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Abstract 16 

The role of DNA methylation in development, divergence, and the response to 17 

environmental stimuli is of substantial interest in ecology and evolutionary biology. Measuring 18 

genome-wide DNA methylation is increasingly feasible using sodium bisulfite sequencing. Here, 19 

we analyze simulated and published data sets to demonstrate how effect size, 20 

kinship/population structure, taxonomic differences, and cell type heterogeneity influence the 21 

power to detect differential methylation in bisulfite sequencing data sets. Our results reveal that 22 

the effect sizes typical of evolutionary and ecological studies are modest, and will thus require 23 

data sets larger than those currently in common use. Additionally, our findings emphasize that 24 

statistical approaches that ignore the properties of bisulfite sequencing data (e.g., its count-25 

based nature) or key sources of variance in natural populations (e.g., population structure or cell 26 

type heterogeneity) often produce false negatives or false positives, thus leading to incorrect 27 

biological conclusions. Finally, we provide recommendations for handling common issues that 28 

arise in bisulfite sequencing analyses and a freely available R Shiny application for simulating 29 

and performing power analyses on bisulfite sequencing data. This app, available at www.tung-30 

lab.org/protocols-and-software.html, allows users to explore the effects of sequencing depth, 31 

sample size, population structure, and expected effect size, tailored to their own system. 32 

 33 

Keywords: DNA methylation, bisulfite sequencing, cell type heterogeneity, population structure, 34 

mixed effects models, ecological epigenetics  35 
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Introduction 36 

DNA methylation – the covalent addition of methyl groups to cytosine bases – is a gene 37 

regulatory mechanism of well-established importance in development, disease, and the 38 

response to environmental conditions1–3. In addition, shifts in DNA methylation are thought to 39 

contribute to the speciation process and the evolution of trait differences between taxa4–6, in 40 

support of the idea that gene regulation plays a key role in evolutionary change. Because of its 41 

contribution to phenotypic diversity, interest in DNA methylation from the ecology and 42 

evolutionary biology communities is high7–10. This interest has been further encouraged by the 43 

development of sodium bisulfite sequencing, a cost-effective approach that allows researchers 44 

to measure genome-wide DNA methylation levels at base-pair resolution in essentially any 45 

organism11–13.   46 

Such approaches rely on sodium bisulfite treatment of DNA followed by high-throughput 47 

sequencing, producing data sets that are collectively termed “bisulfite sequencing data.” These 48 

data have properties (discussed in the following section) that differ in key ways from other 49 

common types of sequencing-based functional genomic data, such as RNA-seq data. 50 

Consequently, several statistical approaches have been developed that are specifically tailored 51 

to bisulfite sequencing data sets14–17 (Box 1). However, the development, application, and 52 

evaluation of these tools has primarily focused on biomedical questions or model systems, with 53 

an emphasis on case-control studies and experimental manipulations in a restricted set of 54 

species18–20. In contrast, ecologists and evolutionary biologists often study non-model 55 

organisms, environmental gradients that do not follow a case-control design, and natural 56 

populations characterized by complex kin or population structure. They are also typically more 57 

limited in their ability to sample pure cell types, and may be interested in effects that are smaller 58 

than those reported in the context of major perturbations like cancer or pathogen infection21–23. 59 

Notably, all of these properties can affect statistical power.  60 
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Our goal in this review is to outline considerations for the analysis of bisulfite sequencing 61 

data, tailored specifically to concerns that commonly arise in ecological and evolutionary 62 

studies. We first discuss how high-throughput bisulfite sequencing data sets are generated, and 63 

how this process leads to several idiosyncrasies that must be taken into account in data 64 

analysis. Next, we consider four properties common to ecological and evolutionary data sets 65 

that can influence power to detect differential methylation: moderate effect sizes, 66 

kinship/population structure, taxonomic differences in DNA methylation patterns, and cell type 67 

heterogeneity. We analyze both simulated and published empirical data sets to demonstrate 68 

how these four features can affect the power and biological interpretation of differential 69 

methylation analysis. Finally, we provide recommendations for handling each issue, with the aim 70 

of facilitating robust, well-powered studies of DNA methylation’s role in ecological and 71 

evolutionary processes. 72 

 73 

Common properties of high-throughput bisulfite sequencing data sets 74 

High-throughput bisulfite sequencing protocols, such as whole genome bisulfite 75 

sequencing (WGBS13) or reduced representation bisulfite sequencing (RRBS11), rely on the 76 

differential sensitivity of methylated versus unmethylated cytosines to the chemical sodium 77 

bisulfite (Figure 1). Specifically, treatment of DNA with sodium bisulfite converts unmethylated 78 

cytosines to uracil (replicated as thymine after PCR) but leaves methylated cytosines 79 

unchanged (in vertebrates, most DNA methylation occurs at cytosines in CG motifs, while, in 80 

other taxa, cytosines in CHG and CHH are also commonly methylated24,25). DNA methylation 81 

level estimates at a given site can thus be obtained via high-throughput sequencing of bisulfite 82 

converted DNA, by comparing the relative count of reads contain a cytosine (C), which reflect 83 

an originally methylated DNA base, to the count of reads containing a thymine (T), which reflect 84 

an originally unmethylated version of the same base. Current bisulfite sequencing protocols 85 

require low amounts of input DNA26,27, avoid the use of species-specific array platforms, and 86 
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can be applied to organisms without a reference genome28, making them an increasingly 87 

popular choice for ecologists and evolutionary biologists29.  88 

High-throughput bisulfite sequencing data have a number of unique properties that 89 

influence both study design and data analysis. First, the raw data are binomially distributed 90 

count data, in which both the number of methylated reads (unconverted “C” bases) and the total 91 

read depth (number of methylated “C” bases plus unmethylated “T” bases) at each site contain 92 

useful information. For example, a site where 5 of 10 reads are methylated and a site where 50 93 

of 100 reads are methylated both have estimated methylation levels of 50%. However, 94 

confidence in the methylation level estimate is higher for the second site, where total read depth 95 

is much greater. Information about relative confidence can be retained by modeling the raw 96 

count data rather than transforming counts to proportions or percentages, and several software 97 

packages now implement beta-binomial or binomial mixed effects models that do so14–16,30 (Box 98 

1). These approaches provide a more powerful alternative to tests that assume continuously 99 

varying percentages or proportions (e.g., t-tests, Mann-Whitney U tests, linear models). They 100 

also control for count overdispersion, a known property of bisulfite sequencing data that violates 101 

the assumptions of commonly used, but false positive-prone30, binomial models.  102 

Retaining count/read depth information during analysis also relates to a second property 103 

of bisulfite sequencing data: often, some samples will have low read depth or missing data at a 104 

CpG site where other samples have much higher read depth (especially in RRBS data sets, 105 

where read coverage is affected by the sample-specific efficiency and specificity of the 106 

restriction enzyme digest: Figure 1, Figure S1). Unlike RNA-seq data sets where read depth 107 

variation within a sample captures biological information (i.e., once normalized, lower read 108 

counts indicate lower expression levels), variance in read depth across sites in bisulfite 109 

sequencing data sets is purely technical and tells us nothing about biological variation in DNA 110 

methylation levels at a site. Both read depth and effective sample size will thus vary across sites 111 
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in the same data set, and will often do so systematically across different regions of the genome 112 

(e.g., near genes or in intergenic regions, which differ in CpG content: Figure S1). 113 

Finally, the efficacy of the bisulfite conversion step can vary across samples or groups of 114 

samples prepared together, creating global batch effects. Though conversion efficiency is 115 

typically high (>98% of unmethylated cytosines converted to thymine31–34), small differences in 116 

conversion efficiency can have significant effects on genome-wide estimates of DNA 117 

methylation levels. In particular, samples with low conversion efficiencies will tend to have 118 

systematically upwardly biased estimates of DNA methylation levels relative to samples with 119 

higher conversion efficiencies, because fewer unmethylated Cs were converted to Ts. Thus, 120 

sample-specific bisulfite conversion rates should be directly estimated and taken into account in 121 

downstream analyses (e.g., by including bisulfite conversion rate as a model covariate). 122 

Estimates of sample-specific conversion rates can be obtained by spiking in a small amount of 123 

unmethylated DNA during library construction (lambda phage DNA is commonly used), mapping 124 

the resulting reads to the appropriate genome (e.g., the lambda phage genome), and estimating 125 

the proportion of unmethylated cytosines in the spike-in DNA sample that failed to convert31–34. 126 

For data sets that do not include spike-ins, bisulfite conversion rates can be estimated using the 127 

conversion rate of CHH and CHG sites in species or cell types in which CHH and CHG 128 

methylation is rare27,35,36. However, this approach is less ideal because it cannot differentiate 129 

between unmethylated cytosines that failed to convert because of technical reasons, and 130 

methylated cytosines that truly occur in a non-CpG context.    131 

 132 

Effect sizes in ecological and evolutionary studies  133 

A primary determinant of power in differential methylation analysis is the distribution of 134 

true effect sizes (i.e., the magnitude of the effect of the predictor variable of interest on DNA 135 

methylation levels). However, it is not obvious what the distributions of effect sizes for questions 136 

of ecological and evolutionary interest are likely to be. While effect size distributions and power 137 
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analyses have been published for human disease case-control studies18,20, comparable 138 

information is not readily available for most other settings. Small or moderate epigenetic 139 

changes may still impact gene expression levels and consequently be of interest37–39; however, 140 

they will require larger sample sizes to detect. 141 

To aid researchers in choosing appropriate sample sizes, we estimated effect sizes in 142 

data sets from plants, hymenopteran insects, and mammals that address a range of ecological 143 

and evolutionary questions, including: (i) developmental and demographic effects (eusocial 144 

insect caste differentiation35; age31); (ii) ecological effects (resource availability, including both 145 

large differences40 and more modest ones31); (iii) genetic effects (cis-acting methylation 146 

quantitative trait loci41); and (iv) species differences42,43 (Table 1). For comparison, we also 147 

include a data set contrasting cancer cells with normal tissue from the same donors21, which 148 

produces some of the largest effect sizes for differential methylation observed to date.  149 

We first reanalyzed each data set using a uniform analysis pipeline (Supplementary 150 

Materials) and estimated two measures of effect size: (i) the mean difference in methylation 151 

levels between groups of samples, for binary comparisons (Figure 2A) and (ii) the proportion of 152 

variance explained by the variable of interest (Figure S2). This analysis provides an empirical 153 

picture of how effect size distributions vary across study types. For example, local genetic 154 

variants tend to have large effects on DNA methylation levels, while environmental effects are 155 

consistently more modest (Figure 2A; Figure S2). To understand how these differences impact 156 

power, we simulated bisulfite sequencing data sets across a range of typical effect sizes and 157 

estimated the sample size required to identify differentially methylated sites in each case. All 158 

simulations presented in the main text assume that 10% of the sites in each dataset are true 159 

positives, but results from parallel analyses with varying proportions of true positives are shown 160 

in Figure S3.   161 

 Our simulation results suggest that answering many ecological and evolutionary 162 

questions will require sample sizes that exceed those used in most current studies (Figure 2B; 163 
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Table S1). For example, to identify sites where the predictor variable explains 15% of the 164 

variance in DNA methylation levels (a mean difference between sample groups of 13-14% in 165 

our simulations) with 50% power requires an estimated 125 samples (250 samples for 80% 166 

power and 500 samples for 95% power). To accommodate the costs of larger sample sizes, we 167 

recommend reducing per sample read depth or choosing a reduced representation or capture-168 

based approach rather than WGBS. However, we strongly recommend against pooling DNA 169 

samples from multiple individuals into a single library, as this approach reduces power by 170 

collapsing the number of biological replicates available for analysis. Global analysis approaches 171 

that test for patterns in an entire data set, such as principal components analysis (PCA) or 172 

hierarchical clustering, may also be helpful when a data set is too power-limited to compensate 173 

for the large multiple hypothesis testing burden incurred in site-by-site analyses. This approach 174 

is particularly useful when a predictor variable is associated with small changes in DNA 175 

methylation levels at any given locus, but such changes are common genome-wide.  176 

 For example, in two published data sets (focused on the epigenetic effects of dominance 177 

rank in rhesus macaques and caste differences in clonal raider ants32,35), bisulfite sequencing 178 

sample sizes were very small. The macaque study (n=3 high-ranking versus n=3 low-ranking 179 

animals) did not attempt site-by-site analysis, while the raider ant study (n=4 pools of 180 

reproductive phase ants versus n=4 pools of brood care phase ants) found no evidence for 181 

caste effects on DNA methylation using site-by-site paired t-tests. As shown in Figure 2B (see 182 

also Figure S4), this result could have stemmed from low power. In support of this possibility, 183 

global analysis separates the sample groups of interest in both data sets. Specifically, the 184 

macaque study reported that hierarchical clustering distinguishes between high-ranking (n=3) 185 

and low-ranking (n=3) individuals, with increased separation when focusing on CpG sites near 186 

genes differentially expressed with rank32. Similarly, when we re-analyzed the clonal raider ant 187 

data using principal components analysis, we found that a principal components analysis of 188 

CpG sites cleanly separates reproductive and brood care individuals, particularly along principal 189 
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component 3 (t-test for separation along PC 3: p=0.022; Figure 2C). Together, these results 190 

emphasize the potential utility of global analysis approaches in small studies. 191 

 192 

Kinship and population structure  193 

Ecological and evolutionary studies often focus on natural populations that contain 194 

related individuals or complex population structure. Accounting for these sources of variance is 195 

important because DNA methylation levels are often heritable41,44–46. In humans, where genetic 196 

effects on DNA methylation have been best studied, genotype-DNA methylation associations 197 

have now been reported for tens of thousands of CpG sites33,47–49, with average heritability 198 

levels of 18%-20% in whole blood45,46. As a result, more closely related individuals will tend to 199 

exhibit more similar DNA methylation patterns than unrelated individuals. Analyses that do not 200 

take genetic relationships into account can therefore produce spurious associations if the 201 

predictor of interest also covaries with kinship or ancestry. For example, samples are often 202 

collected along transects where climatic variables (e.g., temperature, altitude, rainfall) covary 203 

with genetic structure41,50. Genetic effects on DNA methylation could thus masquerade as 204 

climatic effects if genetic sources of variance are not also modeled.  205 

Fortunately, this problem is structurally parallel to problems that have already been 206 

addressed in genotype-phenotype association studies, phylogenetic comparative analyses, and 207 

research on other functional genomic traits. The most straightforward solution is to use mixed 208 

effects models, which can incorporate a matrix of pairwise kinship or shared ancestry estimates 209 

to account for genetic similarity (Box 1). Specifically, this matrix is treated as the variance-210 

covariance matrix for the heritable (genetic) component of a random effect variable (the 211 

environmental component is usually assumed to be independent across samples, so its 212 

variance-covariance is given by the identity matrix). The kinship matrix thus contributes to the 213 

predicted value of a heritable response variable, but does not affect the value of nonheritable 214 

response variables. Notably, while most approaches for controlling for relatedness implement 215 
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linear mixed models that are only appropriate for continuous response variables51–53, recently 216 

developed binomial mixed models can be used to achieve the same task using count data30 217 

(Box 1). These approaches avoid the need for transforming bisulfite sequencing data from 218 

counts to proportions or ratios, thus preserving information about sequencing depth for each 219 

site-sample combination. Additionally, recent tools for calling SNP genotypes directly from 220 

bisulfite sequencing reads (e.g., BisSNP54 and BS-SNPer55) can help with constructing 221 

kinship/relatedness matrices, although not without error (Box 2).  222 

 223 

Taxonomic differences in DNA methylation patterns 224 

  Most research on DNA methylation to date has focused on humans and a handful of 225 

model systems. However, ecologists and evolutionary biologists study a much broader range of 226 

species, and patterns of DNA methylation can vary dramatically among taxa24,25. These 227 

differences, too, can impact power and analysis strategies for bisulfite sequencing studies. They 228 

also mean that patterns typical of one taxonomic group cannot necessarily be extrapolated to 229 

others.  230 

 To provide some intuition about how the distribution of DNA methylation levels vary 231 

across taxa, we synthesized data from published studies of flowering plants, hymenopteran 232 

insects, canids, humans, and non-human primates (Table 1). We estimated the mean and 233 

variance of DNA methylation level for each CpG site in each data set (Figure 3A-B; Figure S5), 234 

and used these values to simulate new data sets for power analyses (Supplementary Materials). 235 

We were particularly interested in understanding the impact of variance on power because it is 236 

unlikely that a predictor variable of interest will significantly explain variation in DNA methylation 237 

levels at a locus where there is little variation to begin with. Importantly, the degree to which 238 

genomes are composed of relatively monomorphic (low variance) versus high variance sites 239 

systematically varies due to both taxon and sequencing strategy (Figure 3A-B, Figure S5). 240 

Our simulations suggest that, all else being equal, power to detect differential 241 
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methylation in bisulfite sequencing data is limited by variance. Specifically, for any given sample 242 

size with a fixed mean DNA methylation level, power increases as a function of the underlying 243 

variance in DNA methylation levels (Figure 3C). These results suggest that analyses of low 244 

variance genomes, such as those typical of hymenopteran insects, may require larger sample 245 

sizes to detect a given effect than analyses of more variable systems, such as plants or 246 

mammals. An alternative, a less expensive approach is simply to filter out low variance sites 247 

prior to data analysis. Notably, such filtering will also affect the relative representation of sites in 248 

genes, promoters, CpG islands, and other functional compartments of the genome, because 249 

some of these compartments are consistently more variable than others (Figure S5).  250 

In the current literature, differences in the genome-wide distribution of DNA methylation 251 

levels across taxa have led to taxon-biased analysis approaches. For example, in 252 

hymenopteran insects (where most of the genome is hypomethylated), several studies35,56,57 253 

have used a binomial test to classify sites into ‘unmethylated’ or ‘methylated’ categories (i.e., all 254 

sites that do not pass a given significance threshold are considered ‘unmethylated’). Our 255 

simulations (Supplementary Materials) suggest that this approach not only loses information 256 

about quantitative variation, but is also sensitive to technical aspects of the data, such as 257 

sequencing depth. For example, using a binomial test approach, a site with an observed 258 

methylation level of 15% would be considered ‘unmethylated’ at a read depth of 20x, but 259 

‘methylated’ at a read depth of 26x (Figure S6). This problem likely accounts for the report of 260 

high rates of ‘sample-specific DNA methylation’ (where a site is methylated in one sample, but 261 

unmethylated in all other samples) in one recent study35. Indeed, our re-analysis of the same 262 

data shows that 77% of putative sample-specific sites can be more parsimoniously explained by 263 

greater read depth in the “outlier” sample (Figure S6). Such problems can be readily avoided by 264 

not binarizing DNA methylation levels, which are intrinsically continuous traits, and by using 265 

count-based models that account for variation in sequencing depth14–16,30. 266 

 267 
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Cell type heterogeneity 268 

Epigenetic patterns vary substantially across cell types, contributing to differences in 269 

gene expression and biological function among different tissues58. In some settings, purified cell 270 

types can be isolated (e.g., via fluorescent-activated cell sorting). However, this approach is 271 

usually not feasible for biologists working under field conditions or with non-model systems (for 272 

which antibodies to cell type-specific markers are often unavailable). Consequently, most 273 

ecological and evolutionary studies have generated bisulfite sequencing data from 274 

heterogeneous samples, such as whole blood, whole organs, or even whole organisms. 275 

Because many variables influence both DNA methylation levels and cell type composition, 276 

putatively differentially methylated sites could, in some cases, be more parsimoniously 277 

explained by variation in cell type proportions rather than a direct effect of the variable of 278 

interest on DNA methylation59. 279 

If isolating purified cell types is not an option, several alternative approaches can be 280 

used to address cell type heterogeneity. The best option is to directly estimate the relative 281 

proportion of the primary cell types in each sample using cell staining (e.g., Giemsa or Wright-282 

Giemsa) or flow cytometry techniques. These estimates, or a composite measure of multiple 283 

estimates (e.g., the first several principal components of variation in cell type proportions) can 284 

be incorporated as covariates in downstream analyses. If no measures of cell type 285 

heterogeneity are available for the samples of interest, a second option is to use epigenomic 286 

profiles from sorted cells36,60 to predict the composition of mixed samples (a process known as 287 

‘deconvolution’59,61). However, deconvolution estimates may introduce additional error, 288 

especially for cell types that occur at low frequency. A third option is to use data from sorted cell 289 

populations to understand the degree to which cell type composition could confound the 290 

conclusions of a study. If sites that are differentially methylated with respect to the predictor of 291 

interest also tend to be differentially methylated by cell type, the analysis may be 292 

confounded6,31. However, if the between-sample compositional differences that would be 293 
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required to produce the observed levels of differential methylation are not biologically plausible, 294 

tissue heterogeneity is unlikely to completely explain observed differentially methylated sites6.  295 

Finally, if data from sorted cell populations are unavailable, researchers can apply 296 

methods that account for cell type heterogeneity without the need for reference information62–64. 297 

However, caution is warranted, as some methods make implicit assumptions that may be 298 

violated in a given data set. For example, the program FaST-LMM-EWASher controls for cell 299 

type heterogeneity by (i) subsetting the data set to focus on the sites most strongly associated 300 

with a predictor variable of interest, and then (ii) calculating pairwise covariance between 301 

samples using only these sites. The resulting covariance matrix is included as a proxy for 302 

covariance in cell type composition in a mixed effects model62. However, FaST-LMM-EWASher 303 

makes two important assumptions: that most apparent cases of differential methylation are 304 

driven by cell type composition effects, and that true positive associations are therefore both 305 

rare and of large effect. These assumptions may hold in some studies, but when violated, this 306 

approach can substantially reduce power. For example, an analysis of resource base effects in 307 

baboon whole blood identified an association with DNA methylation levels at 1014 sites, after 308 

ruling out tissue heterogeneity confounds based on blood smear counts and comparisons 309 

against purified cell populations31. In comparison, FaST-LMM-EWASher detected a single 310 

differentially methylated site in the same data set. Alternative programs that account for cell type 311 

heterogeneity while making fewer assumptions (e.g., RefFreeEwas64 or SVA63) may thus be 312 

more appropriate. However, we caution that while such approaches can help control for 313 

variance due to cell type heterogeneity, none can overcome systematic confounding between 314 

cell type composition and a predictor of interest. 315 

 316 

Conclusions and tools 317 

 Like most other genomic technologies, high-throughput bisulfite sequencing approaches 318 

were first optimized in research contexts that afford a high degree of control (e.g., experimental 319 
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case-control studies in model systems) and in systems that boast extensive genomic resources 320 

(e.g., humans). However, for ecologists and evolutionary biologists, these approaches often 321 

become most exciting when they can be extended to a much more diverse set of species and 322 

populations—even if these extensions come with complications. We believe that the biological 323 

insights to be gained from studies of DNA methylation in diverse taxa have substantial potential. 324 

However, maximizing the yield from these studies will require careful consideration of taxon-325 

specific characteristics, the use of analysis methods appropriate to a data set’s structure, and 326 

realistic assessments of power. In particular, our results reveal that, with sample sizes that are 327 

currently feasible for many ecologists and evolutionary biologists, differential methylation 328 

analyses will tend to be moderately or lowly powered. Such studies may still have the potential 329 

to reveal interesting and important biology. However, researchers should be aware that they are 330 

likely to detect only the largest effect sizes (as is also true for other types of genomic analysis65), 331 

and should consider this bias when drawing biological conclusions.  332 

Finally, to help quantify how sample size, effect size, population structure, and modeling 333 

approach affect bisulfite sequencing data analysis, we have developed an R Shiny application 334 

to perform power analyses like those presented here. This app allows bisulfite sequencing data 335 

to be simulated with user-specified properties, is coupled with a set of statistical analysis options 336 

to evaluate study power, and outputs the simulated count data for maximal flexibility. The app is 337 

freely available at www.tung-lab.org/protocols-and-software.html. 338 

 339 

Acknowledgements 340 

We thank Kasper Hansen and Irene Hernando-Herraez for providing processed file 341 

formats from their previously published work. We also thank Noah Snyder-Mackler, Luis 342 

Barreiro, and Xiang Zhou for helpful comments and suggestions, Mine Cetinkaya-Rundel for 343 

coding suggestions on the R Shiny app, and the Baylor College of Medicine Human Genome 344 

Sequencing Center for access to the current version of the baboon genome assembly (Panu 345 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 15 

2.0). This work was supported by NIH R21-AG049936 and 1R01GM102562 to JT, NSF BCS-346 

1455808 to JT and AJL  PAPD is supported by NIH K12GM000678 from the Training, 347 

Workforce Development & Diversity division of the National Institute of General Medical 348 

Sciences. 349 

 350 

Data accessibility 351 

 Summaries of data availability and accession numbers for previously published data sets 352 

are provided in Table S1. Our BisSNP analyses utilized publicly available SNP calls for 353 

Arabidopsis accessions downloaded from the 1001 Genomes Project 354 

(http://1001genomes.org/data/GMI-MPI/releases/v3.1/). An R Shiny app for simulating bisulfite 355 

sequencing data and performing power analysis is available at www.tung-lab.org/protocols-and-356 

software.html.   357 

 358 

Author contributions 359 

AJL and JT conceived the study; AJL, TPV, and PAPD analyzed previously published 360 

and simulated data; TPV wrote the R Shiny app; and AJL and JT wrote the manuscript, with 361 

input from all co-authors. All authors gave final approval for publication. 362 

  363 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 16 

References 364 
 365 

1. Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and 366 
implications. Nat. Rev. Genet. 13, 97–109 (2011). 367 

2. Jones, P. Functions of DNA methylation: islands, start sites, gene bodies and beyond. 368 
Nat. Rev. Genet. 13, 484–92 (2012). 369 

3. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. 370 
Rev. Genet. 14, 204–220 (2013). 371 

4. Zhao, Y. et al. Adaptive methylation regulation of p53 pathway in sympatric speciation of 372 
blind mole rats, Spalax. Proc. Natl. Acad. Sci. 113, 2146–2151 (2016). 373 

5. Durand, S., Bouché, N., Perez Strand, E., Loudet, O. & Camilleri, C. Rapid establishment 374 
of genetic incompatibility through natural epigenetic variation. Current Biology 22, 326–375 
331 (2012). 376 

6. Hernando-Herraez, I. et al. Dynamics of DNA methylation in recent human and great ape 377 
evolution. PLoS Genet. 9, e1003763 (2013). 378 

7. Hernando-Herraez, I., Garcia-Perez, R., Sharp, A. J. & Marques-Bonet, T. DNA 379 
Methylation: Insights into Human Evolution. PLoS Genet. 11, 1–12 (2015). 380 

8. Snell-Rood, E. The importance of epigenetics for behavioral ecologists (and vice versa). 381 
Behav. Ecol. 19, 2012 (2012). 382 

9. Ledon-Rettig, C. C., Richards, C. L. & Martin, L. B. Epigenetics for behavioral ecologists. 383 
Behav. Ecol. 1–14 (2012). doi:10.1093/beheco/ars145 384 

10. Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 385 
106–15 (2008). 386 

11. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for 387 
genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–81 (2011). 388 

12. Lister, R., Pelizzola, M., Dowen, R. & Hawkins, R. Human DNA methylomes at base 389 
resolution show widespread epigenomic differences. Nature 462, (2009). 390 

13. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals 391 
DNA methylation patterning. Nature 452, 215–219 (2008). 392 

14. Dolzhenko, E. & Smith, A. D. Using beta-binomial regression for high-precision 393 
differential methylation analysis in multifactor whole-genome bisulfite sequencing 394 
experiments. BMC Bioinformatics 15, 215 (2014). 395 

15. Sun, D. et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 396 
15, R38 (2014). 397 

16. Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to detect differentially 398 
methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 42, 399 
1–11 (2014). 400 

17. Hansen, K., Langmead, B. & Irizarry, R. BSmooth : from whole genome bisulfite 401 
sequencing reads to differentially methylated regions. Genome Biol. 13, R83 (2012). 402 

18. Tsai, P. C. & Bell, J. T. Power and sample size estimation for epigenome-wide 403 
association scans to detect differential DNA methylation. Int. J. Epidemiol. 44, 1429–1441 404 
(2015). 405 

19. Ziller, M. J., Hansen, K. D., Meissner, A. & Aryee, M. J. Coverage recommendations for 406 
methylation analysis by whole-genome bisulfite sequencing. Nat. Methods 12, 2–5 407 
(2014). 408 

20. Rakyan, V. K., Down, T. a, Balding, D. J. & Beck, S. Epigenome-wide association studies 409 
for common human diseases. Nat. Rev. Genet. 12, 529–41 (2011). 410 

21. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer 411 
types. Nat. Genet. 43, 768–75 (2011). 412 

22. Irizarry, R. et al. The human colon cancer methylome shows similar hypo- and 413 
hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–86 414 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 17 

(2009). 415 
23. Pacis, A. et al. Bacterial Infection Remodels the DNA Methylation Landscape of Human 416 

Dendritic Cells. Genome Res. (2015). doi:10.1101/gr.192005.115 417 
24. Feng, S. et al. Conservation and divergence of methylation patterning in plants and 418 

animals. Proc. Natl. Acad. Sci. 107, 8689–94 (2010). 419 
25. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary 420 

analysis of eukaryotic DNA methylation. Science 328, 916–9 (2010). 421 
26. Adey, A. & Shendure, J. Ultra-low-input, tagmentation-based whole-genome bisulfite 422 

sequencing. Genome Res. 22, 1139–1143 (2012). 423 
27. Boyle, P., Clement, K., Gu, H. & Smith, Z. Gel-free multiplexed reduced representation 424 

bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol. 13, R92 425 
(2012). 426 

28. Klughammer, J. et al. Differential DNA Methylation Analysis without a Reference 427 
Genome. Cell Rep. 13, 2621–2633 (2015). 428 

29. Verhoeven, K. J. F., VonHoldt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: 429 
what we know and what we need to know. Mol. Ecol. 25, 1631–1638 (2016). 430 

30. Lea, A., Tung, J. & Zhou, X. A flexible, efficient binomial mixed model for identifying 431 
differential DNA methylation in bisulfite sequencing data. PLoS Genet. 11, e1005650 432 
(2015). 433 

31. Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Resource base influences genome-wide 434 
DNA methylation levels in wild baboons ( Papio cynocephalus ). Mol. Ecol. (2016). 435 
doi:10.1111/mec.13436 436 

32. Tung, J. et al. Social environment is associated with gene regulatory variation in the 437 
rhesus macaque immune system. Proc. Natl. Acad. Sci. 109, 6490–5 (2012). 438 

33. Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in 439 
transcription factor binding, histone modifications, and gene expression levels. PLoS 440 
Genet. 10, 1–12 (2014). 441 

34. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. 442 
Nature 480, 245–9 (2011). 443 

35. Libbrecht, R., Oxley, P. R., Keller, L. & Kronauer, D. J. C. Robust DNA Methylation in the 444 
Clonal Raider Ant Brain. Curr. Biol. 26, 1–5 (2016). 445 

36. Kawakatsu, T. et al. Unique cell-type-specific patterns of DNA methylation in the root 446 
meristem. Nat. Plants 16058 (2016). doi:10.1038/nplants.2016.58 447 

37. Rönn, T. et al. A six months exercise intervention influences the genome-wide DNA 448 
methylation pattern in human adipose tissue. PLoS Genet. 9, e1003572 (2013). 449 

38. Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of 450 
early-life stress. Nat. Neurosci. 12, 1559–66 (2009). 451 

39. Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social 452 
stress coincides with functional DNA methylation of the CRF gene in adult mice. Nat. 453 
Neurosci. 13, 1351–3 (2010). 454 

40. Tobi, E. W. et al. DNA methylation signatures link prenatal famine exposure to growth 455 
and metabolism. Nat. Commun. 5, 1–13 (2014). 456 

41. Dubin, M. J. et al. DNA methylation variation in Arabidopsis has a genetic basis and 457 
appears to be involved in local adaptation. eLife 4, e05255 (2015). 458 

42. Hernando-Herraez, I. et al. The interplay between DNA methylation and sequence 459 
divergence in recent human evolution. Nucleic Acids Res. 43, 8204–8214 (2015). 460 

43. Janowitz Koch, I. et al. The concerted impact of domestication and transposon insertions 461 
on methylation patterns between dogs and grey wolves. Mol. Ecol. 25, 1838–1855 462 
(2016). 463 

44. Bell, J. T. et al. DNA methylation patterns associate with genetic and gene expression 464 
variation in HapMap cell lines. Genome Biol. 12, R10 (2011). 465 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 18 

45. Bell, J. T. et al. Epigenome-wide scans identify differentially methylated regions for age 466 
and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, (2012). 467 

46. McRae, A. F. et al. Contribution of genetic variation to transgenerational inheritance of 468 
DNA methylation. Genome Biol. 15, R73 (2014). 469 

47. Shi, J. et al. Characterizing the genetic basis of methylome diversity in histologically 470 
normal human lung tissue. Nat. Commun. 5, 3365 (2014). 471 

48. Smith, A. K. et al. Methylation quantitative trait loci (meQTLs) are consistently detected 472 
across ancestry, developmental stage, and tissue type. BMC Genomics 15, 145 (2014). 473 

49. Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in 474 
schizophrenia risk loci. Nat. Neurosci. 19, 1–9 (2015). 475 

50. Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M. & Sork, V. L. Species-wide patterns of DNA 476 
methylation variation in Quercus lobata and its association with climate gradients. Mol. 477 
Ecol. 25, 1665–1680 (2016). 478 

51. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association 479 
studies. Nat. Genet. 44, 821–4 (2012). 480 

52. Kang, H. M. et al. Efficient control of population structure in model organism association 481 
mapping. Genetics 178, 1709–23 (2008). 482 

53. Yu, J. et al. A unified mixed-model method for association mapping that accounts for 483 
multiple levels of relatedness. Nat. Genet. 38, 203–8 (2006). 484 

54. Liu, Y., Siegmund, K. D., Laird, P. W. & Berman, B. P. Bis-SNP: Combined DNA 485 
methylation and SNP calling for Bisulfite-seq data. Genome Biol. 13, R61 (2012). 486 

55. Gao, S. et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics 31, 4006–4008 487 
(2015). 488 

56. Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants 489 
camponotus floridanus and harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012). 490 

57. Lyko, F. et al. The honey bee epigenomes: Differential methylation of brain DNA in 491 
queens and workers. PLoS Biol. 8, (2010). 492 

58. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human 493 
epigenomes. Nature 518, 317–330 (2015). 494 

59. Jaffe, A. E. & Irizarry, R. a. Accounting for cellular heterogeneity is critical in epigenome-495 
wide association studies. Genome Biol. 15, R31 (2014). 496 

60. Watkins, N. a et al. A HaemAtlas: characterizing gene expression in differentiated human 497 
blood cells. Blood 113, 1–9 (2009). 498 

61. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture 499 
distribution. BMC Bioinformatics 13, 86 (2012). 500 

62. Zou, J., Lippert, C., Heckerman, D., Aryee, M. & Listgarten, J. Epigenome-wide 501 
association studies without the need for cell-type composition. Nat. Methods 11, 309–11 502 
(2014). 503 

63. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by 504 
surrogate variable analysis. PLoS Genet. 3, e161 (2009). 505 

64. Houseman, E. A., Molitor, J. & Marsit, C. J. Reference-free cell mixture adjustments in 506 
analysis of DNA methylation data. Bioinformatics 30, 1431–1439 (2014). 507 

65. Rockman, M. V. The QTN program and the alleles that matter for evolution: All that’s gold 508 
does not glitter. Evolution 66, 1–17 (2012). 509 

66. Wu, C., DeWan, A., Hoh, J. & Wang, Z. A comparison of association methods correcting 510 
for population stratification in case-control studies. Ann. Hum. Genet. 75, 418–27 (2011). 511 

67. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. 512 
Methods 8, (2011). 513 

68. Perry, G. et al. Comparative RNA sequencing reveals substantial genetic variation in 514 
endangered primates. Genome Res. 22, 602–610 (2012). 515 

69. Piskol, R., Ramaswami, G. & Li, J. B. Reliable identification of genomic variants from 516 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 19 

RNA-seq data. Am. J. Hum. Genet. 93, 641–651 (2013). 517 
70. Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis 518 

thaliana accessions from the RegMap panel. Nat. Genet. 44, 212–216 (2012). 519 
71. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R 520 

language. Bioinformatics 20, 289–290 (2004). 521 
 522 
  523 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2016. ; https://doi.org/10.1101/091488doi: bioRxiv preprint 

https://doi.org/10.1101/091488
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Box 1. Modeling approaches for bisulfite sequencing data 524 
 525 

Binomial regression. A binomial distribution intuitively describes bisulfite sequencing 526 
data generated for a given sample, 𝑖, at a given site: the number of methylated counts (𝑚) 527 
represents the number of ‘successes‘ in an experiment with 𝑡 trials and 𝑝 probability of success. 528 
Here, 𝑡 translates to the total read depth and 𝑝 to the (unobserved) true methylation level. 529 
 530 

 𝑚! ~ 𝐵𝑖𝑛(𝑡!, 𝑝!) (1) 
 531 

However, bisulfite sequencing data are overdispersed (i.e., show greater variance than 532 
expected) relative to binomial expectations. Thus, using a binomial regression to model 533 
bisulfite sequence data can result in an extremely high rate of false positives and is not 534 
recommended14,30.  535 

Beta binomial regression. To account for overdispersion, beta binomial regressions 536 
have been proposed for bisulfite sequencing data14–16. Here, the parameter 𝑝! from the binomial 537 
setting (equation 1) is itself treated as a random variable that follows a two-parameter beta 538 
distribution. 539 

 540 
 𝑝!  ~ 𝐵𝑒𝑡𝑎 𝛼! ,𝛽!  where 𝛼! ≥ 0 and 𝛽! ≥ 0 

𝑚! ~ 𝐵𝑖𝑛(𝑡!, 𝑝!) 
(2) 

 541 
The beta distribution is then re-parameterized as a beta binomial with parameters 𝑡!, 𝜋! (equal 542 
to 𝛼!/(𝛼! ,+ 𝛽!)), and 𝛾 to capture overdispersion. 543 
 544 

 𝑚!  ~ 𝐵𝑒𝑡𝑎𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑡! ,𝜋! , 𝛾) 

𝑙𝑜𝑔
𝜋!

1 − 𝜋!
= 𝛽! +  𝑥!𝛽! (3) 

 545 
Here, 𝜋! is the analog of the binomial probability of success (𝑝!) and can be interpreted 546 

as the underlying true methylation level (note that the binomial distribution is a special case of 547 
the beta binomial distribution when 𝛾=0). 𝜋! is passed through a logit link function in order to 548 
transform probability values (which are bounded between 0 and 1) to a continuous space for 549 
linear modeling. Transformed values are modeled as a function of an intercept (𝛽!), the 550 
predictor variable of interest (𝑥!), and its effect size (𝛽!).  551 

Linear mixed effects models. While beta-binomial regressions have become a popular 552 
tool for modeling bisulfite sequencing data, these models are not appropriate for data sets that 553 
contain related individuals or population structure. Such data sets require approaches that can 554 
account for genetic covariance (i.e., nonindependence) among samples, such as linear mixed 555 
effects models. 556 

 557 
 𝒚 = 𝛽! +  𝒙𝛽! + 𝒈 + 𝜺 

𝜺 ~ 𝑀𝑉𝑁!(0,𝜎!!𝑰) 
𝒈 ~ 𝑀𝑉𝑁!(0,𝜎!!𝑲) 

𝜎!! =  𝜎!(1 − ℎ!) and 𝜎!! =  𝜎!ℎ! 

(4) 

 558 
Here, 𝒚 is a vector of continuously distributed methylation levels (obtained by normalizing 𝑚/𝑡) 559 
and 𝒈 is a vector of random effects with a covariance structure determined by the genetic 560 
relatedness among individuals in the sample (described by 𝑲, a user-defined n x n pairwise 561 
relatedness matrix) and the heritability of the DNA methylation trait (ℎ!, which can be 562 
decomposed into its genetic and environmental components). 𝑰 is an n x n identity matrix. 563 
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Binomial mixed effects models. Linear mixed models are flexible and fast, but discard 564 
information about total read depth when counts are normalized. Binomial mixed effects 565 
models overcome this constraint by controlling for genetic covariance while modeling raw 566 
counts. 567 

 568 
 𝑚! ~ 𝐵𝑖𝑛(𝑡!, 𝑝!) 

𝑙𝑜𝑔
𝒑

1 − 𝒑
= 𝛽! +  𝒙𝛽! + 𝒈 + 𝜺 

Where 𝜺, 𝒈, 𝜎!! , and 𝜎!! are described as in eq. (4) 

(5) 

 569 
This model essentially combines the linear mixed model with the beta binomial regression. The 570 
variable 𝒑 now reflects the vector of true methylation levels for all samples and is passed 571 
through a logit link function for linear modeling. The genetic covariance, as well as the 572 
overdispersion, is captured by the random effects component. 573 
 574 
 575 
Summary of model properties 576 

Method 
Models the count-

based nature of the 
data 

Models genetic 
covariance 

Programs that 
implement the method 

Binomial regression Yes* No R and many others 
Beta-binomial 

regression Yes No DSS16, MOABS15, 
RadMeth14 

Linear mixed effects 
model No Yes GEMMA51, EMMA52, 

EMMAX66, FaST-LMM67 

Binomial mixed 
effects model Yes Yes MACAU30 

*Binomial regression is never recommended. Because bisulfite sequencing data are 577 
overdispersed relative to the assumptions of this model, binomial regression analyses tend to 578 
generate many false positives. 579 
 580 
  581 
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Box 2. Calling genotypes from bisulfite sequencing data 582 
 583 

Like other high-throughput sequencing assays68,69, bisulfite sequencing studies generate 584 
sequencing reads that contain information about genetic variation. Calling variants or genotypes 585 
from these data may be of interest for detecting genetic effects on DNA methylation levels (i.e., 586 
methylation quantitative trait loci, or meQTL), verifying sample identity, or controlling for genetic 587 
relatedness in downstream analyses. However, typical SNP-calling algorithms are not well 588 
suited to bisulfite sequencing data because the C to T conversion obscures true C/T 589 
polymorphisms. Several recently developed software packages attempt to overcome these 590 
challenges54,55. To assess the performance of one such program, BisSNP54, we analyzed a 591 
whole genome bisulfite sequencing data set for 29 Arabidopsis thaliana accessions41 where 592 
SNP calls were also available from whole genome sequencing through the 1001 Genomes 593 
Project and, for a subset of these individuals (n=25), genotype array data70.  594 

Using BisSNP under default recommendations (Supplementary Materials), we identified 595 
235,338 biallelic variable sites. This set was highly skewed to transitions (n=234,512 transitions, 596 
99.65% of all called sites). Only 45% (n=106,925) of variants called using BisSNP represent 597 
putatively ‘true’ variants that were also identified in the 1001 Genomes resequencing data, but 598 
transversions were much more likely to be ‘true’ variants than transitions (90.3% compared to 599 
45.3%). More stringent variant call filtering (variant quality ≥50 rather than ≥30) increased the 600 
proportion of likely true variants to 50.3%, but at the cost of retaining only 4.7% of the original 601 
sites. However, for previously identified variants in the BisSNP call set, BisSNP genotype calls 602 
and genotype array data agreed 87.5% of the time, with transversions agreeing more often than 603 
transitions (93.1% compared to 87.4%). Thus, BisSNP appears to provide relatively high-quality 604 
genotyping information for known variants.  605 

However, our analyses do suggest that BisSNP genotypes provide a reliable way to 606 
verify sample identity and capture population structure. Using the set of biallelic SNPs that were 607 
identified by BisSNP, the 1001 Genomes Project, and the array data (n=3,553 SNPs overlapped 608 
between all 3 methods for n=25 accessions), a neighbor joining tree71 clearly clusters samples 609 
by accession. The single exception was a WGBS sample that may be mislabeled, as the 610 
BisSNP calls clustered separately from the resequencing and array genotype calls for this 611 
accession. Further, the pairwise genetic covariance matrix generated from BisSNP calls was 612 
highly consistent with the genetic covariance matrix generated from whole genome 613 
resequencing data (Mantel test r = 0.873, p < 10-6). Perhaps more importantly, the differences 614 
we did detect had marginal effects on differential DNA methylation analysis. Specifically, when 615 
we analyzed possible methylation quantitative trait loci (meQTL) in the Arabidopsis data set 616 
(Supplementary Materials), meQTL effect sizes were highly consistent between analyses using 617 
BisSNP calls to estimate population structure and analyses using whole genome resequencing 618 
data (Spearman’s rho=0.925, p<10-15).  619 

 620 
  621 
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Table 1. RRBS and WGBS data sets reanalyzed in this study 622 
 623 

Species Predictor of 
interest Contrast Method Citation 

Dog (Canis lupus familiaris) 
and wolf (Canis lupus) Species differences dog versus wolf RRBS 43 

Human (Homo sapiens) 
Gestational famine 
during the Dutch 
Hunger Winter 

famine-exposed versus same 
sex unexposed sibling RRBS 40 

Yellow baboon (Papio cynocephalus) Age continuous age values RRBS 31 

Yellow baboon Resource base wild-feeding versus human 
refuse-supplemented RRBS 31 

Clonal raider ant (Cerapachys biroi) Caste reproductive phase versus 
brood care phase WGBS 35 

Human Cancer status normal versus colorectal 
tumor samples (paired) WGBS 21 

Human, orangutan (Pongo abelii), 
gorilla (Gorilla gorilla), and chimpanzee 

(Pan troglodytes) 
Species differences human versus other great 

apes WGBS 42 

Mouseear cress (Arabidopsis thaliana) Local genetic 
variation 

nearby (putatively cis-acting) 
genotype WGBS 41 

 624 

 625 
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 626 
Figure 1. Overview of reduced representation bisulfite sequencing (RRBS; left side of figure) 627 
and whole genome bisulfite sequencing (WGBS; right side of figure). (A) Steps required to 628 
prepare an RRBS or WGBS library from genomic DNA. Methylated CpG sites are denoted with 629 
black lollipops and unmethylated CpG sites are denoted with open lollipops. Bases artificially 630 
introduced during library preparation due to end repair or A-tailing are colored red. Fragments 631 
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depicted in the RRBS library prep start and end with the Msp1 digest sites (CCGG) flanking the 632 
initial piece of genomic DNA. (B) Read pileups after mapping RRBS and WGBS libraries to a 633 
reference genome (red asterisks mark Msp1 digestion sites). In contrast to data from WGBS, 634 
reads from RRBS libraries cover a small fraction of the genome. Further, because genomic 635 
DNA is fragmented with Msp1 and then size selected (usually for fragments ~150-300bp in 636 
length), all fragments retained during the library prep should start and end with an Msp1 637 
recognition site and the pool of fragment will be enriched for CpG sites. Sequencing reads that 638 
are shorter than the original fragment length will localize to the Msp1 recognition site associated 639 
with either the 5’ or 3’ end of the original fragment. (C) Pie charts showing the fraction of all CpG 640 
sites in the human genome covered by an RRBS experiment versus a WGBS experiment with 641 
similar total read depths (20 million reads generated in silico). Bar charts show, for each 642 
method, the proportion of measured CpG sites that fall in gene bodies (between the TSS and 643 
the TES), promoters (2 kb upstream of the TSS), CpG islands, and regions far from genes 644 
(>100 kb from any annotated TSS or TES). 645 
  646 
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 647 

Figure 2. Estimates of effect sizes and their impact on the power of differential methylation 648 
analysis. (A) The maximum percent difference in mean DNA methylation levels between two 649 
sample groups (y-axis), for selected percentiles of sites (x-axis, ranked from smallest to largest 650 
percent difference) in reanalyzed data sets (Table 1) with binary predictor variables. Mean 651 
differences are based on raw values, without correction for covariates that may be imperfectly 652 
balanced between sample groups (e.g., age of study subjects in the baboon data set). We focus 653 
on the largest percentiles here because those effects are most likely to be detected or of 654 
interest to most investigators. (B) Power to detect differentially methylated sites at a 5% FDR in 655 
simulated RRBS datasets. Power increases as a function of the simulated sample size (y-axis; 656 
note that sample size is plotted on a log scale) and the magnitude of the effect of interest on 657 
DNA methylation levels (x-axis, represented as the proportion of variance in DNA methylation 658 
levels explained by the predictor variable). (C) In a small dataset (n=8), site-by-site analyses are 659 
too underpowered to detect differential methylation between clonal raider ants in the 660 
reproductive versus brood care phases. However, principal components analysis clearly 661 
separates samples by caste (t-test for PC 3, which explains 21.7% of the overall variance: p = 662 
0.022; inset compares PC 3 loadings for reproductive versus brood care samples).  663 
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665 
Figure 3. Properties of CpG methylation levels vary across data sets and influence power. For 666 
each (A) WGBS and (B) RRBS data set, we plotted the distribution of mean DNA methylation 667 
levels at each CpG site with a median coverage >10x across all samples in the study. (C) 668 
Power to detect differentially methylated sites (at a 5% FDR) in simulated RRBS datasets. The 669 
proportion of simulated true positives (TP) detected is plotted on the y-axis. Power increases as 670 
a function of the simulated effect size (represented as the proportion of variance explained; x-671 
axis) and the variance in DNA methylation levels (colors). For all simulations, mean DNA 672 
methylation levels were held constant. The levels of variance in DNA methylation levels 673 
explored here (0.035, 0.045, 0.055, and 0.095) represent common values observed in real 674 
bisulfite sequencing data sets (Figure S5). 675 
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