	 K	 is	 the	

number	 of	mutations	 described	 for	 that	 type.	We	 repeated	 this	 step	 1,000	 times,	

thus	 obtaining	 a	 distribution	 for	 the	 mean	 allele	 frequency	 across	 K	 mutations.	

Finally,	to	obtain	a	two-tailed	p-value,	we	considered	the	rank	of	the	empirical	mean	

relative	to	simulated	outcomes.		
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A	well-known	source	of	heterogeneity	in	mutation	rate	within	the	CpGti	class	

is	methylation	status,	with	a	high	transition	rate	seen	only	at	methylated	CpGs	[18].	

In	 our	 analyses,	 we	 tried	 to	 control	 for	 the	 methylation	 status	 of	 CpG	 sites	 by	

excluding	 sites	 located	 in	 CpG	 islands	 (CGIs).	 The	 CGI	 annotation	 for	 hg19	 was	

obtained	 from	 UCSC	 Genome	 Browser	 (track	 “Unmasked	 CpG”;	

<http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cpgIslandExtUnmas

ked.txt.gz>,	 accessed	 in	 June	 6th,	 2016)	 and	 BEDTools	 [47]	 was	 used	 to	 exclude	

those	CpG	sites	located	in	CGIs.	We	note	that	the	CpGti	estimate	from	[16]	includes	

CGIs,	and	in	that	sense	the	average	mutation	rate	that	we	are	using	for	CpGti	may	be	

a	very	slight	underestimate	of	the	mean	rate	for	transitions	at	methylated	CpG	sites.		

Unless	otherwise	noted,	the	expectation	assumes	fully	recessive,	lethal	alleles	

with	complete	penetrance.	Notably,	by	calculating	 the	expected	 frequency	one	site	

at	 a	 time,	 we	 are	 ignoring	 possible	 interaction	 between	 genes	 (i.e.,	 effects	 of	 the	

genetic	background)	and	among	different	mutations	within	a	gene	(i.e.,	 compound	

heterozygotes).	These	assumptions	are	relaxed	in	two	ways.	In	one	analysis	(Fig	S3),	

we	 consider	 a	 very	 low	 selective	 effect	 in	 heterozygous	 individuals	 (h	 =	 1%),	

reasoning	that	such	an	effect	could	plausibly	go	undetected	in	medical	examinations	

and	yet	would	nonetheless	impact	the	frequency	of	the	disease	allele.	Second,	when	

considering	 the	 gene-level	 analysis	 (Fig	 3),	 we	 implicitly	 allow	 for	 compound	

heterozygosity	between	any	pair	of	lethal	mutations.	For	this	analysis,	we	ran	1000	

simulations	for	a	total	mutation	rate	U	per	gene	that	was	calculated	accounting	for	

the	heterogeneity	and	uncertainty	in	the	mutation	rates	estimates	as	follows:	(i)	For	

sites	known	to	cause	a	recessive	lethal	disease	and	that	passed	our	filtering	criteria	
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(Table	S2),	we	drew	a	mutation	rate	ui	from	the	lognormal	distribution,	as	described	

above;	(ii)	We	then	took	the	sum	of	ui	as	the	total	mutation	rate	U;	(iii)	We	then	ran	

one	replicate	with	U	as	the	mutation	parameter,	and	other	parameters	as	specified	

for	site	level	analysis.	Because	the	mutational	target	size	considered	in	simulations	

is	 only	 comprised	 of	 those	 sites	 at	 which	mutations	 are	 known	 to	 cause	 a	 lethal	

recessive	disease,	it	is	almost	certainly	an	underestimate	of	the	true	mutation	rate—

potentially	 by	 a	 lot.	We	 note	 further	 that	 by	 this	 approach,	we	 are	 assuming	 that	

compound	heterozygotes	formed	by	any	two	lethal	alleles	have	fitness	zero,	i.e.,	that	

they	 are	 identical	 in	 their	 effects	 to	 homozygotes	 for	 any	 of	 the	 lethal	 alleles.	

Moreover,	we	 are	 implicitly	 ignoring	 the	 possibility	 of	 complementation,	which	 is	

(somewhat)	 justified	 by	 our	 focus	 on	mutations	with	 severe	 effects	 and	 complete	

penetrance	 (but	 see	 Discussion).	 Since	 we	 were	 interested	 in	 understanding	 the	

effect	 of	 compound	 heterozygosity,	 for	 this	 analysis,	we	 did	 not	 consider	 the	 five	

genes	in	which	only	one	mutation	passed	our	filters	(BCS1L,	FKTN,	LAMA3,	PLA3G6,	

and	TCIRG1).	

All	codes	and	data	to	generate	the	figures	in	R	[48]	and	the	script	used	to	get	

the	 sequence	 context	 of	 each	 mutation	 (kindly	 provided	 by	 Ellen	 Leffler)	 are	

available	 at	 https://github.com/cegamorim/PopGenHumDisease.	 The	 code	 to	 run	

the	 simulations	 is	 available	 at	 https://github.com/sellalab/PopGenHumDisease.	

Allele	frequencies	and	other	information	for	the	disease	mutations	employed	in	the	

analyses	are	in	Tables	S2	and	S3.	
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Fig	 1.	 Expected	 allele	 frequencies	 in	 the	 population,	 under	 a	 mutation-

selection	 balance	 models.	 Blue	 bar	 denotes	 the	 expected	 under	 an	 infinite	

population	size,	a	green	bar	under	a	finite	constant	population,	and	a	red	bar	under	

a	plausible	demographic	model	for	European	populations	(distribution	shown	in	the	

grey	histogram).	All	models	assume	s=1	and	h=0.	For	the	finite	constant	population	

size	model,	we	present	the	mean	frequency	expected	for	a	population	size	of	20,000	

(see	Fig	S2a	for	the	effect	of	varying	the	population	size).	Sample	allele	frequencies	

(q)	 were	 transformed	 to	 log10(q)	 and	 those	 q=0	 were	 set	 to	 10-7	 for	 visual	

purposes,	but	indicated	as	“0”	on	the	X-axis.	Y-axis	is	plotted	on	a	log-scale.	
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Fig	2.	Expected	and	observed	distributions	of	disease	allele	 frequencies.	The	

four	 panels	 correspond	 to	 four	 different	 mutation	 types.	 The	 title	 of	 the	 panel	

indicates	the	mutation	type,	followed	by	the	total	number	of	mutations,	with	p-value	

for	 the	 difference	 between	 observed	 and	 expected	 mean	 frequencies	 below	 it.	

Results	 in	 grey	 (SIM)	 were	 obtained	 from	 simulations	 considering	 a	 plausible	

demographic	model	for	European	populations	[21]	(see	text).	The	observed	values	

estimated	 from	33,370	 individuals	 of	 European	 ancestry	 from	ExAC	 are	 shown	 in	

white.	 Violin	 plots	 show	 the	 density	 distribution	 of	 variable	 sites,	 while	 boxes	

indicate	the	proportion	of	sites	for	which	the	wild,	non-deleterious	mutation	is	fixed.	

Means	 (considering	 both	 segregating	 and	 fixed	mutations)	 are	 indicated	with	 red	

horizontal	bars.		
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Fig	S3.	Disease	allele	frequencies	at	the	gene	level.	The	expectation	(grey)	is	based	on	1000	simulations,	assuming	no	effect	

in	 heterozygotes,	 but	 allowing	 for	 compound	heterozygosity	 (see	Methods	 for	 details).	Observed	 frequencies	 (purple	 bars)	

were	obtained	from	ExAC	considering	33,370	European	individuals.	Genes	are	ordered	according	to	the	two-tailed	p-value	for	

the	significance	of	the	deviation	of	the	empirical	frequencies	from	the	expected	(Table	S4).	To	calculate	that,	we	considered	the	

rank	of	the	empirical	mean	relative	to	the	simulations.	Violin	plots	show	the	distribution	of	simulated	allele	frequencies	among	

segregating	 alleles	 and	 boxes	 represent	 the	 fraction	 of	 simulations	 in	 which	 no	 deleterious	 allele	 was	 observed	 in	 the	

simulated	sample	at	present.	
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Table	S5.	Phenotypic	effect	of	mouse	knock-outs	(see	main	text)	

Gene	 Human	disease	 OMIM	
number	

Phenotype	of	affected	human	
casesa	

Phenotype	of	homozygous	
knockout	miceb	

Phenotype	of	
heterozygous	knockout	
miceb	

ASS1	 Citrullinemia	 215700	
Very	high	concentration	of	the	
amino-acid	citrulline	in	serum,	
spinal	fluid,	and	urine. 

Complete	neonatal	lethality,	
abnormal	circulating	amino-acid	
level,	increased	circulating	
ammonia	level.	

Abnormal	circulating	
amino-acid	level.	

CFTR	 Cystic	fibrosis	 219700	

Disruption	of	exocrine	function	of	
the	pancreas,	intestinal	glands	
(meconium	ileus),	biliary	tree	
(biliary	cirrhosis),	bronchial	glands	
(chronic	bronchopulmonary	
infection	with	emphysema)	and	
sweat	glands	(high	sweat	electrolyte	
with	depletion	in	a	hot	
environment).	Infertility	occurs	in	
males	and	females.	

Partial	postnatal	lethality,	
aphagia,	pancreatic	acinar	cell	
atrophy,	abnormal	intestine	
morphology,	abnormal	digestive	
system	physiology,	abnormal	
gland	morphology,	acute	
pancreas	inflammation,	weight	
loss,	distended	abdomen,	
abnormal	ion	homeostasis,	
enlarged	gallbladder,	abnormal	
respiratory	system	physiology,	
lacrimal	gland	atrophy.	

Impaired	fertilization,	
decreased	litter	size.	

DHCR7	 Smith-Lemli-Opitz	
syndrome	 270400	 Multiple	congenital	malformation	

and	mental	retardation	syndrome.	

Complete	neonatal	lethality,	
abnormal	suckling	behavior,	
weakness,	abnormal	nasal	
cavity	morphology,	fetal	growth	
retardation,	cyanosis,	abnormal	
brain	development,	distended	
urinary	bladder.	

Abnormal	cholesterol	level,	
syndactyly,	partial	
embryonic	lethality,	
decreased	brain	size.	

NPC1	 Niemann-Pick	
disease,	type	C1	 257220	 Lipid	storage	disorder	characterized	

by	progressive	neurodegeneration. 

Premature	death,	abnormal	
Purkinje	cell	morphology,	
increased	brain	cholesterol	
level,	increased	liver	cholesterol	
level,	abnormal	macrophage	
morphology,	abnormal	
microglial	cell	activation,	
abnormal	lipid	homeostasis,	
decreased	body	weight,	

Increased	brain	cholesterol	
level.	
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impaired	coordination.	

POLG	 Alpers	syndrome	 203700	

Clinical	triad	of	psychomotor	
retardation,	intractable	epilepsy,	and	
liver	failure	in	infants	and	young	
children.	Pathologic	findings	include	
neuronal	loss	in	the	cerebral	gray	
matter	with	reactive	astrocytosis	
and	liver	cirrhosis.	

Premature	death,	abnormal	
mitochondrial	physiology,	
decreased	thymocyte	number,	
abnormal	lymphopoiesis,	
macrocytic	anemia,	abnormal	
erythroid	lineage	cell	
morphology.	

Abnormal	bone	marrow	cell	
physiology,	increased	B	cell	
derived	lymphoma	
incidence.	

PRF1	 Hemophagocytic	
lymphohistiocytosis	 603553	

Immune	dysregulation	characterized	
clinically	by	fever,	edema,	
hepatosplenomegaly,	and	liver	
dysfunction.	Neurologic	impairment,	
seizures,	and	ataxia	are	frequent.	

Increased	activated	T	cell	
number,	decreased	cytotoxic	T	
cell	cytolysis,	abnormal	cytokine	
secretion,	decreased	
susceptibility	to	autoimmune	
diabetes,	increased	
susceptibility	to	viral	infection,	
premature	death,	complete	
postnatal	lethality,	liver	
inflammation,	CNS	
inflammation,	abnormal	
circulating	cytokine	level,	
decreased	leukocyte	cell	
number.	

Insulitis,	periinsulitis,	
impaired	natural	killer	cell	
mediated	cytotoxicity.	

SLC22A5	 Carnitine	deficiency	 212140	

This	results	in	impaired	fatty	acid	
oxidation	in	skeletal	and	heart	
muscle.	In	addition,	renal	wasting	of	
carnitine	results	in	low	serum	levels	
and	diminished	hepatic	uptake	of	
carnitine	by	passive	diffusion,	which	
impairs	ketogenesis. 

Premature	death,	enlarged	liver,	
hepatic	steatosis,	increased	
triglyceride	level,	decreased	
circulating	carnitine	level,	
impaired	lipolysis,	decreased	
body	weight,	enlarged	heart.	

Decreased	circulating	
carnitine	level,	impaired	
lipolysis.	

SMPD1	
Niemann-Pick	
disease,	type	A	
	

257200	

The	clinical	phenotype	for	type	A	
ranges	from	a	severe	infantile	form	
with	neurologic	degeneration	
resulting	in	death	usually	by	3	years	
of	age.	 

Premature	death,	ataxia,	
lethargy,	abnormal	apoptosis,	
decreased	body	weight,		
increased	macrophage	derived	
foam	cell	number,	abnormal	
lipid	homeostasis,	increased	
susceptibility	to	bacterial	

Abnormal	immune	system	
cell	morphology,	abnormal	
neuron	differentiation,	
abnormal	depression-
related	behavior.	
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infection,	decreased	brain	size.	
Phenotypes	obtained	from	[49]a	and	[44]b	 	
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Fig	S1.	Frequency	distribution	of	disease	mutations	in	individuals	of	European	

ancestry.	 Shown	 are	 allele	 frequencies	 for	 92	 variants	 associated	 with	 lethal,	

recessive	 diseases,	 as	 estimated	 from	 33,370	 individuals	 non-Finnish,	 European-

ancestry	 in	 the	 Exome	 Aggregation	 Consortium	 (ExAC)	 database	 [19]	 and	 76,314	

European-ancestry	 individuals	 from	 a	 genetic	 testing	 laboratory	 (Counsyl)	 (see	

Methods).	Allele	frequencies	do	not	differ	significantly	between	datasets	(Wilcoxon	

signed-rank	 test	 for	 paired	 samples,	 p-value=0.34).	 Violin	 plots	 show	 the	 density	

distribution	 of	 alleles	 segregating	 in	 these	 samples,	 while	 boxes	 indicate	 the	

proportion	of	sites	for	which	the	deleterious	mutation	was	not	observed.	
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Fig	 S2.	 Comparisons	 of	 SIM	 and	 FIN	 models.	 (A)	 Mean	 allele	 frequency	 as	 a	

function	 of	 effective	 population	 size,	 under	 the	 FIN	 model.	 The	 X-axis	 range	

corresponds	 to	 the	minimum	and	maximum	effective	population	size	estimated	 in	

[21].	The	red	bar	indicates	the	value	of	a	constant	population	size	at	which	the	mean	

allele	frequency	predicted	under	a	constant	population	size	model	is	the	same	as	the	

mean	allele	frequency	estimated	in	simulations	(SIM),	for	an	average	mutation	rate	

of	 1.20x10-8	 [16].	 Even	 for	 this	 value,	 the	 mean	 matches	 the	 constant	 size	

expectation,	but	the	distributions	differ	(see	panel	“b”	below).	(B)	SIM	refers	to	the	

complex	demographic	scenario	inferred	by	Tennessen	et	al.	[21]	for	the	evolution	of	

European	populations	 (see	Methods).	 In	 the	 finite,	 constant	size	population	model	

(FIN),	N	is	set	to	72,348	individuals,	so	that	the	mean	allele	frequency	(red	bars)	is	

the	same	as	in	simulations	(see	panel	“a”	above).	To	generate	a	distribution	for	this	

model,	 we	 simulated	 a	 constant	 population	 size,	 as	 described	 in	Methods	 for	 the	

Tennessen	 et	 al.	 model.	 Violin	 plots	 show	 the	 distribution	 of	 allele	 frequencies	

among	segregating	alleles,	while	the	boxes	indicate	the	proportion	of	sites	at	which	

the	 non-disease	 allele	 is	 fixed.	 These	 models	 assume	 strong	 selection	 (s=1)	 and	

complete	recessivity	(h=0).	As	can	be	seen,	the	two	distributions	differ	significantly	

(Kolmogorov-Smirnov	test,	p-value	<	10-15).		
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Fig	 S3.	 The	 impact	 on	 disease	 allele	 frequencies	 of	 a	 small	 fitness	 effect	 in	

heterozygotes	 (h=0.01).	 Shown	 is	 the	 distribution	 generated	 from	 simulations.	

Means	 are	 represented	 by	 red	 horizontal	 bars.	 Violin	 plots	 show	 the	 density	

distribution	 of	 alleles	 segregating	 in	 these	 samples,	 whereas	 boxes	 indicate	 the	

proportion	of	 sites	 for	which	 the	deleterious	mutation	was	not	 observed.	When	 a	

small	 fitness	 effect	 in	 heterozygotes	 is	 considered	 in	 the	 simulations,	 the	 mean	

decreases	 by	 68%	 and	 a	 larger	 proportion	 of	 sites	 are	 not	 segregating.	 The	 two	

distributions	differ	significantly	(p-value	<	10-15	by	a	Kolmogorov-Smirnov	test).	
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Fig	S4.	Effect	of	varying	the	end	population	size	in	the	SIM	model.	Tennessen	et	

al.	 [21]	 inferred	 the	 present	 effective	 population	 size	 of	 Europeans	 to	 be	 512,000	

individuals	(column	A).	We	considered	the	effect	of	 larger	population	sizes	(2-,	4-,	

and	10-fold	 increase,	 denoted	by	 columns	B,	 C	 and	D	 respectively),	 keeping	other	

parameters	 the	 same.	 The	 observed	 allele	 frequency	 distribution	 of	 385	 disease	

mutations	 in	ExAC	 is	shown	in	white.	Violin	plots	show	the	density	distribution	of	

alleles	segregating	in	these	samples,	whereas	boxes	indicate	the	proportion	of	sites	

for	 which	 the	 deleterious	 mutation	 was	 not	 observed.	 All	 distributions	 differ	

significantly	 from	 one	 another	 (i.e.,	 all	 p-values	 are	 <	 10-15	 by	 a	 Kolmogorov-

Smirnov	test).	
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Fig	 S5.	 Expected	 and	 observed	 distributions	 of	 disease	 allele	 frequencies	

(excluding	mutations	 in	CFTR	and	DHCR7).	The	 four	panels	correspond	 to	 four	

different	mutation	types.	The	title	of	the	panel	indicates	the	mutation	type,	followed	

by	the	total	number	of	mutations,	with	p-value	for	the	difference	between	observed	

and	expected	mean	frequencies	below	it.	Results	in	grey	(SIM)	were	obtained	from	

simulations	 considering	 a	 plausible	 demographic	model	 for	European	populations	

[21]	(see	text).	The	observed	values	estimated	from	33,370	individuals	of	European	

ancestry	 from	ExAC	 are	 shown	 in	white.	 As	 opposed	 to	 Fig	 1,	we	 did	 not	 include	

mutations	present	 in	 two	genes	(CFTR	and	DHCR7)	 that	were	outliers	 in	 the	gene-

level	analysis	(Fig	3)	and	were	reported	elsewhere	[20]	to	have	healthy	individuals	

found	 to	be	homozygous	 for	a	deleterious	allele.	As	 in	Fig	1,	violin	plots	show	the	

density	distribution	of	variable	sites,	while	boxes	indicate	the	proportion	of	sites	for	

which	 the	 wild,	 non-deleterious	 mutation	 is	 fixed.	 Means	 (considering	 both	

segregating	and	fixed	mutations)	are	indicated	with	red	horizontal	bars.		
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Fig	 S6.	Depth	 of	 coverage	 for	 385	mutations	 in	 ExAC	 known	 to	 cause	 lethal,	

Mendelian	diseases.	Box	plots	show	the	mean	(black	bar)	and	the	lower	and	upper	

quartiles	for	(A)	the	248	sites	with	non-zero	sample	frequencies	in	ExAC,	for	which	

the	 number	 of	 sequenced	 non-Finnish	 European	 individuals	 was	 reported	 (N	 =	

32,881)	and	(B)	for	the	137	sites	for	which	we	did	not	have	this	information.	Since	

distributions	 of	 depth	 of	 coverage	 are	 similar	 between	datasets,	we	 assumed	 that	

32,881	individuals	were	sequenced	on	average	at	all	sites,	and	used	this	number	to	

subsample	simulations	to	match	the	sample	size	of	the	ExAC	data.		
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