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ABSTRACT 

Epigenetics is an emerging area of investigation for Autism Spectrum Disorder (ASD). 

Integration of epigenetic information with ASD genetic results may elucidate functional insights 

not possible via either source of information in isolation. We used concurrent genotype and DNA 

methylation (DNAm) data from cord blood and peripheral blood from preschool-aged children to 

identify SNPs associated with DNA methylation, or methylation quantitative trait loci 

(meQTLs), and combined this with publicly available fetal brain and lung meQTL lists to assess 

enrichment of ASD GWAS results for tissue-specific meQTLs. ASD-associated SNPs were 

enriched for fetal brain (OR = 3.55; p < 0.001) and peripheral blood meQTLs (OR = 1.58; p < 

0.001). The CpG site targets of ASD meQTLs across cord, blood, and brain tissues were 

enriched for immune-related pathways, consistent with other expression and DNAm results in 

ASD, and revealing pathways not implicated by genes identified from ASD rare variant work. 

Further, DNaseI hypersensitive sites and the STAT1 and TAF1 transcription factor binding sites 

were enriched for meQTL target CpGs of SNPs associated with psychiatric conditions. This joint 

analysis of genotype and DNAm demonstrates the potential utility of both brain and blood-based 

DNAm for insights into ASD and psychiatric phenotypes more broadly.   
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Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by 

deficits in social communication and interaction, as well as restricted repetitive behavior1, with a 

strong genetic basis2,3.  Rare variants, including inherited and de novo mutations as well as copy 

number variations, are associated with ASD and related features4–6. Although rare variants 

explain a relatively small proportion of all ASD cases7, they provide converging evidence for 

biological processes implicated in ASD6,8,9.  Common genetic variation also plays a role, similar 

to other complex psychiatric diseases10–12, and mega-analysis GWAS results from the Psychiatric 

Genomics Consortium ASD workgroup (PGC-AUT)13, are currently available.  

Previous studies of bipolar disorder14, schizophrenia15, and ASD16 have demonstrated the 

enrichment of GWAS results for expression quantitative trait loci (eQTLs). Given the 

implications of epigenetic regulation in ASD from rare variant findings6,8, the epigenetic basis of 

ASD-related conditions17–19, and the association of histone modifications and DNA methylation 

in multiple tissues20,21, similar examination of epigenetic marks is an important next step towards 

prioritization and characterization of ASD genetic results. As with expression loci, genetic 

variation contributes to DNAm levels locally and distally22,23 and thus integration of methylation 

quantitative trait loci (meQTLs), or SNPs that are highly associated with DNAm, and autism-

associated GWAS results may inform our understanding of autism GWAS findings. Moreover, 

meQTLs are enriched in top hits for bipolar disorder14 and schizophrenia15,22, which has a well-

established genetic overlap with ASD11.  

Tissue specificity and corresponding accessibility are critical considerations for integration of 

meQTLs and ASD GWAS results. We and others have shown blood-based epigenetic 

biomarkers are useful in psychiatric conditions, including ASD24,25, while recognizing the 
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limitations and need for comparison to brain-derived data wherever possible26–28. ASD-related 

epigenetic differences have also been observed in buccal29, lymphoblastoid cell line30, and 

postmortem brain samples31–33, as well as in the sperm from fathers of children with ASD34. 

Blood-brain concordance DNAm studies have not frequently observed high correlation of 

DNAm levels at specific sites across tissues, however, when such concordance is observed, it is 

likely due to genetic influences26,27. meQTL signals overlap in adult brain and blood tissues35, 

suggesting blood-derived meQTLs may also reflect SNP-DNAm relationships in brain tissue, 

though this relationship has rarely been tested. 

This study used meQTL maps from cord blood, peripheral blood, and fetal brain tissues to 

characterize and prioritize ASD GWAS SNPs and the CpG sites under their control. To achieve 

these goals, we: (1) identified meQTLs in infant cord and childhood peripheral blood tissues; (2) 

evaluated whether ASD GWAS signals are enriched for meQTLs from these tissues and fetal 

brain22; (3) identified CpG sites controlled by ASD-associated SNPs and the biological pathways 

enriched in these sites, and (4) demonstrated how consideration of the CpG sites controlled by 

ASD SNPs can implicate new genes not directly identified by GWAS results alone. We also 

sought to extend characterization of SNP-controlled CpG sites to neuropsychiatric disease more 

generally, through examination of overlap of these CpG sites with specific genomic regulatory 

features within and across tissue type. Our work demonstrates the utility of jointly analyzing 

GWAS and DNAm data for insights into ASD and neuropsychiatric disease.   

RESULTS  

Identifying meQTLs 
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We identified meQTL SNPs using combined GWAS and 450K methylation array data available 

on both peripheral blood and cord blood samples. For these analyses, we defined study-specific 

parameters that were optimal for each dataset and determined the p-value to control the FDR at 

10%, 5%, and 1%. In peripheral blood, we identified 1,878,577 meQTLs controlling DNAm at 

85,250 CpGs; in cord blood, we found 1,252,498 meQTLs controlling DNAm at 35,905 CpGs, 

both at FDR = 5%. Peripheral blood and cord blood meQTLs, on average, were associated with 

4.83 and 2.56 CpG sites respectively.  Statistical significance was inversely related to distance 

between SNP and CpG site (Supplementary Fig. 1). We have provided a full list of all 

identified peripheral and cord blood meQTLs and their associated CpG sites at FDR = 5% 

(Supplementary Data 1 and 2).  

We used publicly available lung23 (to include a likely non ASD-related tissue) and fetal brain22 

meQTL lists and thus the p-value cutoffs stated in those respective studies (P = 1e-08 for fetal 

brain and P =4e-05 = FDR 5% for lung). In fetal brain, there were a total of 299,992 meQTLs 

controlling 7,863 CpGs, and in lung there were 22,866 meQTLs controlling 34,304 CpG sites. 

Dataset characteristics, meQTL parameters, and p-values used are summarized in Table 1.  

There were 2,704,013 overlapping SNPs considered for meQTL discovery across peripheral 

blood, cord blood, and fetal brain analyses.  Of these, 125,869 (4.65%) were identified as 

meQTLs in all three tissues, 407,722 (15.08%) were meQTLs only in peripheral and cord blood, 

30,691 (1.14%) were meQTLs only in peripheral blood and fetal brain, and 528 (0.02%) were 

meQTLs only in cord blood and fetal brain (Supplementary Table 1).  
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SNP-based test: Enrichment of meQTLs in ASD GWAS SNPs across 4 tissue types 

We observed enrichment of fetal brain meQTLs at both the more liberal GWAS SNP p-value 

threshold (enrichment fold = 1.70, Penrichment < 1e-03, PGWAS < 1e-03), and at a more GWAS p-

value threshold (3.55, Penrichment < 1e-03, PGWAS < 1e-04) (Table 2).  There was no association 

with lung meQTLs at either the more liberal (1.09, Penrichment = 0.343) or more stringent (0.80, 

Penrichment = 0.301) threshold.  

In peripheral and cord blood, we considered multiple GWAS SNP p-value thresholds as well as 

multiple meQTL discovery thresholds (the latter not available in brain and lung public data). 

There was significant meQTL enrichment for all GWAS and meQTL thresholds considered 

using peripheral blood meQTLs (enrichment fold range = 1.20 – 1.58, Penrichment < 1e-03; Table 

2). However, in cord blood, meQTL enrichment was only observed for a liberal GWAS SNP 

threshold (range = 1.14 – 1.21, Penrichment = 0.011 – 0.032, PGWAS < 1e-03). This was not 

statistically significant after considering a Bonferonni correction to account for the 16 

enrichment tests performed.  

CpG site-based test: Gene Ontology enrichment analyses of meQTL targets 

We next examined the biological functions meQTL targets of ASD SNPs specifically compared 

to meQTL targets generally. We identified 210, 66, and 53 meQTL targets associated with ASD 

SNPs in peripheral blood, cord blood, and fetal brain respectively. After mapping these CpG 

sites to genes, performing GO enrichment analyses, and removing overlapping GO terms, there 

were a total 95, 76, and 47 nominally significant (p < 0.05) biological processes, respectively. 
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A total of 37 biological processes were present across either two or three tissues (Table 3, 

Supplementary Data 3-5), many of them relating to immune system function. Of these, 3 terms 

overlapped across all three tissues, 12 processes were enriched in cord blood and fetal brain but 

not peripheral blood, and 22 processes were present in both the peripheral and cord blood but not 

in fetal brain.  

To test whether our findings were unique to ASD meQTL targets, we performed the same 

analysis comparing all meQTL targets to all CpG sites. (Supplementary Figs. 2-4). Though 

there were some immune-related pathways discovered for fetal brain ASD meQTL targets that 

are also enriched in meQTLs generally, this was not the case in peripheral and cord blood.  

Identifying novel genes or regions implicated by ASD meQTL target locations 

The location of CpG targets for particular meQTL associations can further elucidate genes or 

regions relevant to ASD risk beyond the genomic location of the associated SNP variant. Of the 

1,094 ASD-associated PGC SNPs (P < 1e-04), five (0.46%) were detected as meQTLs across 

peripheral blood, cord blood, and fetal brain tissues (Supplementary Table 5, Supplementary 

Data 6). Consideration of the CpG DNAm targets of these SNPs implicates genes not directly 

annotated to the SNPs themselves. For example, ASD SNPs in XKR6 target CpGs in TDH in 

both peripheral blood and fetal brain, and target CpGs in SOX7 peripheral blood and cord blood 

(Fig. 1A).  A similar result can be seen for ASD SNPs in PPFIA3 with meQTL target CpGs that 

implicate HRC (Fig. 1B).   
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Regulatory features of meQTL targets within and across tissue type 

We sought to quantify the propensity of regulatory features to overlap with meQTL targets 

within and across tissue type, and particularly whether meQTL targets of SNPs associated with 

psychiatric conditions have specific regulatory features.  Individual and overlapping tissue 

meQTL target lists were compared for regulatory feature annotation.  First, among psychiatric 

condition associated SNPs (via the PGC cross-disorder analysis12), their meQTL targets were 

significantly enriched for DNaseI hypersensitive sites (DHSs) in peripheral blood (OR = 1.22, P 

= 0.014), fetal brain (OR = 2.23, P = 3.5e-03), and peripheral blood-fetal brain overlap lists (OR 

= 2.22, P = 0.018; black font and boxes, Fig. 2), compared to meQTL targets of SNPs not 

associated with psychiatric conditions. Further, there was marginally significant enrichment of 

CD14 cell-specific DHSs (OR = 2.42, P = 0.013; Supplementary Data 7) in the peripheral 

blood-fetal brain list. Few chromatin marks met Bonferroni significance (P ≤ 3.95e-05) defined 

by the 181 tests of regulatory features performed in all 7 lists of meQTL targets, though 

numerous marginally significant enrichment associations were observed for blood H3K36me3 

(active) and blood H3K27me3 (repressive).  Transcription factor binding sites (TFBSs) with 

observed enrichment include (Supplementary Data 7) STAT1 for fetal brain (OR = 4.32, P = 

2.66e-05) and peripheral blood (OR = 2.24, P = 3.56e-08), TAF1 for peripheral blood (OR = 

1.53, P = 2.24e-06), cord blood (OR = 2.24, P = 4.01e-06), and fetal brain (OR = 3.2, P = 

4.40e-06), and POL2RA for peripheral blood (OR = 1.38, P = 1.14e-06), cord blood (OR = 2.28, 

P = 3.54e-08), and their overlap (OR = 2.20, P = 9.63e-09). 

When considering meQTL targets generally, compared to non-meQTL-target CpGs, enrichment 

was observed for DHSs for all 7 meQTL target lists, with the largest effect sizes among the 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2016. ; https://doi.org/10.1101/091330doi: bioRxiv preprint 

https://doi.org/10.1101/091330
http://creativecommons.org/licenses/by/4.0/


9 

 

peripheral blood-cord blood overlap list and the peripheral blood-fetal brain overlap list (gray 

font and boxes, Fig. 2). This relationship is less clear when considering cell type-specific DHSs; 

though we do observe consistent enrichment in the same overlap lists (Supplementary Data 8).  

Significant feature enrichment (OR > 1, p < 3.95x10-5) of meQTL targets in the overlapping 

peripheral blood and fetal brain list highlights a functional role in both activating (H3K4me1, 

H3K4me3) and repressing (H3K27me3, H3K9me3) histone marks. Also, enrichment of TFBSs 

(SETDB1, CTCF, PLR2A, RAD21, MAX, and SMC3) was higher in the peripheral blood and 

fetal brain overlap meQTL list compared to either tissue individually (Supplementary Data 8).  

Many of these same features showed enrichment in lung tissue as well. 

DISCUSSION 

We provide the first study integrating ASD GWAS results and meQTL data that provide novel 

insights towards ASD etiology using data within and across tissue types. First, using blood 

samples from birth and early life, we identified meQTLs and compared them to previously 

reported fetal brain tissue meQTLs and found a subset of SNPs that were detected as meQTLs 

across all three tissues. However, the highest percent overlap was seen across peripheral and cord 

blood only, which is expected given their tissue similarity. Second, we observed enrichment of 

peripheral blood (1.20 ≤ OR ≤ 1.58; p < 0.001) and fetal brain (OR = 1.70 and 3.55; p < 0.001) 

meQTLs among PGC-AUT mega-analysis findings.  Third, when considering the biological 

processes annotated to ASD meQTL targets, we found enrichment for immune-related pathways 

in all three tissues.  Fourth, we show how meQTL targets may suggest novel regions for 

functional follow-up ASD genetic associations. Finally, we identified several regulatory 

elements that preferentially overlap with meQTL targets associated with known SNPs for 
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neuropsychiatric disease generally. Our results demonstrate the utility of meQTLs and their CpG 

targets for insights into ASD and neuropsychiatric disease overall.  

 

We compared meQTL lists across tissues, which presents several challenges to consider when 

interpreting results. First, each set of samples came from a different study source, reflecting 

different sets of individuals and different sampling strategies, as well as differences in sample 

size and in genotyping and methylation array platforms. For example, we expected and observed 

considerable overlap between cord and peripheral blood meQTL signals, and less overlap with 

brain, however the lack of further cross-tissue concordance with brain could be due to limited 

statistical power between studies, lack of SNP or CpG overlap on arrays or post QC, or 

differences in meQTL discovery association parameters (window size, SNP MAF, etc.).  In our 

functional characterization of meQTL targets, we used down sampling of peripheral blood 

results to the sample size and meQTL query parameters of the tissue to which it was being 

compared. While this is likely an incomplete solution, it is a step toward harmonization that has 

not been carried out in other studies.   

 

We demonstrate that joint analysis of SNP and DNAm data can reveal novel insights towards 

ASD etiology not apparent when looking at either type of data alone.  It is important to examine 

the biological implications of the genes implicated by SNPs, as well as the genes and regulatory 

functions implicated by DNAm. When considering the ASD SNPs, we found enrichment of fetal 

brain and peripheral blood meQTLs that was robust to both meQTL p-value threshold and ASD 

p-value threshold. These results are concordant with similar studies of schizophrenia, a disorder 
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with known genetic overlap to ASD11, that have demonstrated enrichment in fetal brain 

meQTLs22 and peripheral blood meQTLs15. A previous study examining enrichment of eQTLs in 

ASD GWAS SNPs observed enrichment in parietal and cerebellar eQTLs but not lymphoblastoid 

cell line eQTLs16, though the GWAS results in that report likely differ greatly from those of the 

larger PGC-AUT mega-analysis. Crucially, we did not observe enrichment of lung meQTLs, 

supporting the specificity of fetal brain and peripheral blood results. However, we also did not 

observe an enrichment of cord blood meQTLs, suggesting the role of ASD-related DNAm marks 

in peripheral tissues may be developmentally regulated or a function of age. Additional insights 

may be gained through examination of specific CpG targets of the ASD-related SNPs. As 

discussed below, examination of processes implicated by CpG targets of ASD SNPs highlights 

immune function. It is plausible that environmental experience in early (postnatal) life is critical 

in contributing to DNAm variability that enables the detection of blood meQTLs and that cord 

blood does not yet reflect that interplay. 

Among CpG sites that are targets of ASD SNP meQTLs, there is an abundance of immune 

response-related pathways, using brain, peripheral blood, or cord blood meQTL lists.  This 

immune enrichment was not seen when considering CpG targets of all meQTLs in blood (not 

just the ASD SNPs), suggesting specificity to ASD.  However, such enrichment was seen for all 

meQTL targets in fetal brain. This may be a consequence of the complications during pregnancy 

that resulted in fetal tissue collection (56-166 days post conception22). Though many immune-

related disorders are known to be comorbid with ASD36, previous enrichment-type analysis for 

genetic variants alone have not highlighted immune-related pathways, instead implicating 

chromatin regulation, synaptic function, and Wnt signaling6,9, particularly for genes implicated 
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via rare variants.  However, several gene expression and epigenetic studies of ASD have 

implicated immune function in both brain tissue31,37–39 and peripheral blood40,41. Our results are 

concordant with these expression and epigenetic studies but still suggest a role for genetic 

variation in contributing to immune dysregulation in ASD, through SNP control of DNAm.  

Beyond genome and epigenome enrichment analyses, specific meQTL targets also helped to 

“expand” ASD GWAS-implicated regions to include CpG sites, and their associated genes. 

While this does not increase or decrease statistical support for a particular GWAS SNP finding, 

better characterization of the functional architecture of the region can inform follow-up analyses 

of these hits. Two GWAS loci displayed evidence of meQTLs in peripheral blood, cord blood, 

and fetal brain, and many more loci displayed evidence of meQTLs in at least one tissue. These 

target CpG sites, and the genes they implicate, would not be identified via traditional genetic (i.e. 

GWAS) analyses, since the sequence itself does not show ASD-related variability in these areas. 

Insights emerge only through the integration of SNP and DNAm data.  Current PGC-AUT 

GWAS results are likely underpowered to provide reliable genome-wide hits. As larger GWAS 

of ASD emerge with higher-confidence findings, this cross-tissue meQTL mapping approach 

should be used to expand regions for follow-up, as recently demonstrated for schizophrenia in 

fetal brain 22.   

 

Finally, we sought to understand the propensity of meQTL targets, both generally and those 

controlled by psychiatric disorder-related SNPs, to overlap with regions of known functional 

activity. MeQTL targets of psychiatric SNPs in peripheral blood, fetal brain, and their 

intersection significantly overlapped with DHS sites, a result that is concordant with our 
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observation of meQTL enrichment among ASD SNPs limited to peripheral blood and fetal brain. 

We also identified specific TFBSs enriched in psychiatric disorder meQTL targets such as TAF1 

and STAT1. Recently, a study of nine families demonstrated both de novo and maternally 

inherited single nucleotide changes in TAF1 to be associated with intellectual disability, facial 

dysmorphology, and neurological manifestations42. Our finding that binding sites for the TAF1 

transcription factor overlap meQTL targets of psychiatric SNPs could serve a basis for future 

functional studies examining the link between TAF1 mutations and adverse neurological 

phenotypes. Lastly, mutations in STAT1 have been linked to early life combined 

immunodeficiency43. The significant overlap with STAT1 TFBSs could thus serve as a starting 

point for functional work looking to understand the role of immune disorders in ASD and 

psychiatric phenotypes generally.  

 

In summary, our work is the first genome-wide study of meQTLs in the context of ASD to date. 

The results point to the utility of both brain and blood tissues in studies of ASD that integrate 

epigenetic data to enhance current GWAS findings for ASD. We show the utility of examining 

the meQTL targets of ASD SNPs in providing novel insights into functional roles like immune 

system processes that would not be apparent via genotype-based analysis in isolation.  Our work 

suggests that genetic and epigenetic data integration, from a variety of tissues, will continue to 

provide ASD-related functional insights as GWAS findings and meQTL mapping across a 

variety of tissues improve.  

 

METHODS 
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Cord blood samples 

Cord blood DNA was obtained from newborn participants of the Early Autism Risk Longitudinal 

Risk Investigation (EARLI), an enriched-risk prospective birth cohort described in detail 

elsewhere44. The EARLI study was approved by Human Subjects Institutional Review Boards 

(IRBs) from each of the four study sites (Johns Hopkins University, Drexel University, 

University of California Davis, and Kaiser Permanente). Mothers of confirmed ASD children 

were recruited during a subsequent pregnancy.  The 232 mothers with a subsequent sibling born 

through this study had births between November 2009 and March 2012.  Infants were followed 

with extensive neurophenotyping until age three, including ASD diagnostics. 

Cord blood DNA methylation 

Cord blood biospecimens were collected and archived at 175 births.  DNA was extracted using 

the DNA Midi kit (Qiagen, Valencia, CA) and samples were bisulfite treated and cleaned using 

the EZ DNA methylation gold kit (Zymo Research, Irvine, CA).  DNA was plated randomly and 

assayed on the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA), or 

“450k”, at the Center for Inherited Disease Research (CIDR, Johns Hopkins University).  

Methylation control gradients and between-plate repeated tissue controls (n=68) were used34. 

The minfi library (version 1.12)45 in R (version 3.1) was used to process raw Illumina image files 

with the background correcting and dye-bias equalization method: normal-exponential using out-

of-band probe (Noob)46,47. Probes with failed detection P-value (>0.01) in >10% of samples were 

removed (n=661), as were probes annotated as cross-reactive (n=29,233)48 and those mapping to 

sex chromosomes (n=11,648).  All cord samples passed sample-based filters (sex matching, 

detection p-values > 0.01 in greater than 1% of sites). Pre-processed data were adjusted for batch 
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effects related to hybridization date and array position using the ComBat() function49 in the sva R 

package (version 3.9.1)50.  Methylation data were available from 175 cord blood samples at 

445,241 probes.  

Cord blood genotyping 

Overlapping cord blood DNA methylation and corresponding SNP data was available on 171 

EARLI cord blood samples. Genotype data were generated for 841 EARLI family biosamples 

and 18 HapMap control samples run on the Omni5 plus exome (Illumina, San Diego, CA) 

genotyping array at CIDR (Johns Hopkins University), generating data on 4,641,218 SNPs.  The 

duplicated HapMap sample concordance rate was 99.72% and the concordance rate among five 

EARLI samples with blind duplicates was 99.9%. Samples were removed if they were HapMap 

controls (n=18), technical duplicates (n=5; selected by frequency of missing genotypes), or re-

enrolled families/other relatedness errors (n=9). No samples met the following additional criteria 

for exclusion: missing genotypes at >3% of probes, or excess heterozygosity or homozygosity (4 

SD). Probes were removed for CIDR technical problems (n=94,712), missing genomic location 

information (n=8,124). Among probes with high minor allele frequencies (>5%), SNPs with a 

missing rate > 5% were excluded (n=8,902) and among probes with low minor allele frequencies 

(<5%) SNPs with a missing rate >1% were excluded (n=65,855). There were 827 samples and 

4,463,625 probes at this stage and SNPs out of Hardy-Weinberg equilibrium (p<10-7) were 

flagged (n=2,170).  Samples were merged with the 1,000 genomes project (1000GP, version 5) 

data51 and EARLI ancestries were projected into four categories (White, Black, Asian, Hispanic). 

EARLI measured genotype data was phased using SHAPEIT52 and imputed to the 1000GP data 

using Minimac353. SNPs with MAF > 1% were retained, leaving a total of 9,377,008 SNPs.  
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Peripheral blood samples 

Samples were obtained from the Study to Explore Early Development (SEED), a multi-site, 

national case-control study of children aged 3-5 years with and without ASD. Overall, 2,800 

families were recruited and classified into 3 groups according to the status of the child: the ASD 

group, the general population control group, and the (non-ASD) developmental delay group54. 

This study was approved as an exemption from the Johns Hopkins Institutional Review Board 

(IRB) under approval 00000011. Informed consent was obtained from all participants as part of 

the parent SEED study. SEED recruitment was approved by the IRBs of each recruitment site: 

Institutional Review Board (IRB)-C, CDC Human Research Protection Office; Kaiser 

Foundation Research Institute (KFRI) Kaiser Permanente Northern California IRB, Colorado 

Multiple IRB, Emory University IRB, Georgia Department of Public Health IRB, Maryland 

Department of Health and Mental Hygiene IRB, Johns Hopkins Bloomberg School of Public 

Health Review Board, University of North Carolina IRB and Office of Human Research Ethics, 

IRB of The Children's Hospital of Philadelphia, and IRB of the University of Pennsylvania. All 

enrolled families provided written consent for participation. 

 

Peripheral blood DNA methylation 

Genomic DNA was isolated from whole blood samples using the QIAsumphonia midi kit 

(Qiagen, Valencia, CA).  For each a subset of case and control samples (n = 630), bisulfite 

treatment was performed using the 96-well EZ DNA methylation kit (Zymo Research, Irvine, 

CA). Samples were randomized within and across plates to minimize batch and position effects. 

The minfi R package (version 1.16.1) was used to process Illumina .idat files generated from the 
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array45. Control samples (n=14) were removed and quantile normalization performed using the 

minfi function preprocessQuantile()55. Probes with failed detection P-value (>0.01) in >10% of 

samples were removed (n=772), as were probes annotated as cross-reactive (n=29,233)48, and 

probes on sex chromosomes (n=11,648).  Samples were excluded if reported sex did not match 

predicted sex (minfi function getSex()) (n=0),  detection p-values > 0.01 in greater than 1% of 

sites (n=2), low overall intensity (median methylated or unmethylated intensity < 11; n=2), and if 

they were duplicates (n=8). Successive filtering according to these criteria resulted in 445,154 

probes and 604 samples.  

Peripheral blood genotyping 

Of the SEED samples with DNAm data, 590 had whole-genome genotyping data available, 

measured using the Illumina HumanOmni1-Quad BeadChip (Illumina, San Diego, CA). 

Standard quality control measures were applied: removing samples with < 95% SNP call rate, 

sex discrepancies, relatedness (Pi-hat > 0.2), or excess hetero- or homozygosity; removing 

markers with < 98.5% call rate, or monomorphic. Phasing was performed using SHAPEIT52 

followed by SNP imputation via the IMPUTE2 software53, with all individuals in the 1000 

Genomes Project as a reference. Genetic ancestry was determined using EigenStrat program56. A 

total of 4,948,723 SNPs were available post imputation at MAF > 1%. 

Normal lung tissue meQTLs 

A list of meQTLs identified in a recent characterization of normal lung tissue23 as well as the 

total list of SNPs (n = 569,753) and 450k CpG sites (n = 338,730) tested for meQTL 

identification (i.e. passed filtering and QC done in that study) was obtained from the study 

authors.  
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Fetal brain meQTLs 

Fetal brain meQTLs were identified via imputed genotypes in a recent study examining meQTLs 

in the context of schizophrenia22.  The total list of SNPs (n = 5,159,699) and 450k CpG sites (n = 

314,554) that were tested (i.e. passed filtering and QC done in that study) was obtained from the 

study authors. For all analyses, only fetal brain meQTLs within a SNP to CpG distance of 1 Mb, 

were included, in order to improve comparability to the other 3 meQTL lists, where distant 

(trans) meQTL relationships were not explored (peripheral blood, cord blood) or used (lung). 

meQTL identification parameters 

There are three main parameters of interest in a meQTL query: the SNP minor allele frequency 

(MAF) threshold for inclusion, the definition of standard deviation cutoff that dictates a CpG site 

is variably methylated, and the maximum physical distance between a SNP and CpG site to be 

queried, often referred to as the window size. These 3 factors contribute to the total number of 

CpG to SNP linear regression tests that are performed. Our available sample sizes (and thus 

statistical power, at fixed effect size) for the joint DNAm and genotype data differed for 

peripheral blood and cord blood analyses. Thus, the ideal combination of these parameters 

should differ between the two study populations to be comparable.  

For each tissue sample set, we computed the total number of CpG to SNP linear regression tests 

at various combinations of the 3 main parameters of interest to a meQTL query. We then used 

the genetic power calculator Quanto57 to determine the most permissive set of parameters that 

allowed for 80% power to detect a 5% difference in methylation for each addition of the minor 

allele, at the lowest allowed MAF. We computed this power calculation at a Bonferroni-based 

significance level derived from the total number of CpG to SNP linear regression tests. We 
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defined ‘most permissive’ in a hierarchical manner that first prioritized the inclusion of the most 

methylation sites (lowest sd cutoff), then the inclusion of the most number of SNPs (lowest MAF 

threshold), and then the use of the largest window size. This procedure resulted in study-specific 

MAF thresholds for the SNP data, standard deviation cutoffs for the methylation data, and 

window sizes that were tailored to the number of samples available.  

meQTL identification procedure 

Pairwise associations between each SNP and CpG site were estimated via the R package 

MatrixEQTL58, with percent methylation (termed ‘Beta value’, ranging from 0 to 100) regressed 

onto genotype assuming an additive model, adjusting for the first two principal components of 

ancestry and sex. Models did not adjust for age given the very narrow age ranges in each tissue 

type. 

False discovery rate (FDR) was controlled via permutation23. Briefly, the total number of CpG 

sites (Nobs) under genetic control was obtained for a meQTL p-value of po. Genome-wide 

meQTL query was performed for each of 100 permuted sets of the genotype data (scrambling 

sample IDs, to retain genotype correlation structure). In each set, we retained the total number of 

CpG sites under genetic control (Nnull) at the same p-value po. The FDR was defined as the 

mean(Nnull)/ Nobs. Finally we determined the value of po to control the FDR at values of 10%, 

5%, and 1%. Both the meQTL discovery and FDR determination were performed in each tissue 

or study sample. 

Enrichment of meQTLs in ASD-associated SNPs 
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We tested for enrichment of meQTLs from four tissue types among ASD GWAS SNPs. ASD 

SNPs were assigned from the PGC-AUT analysis (downloaded February 2016), based on 5,305 

cases and 5,305 pseudocontrols13,59. For each tissue, we included only SNPs available in both the 

PGC-AUT analysis and our meQTL analysis, either via direct or proxy (r2 > 0.8 within 500Kb 

window in CEU 1KG) overlap as defined via the SNAP software60.  

To estimate the proportion of meQTLs among ASD SNPs versus among all SNPs (or a sample of 

null SNPs), we recognized three important factors that could differ between null SNP sets and 

the ASD SNP set: LD structure, MAF distribution, and number of CpG sites per window size in 

the meQTL screen. We designed a comparison process to address each of these. First, we 

performed LD pruning ‘supervised’ by PGC ASD p-value (so as to not prune away all ASD 

SNPs) using PriorityPruner (v0.1.2)61, removing SNPs at r2 > 0.7 within a sliding 500Kb 

window. For the peripheral blood and cord blood datasets this pruning was done with the study-

specific genotype data, and for the fetal brain and lung datasets this pruning was done with 1000 

Genomes CEU samples. Second, we grouped remaining SNPs into MAF bins of 5%. Third, we 

characterized each SNP according to the number of CpGs within the meQTL discovery window 

size to allow for differential opportunity to have been identified as a meQTL. We then collapsed 

this number into categories of 0-49, 50-99, etc. to reflect the same concept. We defined 1,000 

null SNP sets by finding, for each SNP in the ASD set, a random SNP in the genome that 

matched that SNP on both MAF bin and CpG opportunity. We computed an enrichment fold 

statistic as the proportion of meQTLs in the ASD SNP set divided by the mean proportion of 

meQTLs across null sets; and a p-value as the total number of null set proportions as or more 

extreme than in the ASD set. To evaluate the robustness of our results, we used two PGC AUT 
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p-value cutoffs (1e-03, 1e-04) and three meQTL p-value cutoffs (FDR 10%, 5%, 1%) for 

peripheral blood and cord blood. However, based on available information for lung and fetal 

brain, we were limited to assess our results at FDR 5% for lung, and p<1e-08 for fetal brain for 

meQTL p-value.  

Gene ontology analysis of meQTL targets 

We identified Gene Ontology (GO) terms specific to CpG sites associated with ASD SNPs 

(ASD-related meQTL targets) compared to those associated with CpG sites controlled by SNPs 

generally (all meQTL targets) in order to enumerate biological pathways engaged specifically by 

ASD SNPs. We first filtered the full list of CpG sites associated with any meQTL to only those 

sites associated with an ASD SNP (PGC P < 1e-04; N=1,094) or their proxies (r2 > 0.8 within 

500kb window in CEU 1KG as defined via the SNAP software60). We used thresholds of FDR ≤ 

5% for peripheral and cord blood meQTL lists, and P < 1e-08 for the fetal brain list. We only 

examined CpG sites that did not overlap with SNPs within 10bp of the CpG site or at the single 

base extension62, as it has been previously demonstrated that these CpG sites may strongly 

influence functional-type enrichment analysis of CpG sites63, and these CpG sites were not 

examined in the fetal brain meQTL lists22. We used the gometh() function in the MissMethyl R 

package64, which maps 450k DNAm sites to their nearest gene, and corrects for bias due to non-

uniform coverage of genes on the 450k. We further ran nominally significant (p < 0.05) results 

for the category “biological processes” through the REVIGO tool to avoid reporting GO terms 

with a greater than 70% overlap in gene lists65. Finally, we determined the set of terms in these 

lists that overlapped at least two tissues, and prioritized them by summing the scaled, enrichment 

p-value-based rank in each tissue. This scaling was done by dividing the raw rank for the term in 
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the list for that tissue by the total number of nominally significant, post-REVIGO terms for that 

tissue.  

We also ran analogous GO analyses comparing all meQTL targets to all CpGs to explore 

functional implications for meQTL targets versus CpGs not under strong genetic control. This 

allowed for comparison of ASD SNP-specific functional pathways engaged through methylation 

versus general SNP functional pathways engaged through methylation.  

Identifying novel genes or regions implicated by ASD meQTL target locations 

Defining ASD SNPs as those with PGC p-value < 1e-04, meQTL relationships as in the GO 

analysis, and RefSeq genes from the UCSC Genome Browser66, we annotated gene overlap (if 

any) via findOverlaps() in the GenomicRanges R package for all ASD SNPs and their associated 

CpG sites (if any). We filtered out long intergenic non-coding RNAs, long non-coding RNAs, 

microRNAs, and small associated RNAs from the RefSeq gene list. We further collapsed SNPs 

into bins by LD block. Blocks were defined using recombination hot spot data from 1000 

Genomes51.  

Regulatory feature characterization of meQTL targets 

To quantify the propensity of regulatory features to overlap with meQTL targets within and 

across tissue type, we first compared regulatory feature overlap of all meQTL targets to non-

meQTL targets. We next compared meQTL targets of psychiatric condition-related SNPs to 

meQTL targets of SNPs unrelated to psychiatric conditions. SNPs associated with psychiatric 

conditions were obtained from the PGC cross-disorder analysis12 (PGC P < 1e-04) and their 

proxies. We used these SNPs in order to analyze a greater total number of meQTL targets than 
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associated with ASD SNPs only, and to make functional insights that could be applied to 

psychiatric disease more broadly. 

We performed both comparisons for unique and overlapping tissue categories (n =7): peripheral 

blood, cord blood, fetal brain, lung, intersection of peripheral blood and cord blood, intersection 

of peripheral blood and fetal brain, and intersection of peripheral blood and lung. For each 

intersection, we conducted a new meQTL discovery screen in which the peripheral blood was 

down sampled to the sample size of the other tissue, and run at the same parameters used to 

identify meQTLs in that tissue. This increases comparability with respect to power and meQTL 

query parameters. For the peripheral blood overlaps with cord blood and lung, we also computed 

the meQTL p-value to control the FDR at 5% using the method previously described, as this 

parameter value was available for those tissue sample meQTL results23. However, we only 

computed the FDR p-values using data from the first 6 chromosomes, as we found empirically 

that FDR p-value estimates stabilized by this point. Finally, for the peripheral blood-fetal brain 

comparison, we retained results for peripheral blood that passed a meQTL p-value of 1E-8, as 

reported from the fetal brain study22.   

Regulatory feature information came from several sources. General DHSs were defined as those 

CpG probes experimentally determined to be within a DHS, as determined by the manifest for 

the 450k array67. In addition, tissue-specific DHS data were tested for enrichment. Brain DHSs 

were downloaded in from GEO68 for three brain regions: Frontal Cortex [GEO Sample ID: 

GSM1008566], Cerebellum [GSM1008583], and Cerebrum [GSM1008578]). Two blood 

(CD14+ Monocytes; ‘wgEncodeOpenChromDnaseMonocd14’ and CD4+ cells; 

‘wgEncodeUwDnaseCd4naivewb78495824PkRep1’) and one lung-derived (IMR90; 
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‘wgEncodeOpenChromDnaseImr90Pk’) data sets were additionally downloaded from the UCSC 

Genome Browser66.  

Tissue-specific histone data were compiled from the Roadmap Epigenomics Project69 for five 

different marks: H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3.  As Epigenome 

Roadmap Project data were often generated across a number of individuals, for those cases in 

which data were generated in more than one Caucasian individual, the overlap across individual 

samples was utilized in downstream analyses. Overlap was calculated using the UCSC Genome 

Browser’s ‘intersect’ function for those samples indicated in Table 4. Regions with any overlap 

were included in functional enrichment analyses.  

Table 4: Samples downloaded from Roadmap Epigenomics Project for 5 different histone 

modifications. 

   H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3 

Adult 

Lung 

NA  GSM1059437 GSM1059443 GSM1227065 GSM1120355 

GSM1220283 GSM956014 GSM910572 GSM915336 GSM906411 

           

Fetal 

Brain 

GSM621393 GSM621410 GSM706850 GSM621457 GSM621427 

GSM916061       GSM916054 

            

Peripheral 

Blood 

GSM1127130 GSM1127131 GSM1127143 GSM1127126 GSM1127133 

GSM1127142 GSM613880     GSM613878 

 

Finally, TFBS information from ChIP-Seq experiments carried out by the ENCODE project70 

were extracted for 161 transcription factors from the UCSC Genome Browser 

(‘wgEncodeRegTfbsClusteredV3’)66. 
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Significant feature overlap was assessed via two-sided Fisher’s 2x2 exact test, with Bonferroni 

correction (p < 0.05 / (181 regulatory features * 7 categories) = 3.95e-05). Odds ratio and p-

value were recorded for each test in each unique and overlapping tissue category.  
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FIGURES 

Figure 1: Specific interrogation of ASD-related PGC loci with evidence for meQTLs in 

peripheral blood, cord blood, and fetal brain. These plots allow for a visual evaluation of the 

nature of SNP and CpG correlation structure together with meQTL relationships and the 

additional genes they implicate, in multiple tissues simultaneously. Locus coordinates differ 

from those in Supplementary Data 6 because in this context they encompass the locations of 

CpG sites implicated via meQTL associations. From bottom panel to top: linkage disequilibrium 

(LD) plot of SNPs in specified locus region and genes mapping to the region via the UCSC 

genome browser. Then for each tissue: meQTL association lines connecting SNP (bottom of 

line) to CpG site with which it is associated (top of line), at FDR 5% in peripheral blood and 

cord blood and past 1e-08 p-value threshold in fetal brain results; lines mapping CpG sites to 

where they are located in the region (bottom of line) to where they are positioned in the CpG-

CpG correlation plot. Red meQTL association lines denote SNP-CpG associations where the 

SNP is ASD-associated in PGC (p-value <= 1e-04); gray meQTL association lines denote all 

other SNP to CpG associations reported in that tissue/dataset. Panel A) Locus chr8:10789493-

10789493 (row 1) from Table 3. Panel B) Locus chr19:49646006-49647618 (row 2) from Table 

3.  
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Figure 2: Enrichment of meQTL target CpG sites in DNaseI hypersensitive sites. We 

identified the meQTL targets (at FDR 5% in peripheral blood, cord blood, and lung and past 1e-

08 p-value threshold in fetal brain results) in peripheral blood, cord blood, fetal brain and lung as 

well those meQTL targets that were present in the overlap of peripheral blood with the other 

three tissues. Odds ratio and p-value in gray text represent enrichment fold statistic and p-value 

from Fisher’s exact tests examining the tendency of meQTL targets to overlap with DHS sites 

compared to CpG sites that were not meQTL targets. Odds ratio and p-value in black text 

represent enrichment fold statistic and p-value from Fisher’s exact tests examining the tendency 

of meQTL targets of significant (p-value <= 1e-04) SNPs from the PGC cross-disorder results or 

their proxies (r2 >= 0.8) to overlap with DHS sites compared to CpG sites that were not meQTL 

targets of the same SNPs. A full list of enrichment statistics and p-value for both tests against a 

total of 181 cell-type specific DHS sites, cell-type specific chromatin marks, and transcription 

factor binding sites is available in Supplementary Data 7 and 8.  
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TABLES 

Table 1: Descriptive characteristics, meQTL query parameters, and meQTL summary results for 4 tissues examined.  

 Sample 

Size 

Meth SD 

Cutoff b 

SNP MAF 

Threshold c 

Max SNP 

to CpG 

Distanced 

meQTL p-value 

thresholds e # of meQTLs identified 
# of meQTL 

targets identified 

Fetal 

Braina 
166 NA 5% 1 Mb 1.0e-08f 299 992f 7 863f 

Peripheral 

Blood 
339 0.15 2.75% 1 Mb 

3.1e-05g 

1.0e-05h 

3.0e-07i 

2 003 443g 

1 878 577h 

1 598 033i 

95 195g 

85 250h 

 68 860i 

Cord 

Blood 
121 0.15 7% 500 Kb 

8.5e-06g 

 2.7e-06h 

 2.0e-07i 

1 374 554g 

1 252 498h 

1 032 370i 

41 681g 

35 905h 

28 423i 

Lunga  210 NA 3% 500 Kb 4.0e-05h 22 866h 34 304h 
aPublicly available data. bThe probe standard deviation across samples that was used as an inclusion criterion for probes in the meQTL 

query (blood datasets only). cThe MAF cutoff used as inclusion criterion for SNPs in the meQTL query. dThe maximum distance 

between the SNP and CpG site used in the meQTL query for the peripheral blood, cord blood, and lung datasets, and the value at 

which results for filtered in the fetal brain results. eThe peripheral blood, cord blood, and lung datasets the p-values calculated to 

control the FDR at various rates (see Materials and Methods). fFDR not specified. gFDR = 10% hFDR = 5% iFDR = 1% 
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Table 2: Enrichment statistics for meQTLs derived from 4 tissue types in ASD GWAS SNPs.  

  ASD p-value = 1e-03 ASD p-value = 1e-04 

  meQTL p-value = 1e-08 meQTL p-value = 1e-08 
Fetal 

Brain1 
1.70 (<0.001) 3.55 (<0.001) 

  
meQTL  

FDR = 10% 
meQTL  

FDR = 5% 
meQTL  

FDR = 1% 
meQTL  

FDR = 10% 
meQTL  

FDR = 5% 
meQTL  

FDR = 1% 

Peripheral 

Blood2 
1.22 (< 0.001) 1.20 (< 0.001) 1.23 (< 0.001) 1.31 (0.001) 1.40 (< 0.001) 1.58 (< 0.001) 

Cord 

Blood2 
1.14 (0.032) 1.21 (0.011) 1.20 (0.023) 1.13 (0.299) 1.10 (0.392) 1.10 (0.406) 

Lung1  - 1.09 (0.343) - - 0.80 (0.301) - 

Enrichment fold statistics and p-values based 1,000 permutations are reported. 1LD pruning performed with 1000 Genomes CEU 

samples. 2LD pruning performed with study-specific genotype data. 
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Table 3: Gene Ontology terms significantly enriched in multiple tissue types in comparison 

of ASD-related meQTL targets to meQTL targets generally.  

Term 

Peripheral 

Blood Scaled 

Rank1 

Cord Blood 

Scaled 

Rank1 

Fetal Brain 

Scaled 

Rank1 

response to interferon-gamma 0.14 0.11 0.11 

positive regulation of relaxation of cardiac muscle 0.20 0.46 0.30 

production of molecular mediator of immune response 0.65 0.22 0.28 

cellular response to interferon-gamma NA 0.07 0.09 

detection of bacterium NA 0.18 0.06 

detection of biotic stimulus NA 0.26 0.04 

T-helper 1 type immune response NA 0.08 0.34 

regulation of interleukin-10 secretion NA 0.09 0.43 

interferon-gamma production NA 0.57 0.19 

regulation of interleukin-4 production NA 0.24 0.62 

interleukin-4 production NA 0.29 0.60 

interleukin-10 production NA 0.25 0.74 

tongue development NA 0.68 0.32 

inflammatory response to antigenic stimulus NA 0.32 0.81 

endochondral bone growth NA 0.71 0.53 

antigen processing and presentation of peptide or 

polysaccharide antigen via MHC class II 
0.01 0.05 NA 

T cell costimulation 0.05 0.01 NA 

positive regulation of hormone secretion 0.09 0.04 NA 

antigen receptor-mediated signaling pathway 0.08 0.13 NA 

immunoglobulin production involved in immunoglobulin 

mediated immune response 
0.24 0.03 NA 

single organismal cell-cell adhesion 0.23 0.12 NA 

single organism cell adhesion 0.34 0.16 NA 

negative regulation of nonmotile primary cilium assembly 0.16 0.39 NA 

antigen processing and presentation of polysaccharide antigen 

via MHC class II 
0.02 0.58 NA 

polysaccharide assembly with MHC class II protein complex 0.03 0.59 NA 

protein-carbohydrate complex subunit organization 0.04 0.61 NA 

microtubule sliding 0.29 0.38 NA 

MHC protein complex assembly 0.06 0.75 NA 

negative regulation of serine-type peptidase activity 0.41 0.41 NA 

regulation of satellite cell activation involved in skeletal muscle 

regeneration 
0.39 0.45 NA 

protein repair 0.43 0.43 NA 

regulation of serine-type peptidase activity 0.48 0.47 NA 

protein localization to basolateral plasma membrane 0.46 0.55 NA 
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lymphocyte migration into lymphoid organs 0.47 0.62 NA 

Peyer's patch morphogenesis 0.60 0.70 NA 

regulation of homeostatic process 0.45 0.92 NA 

skeletal muscle satellite cell activation 0.88 0.63 NA 
1: Scaled rank refers to enrichment p-value based rank divided by the number of marginally 

significant terms post REVIGO filtering for that tissue (peripheral blood: 95, cord blood: 76, 

fetal brain: 47). ‘NA’ shown for terms that did appear in these lists for that tissue. Terms are 

lumped into groups based on cross-tissue overlap: all three tissues, cord blood and fetal brain, 

peripheral blood and cord blood. Within each of these groups terms are arranged according to the 

sum of the scaled ranks. See methods for more details.  

 

SUPPLEMENTARY FILES 

Supplementary Information: Supplementary Figures 1-4 and Supplementary Tables 1-2.  

Supplementary Data 1: Peripheral blood meQTLs identified at FDR = 5%. Available at 

http://www.arkinglab.org/resources/ 

Supplementary Data 2: Cord blood meQTLs identified at FDR = 5%. Available at 

http://www.arkinglab.org/resources/ 

Supplementary Data 3: Marginally significant Gene Ontology Terms post REVIGO comparing 

ASD-related meQTL targets to meQTL targets generally in peripheral blood. 

Supplementary Data 4: Marginally significant Gene Ontology Terms post REVIGO comparing 

ASD-related meQTL targets to meQTL targets generally in cord blood. 

Supplementary Data 5: Marginally significant Gene Ontology Terms post REVIGO comparing 

ASD-related meQTL targets to meQTL targets generally in fetal brain. 

Supplementary Data 6: meQTL evidence for every ASD-associated (PGC p-value < 1E-4) 

locus. 

Supplementary Data 7: Enrichment Statistics comparing meQTL targets of cross-disorder PGC 

SNPs to meQTL targets of non cross disorder PGC associated SNPs with respect to regulatory 

feature overlap.  

Supplementary Data 8: Enrichment Statistics comparing meQTL targets to non-meQTL targets 

with respect to regulatory feature overlap.  
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Supplementary Figure 1: The relationship between degree of significance and 
distance between SNP and CpG site on chromosome 21. Degree of significance (y-axis) 
defined by -log10 p-value. Only meQTLs present at FDR = 5% are shown. The degree of 
significance decays with increasing distance. Left panel shows relationship for SEED 
peripheral blood data and right panel shows relationship for EARLI cord blood data. 
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Supplementary Figure 2: Gene Ontology enrichment analysis for meQTL targets in peripheral blood. Gene Ontology (GO) enrichment analysis via the ‘gometh’ function in the MissMethyl R package. The 
results for the “biological processes” group were pruned to remove overlapping terms using the REVIGO software. Results shown for meQTL targets of ASD-related (PGC p-value < 1E-4) SNPs and their 
proxies (r2) against a background of all meQTL targets (n = 201 vs n = 59,308; Panels A+B) and for meQTL targets against a background of all CpG sties tested (n = 59,308 vs n = 290,066; Panels C+D). 
meQTL targets all defined via meQTL p-value threshold = FDR 5%. Panels A+C) The top 10  biological process by GO enrichment p-value after REVIGO pruning. Panel B+D) A multi-dimensional scaling 
projection of the semantic similarity in nominally significant (enrichment p-value < 0.05) GO terms produced by REVIGO. Clusters are identified via labeling of the terms with both the least redundancy and 
highest degree of enrichment (‘dispensability’ value < 0.15). Color reflect degree of significance and increasing size reflects greater frequency of term in GO database.  
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Supplementary Figure 3: Gene Ontology enrichment analysis for meQTL targets in cord blood. Gene Ontology (GO) enrichment analysis via the ‘gometh’ function in the MissMethyl R package. The 
results for the “biological processes” group were pruned to remove overlapping terms using the REVIGO software. Results shown for meQTL targets of ASD-related (PGC p-value < 1E-4) SNPs and their 
proxies (r2) against a background of all meQTL targets (n = 66 vs n = 22,803; Panels A+B) and for meQTL targets against a background of all CpG sties tested (n = 22,803 vs n = 289,645; Panels C+D). meQTL 
targets all defined via meQTL p-value threshold = FDR 5%. Panels A+C) The top 10  biological process by GO enrichment p-value after REVIGO pruning. Panel B+D) A multi-dimensional scaling projection of 
the semantic similarity in nominally significant (enrichment p-value < 0.05) GO terms produced by REVIGO. Clusters are identified via labeling of the terms with both the least redundancy and highest 
degree of enrichment (‘dispensability’ value < 0.15). Color reflect degree of significance and increasing size reflects greater frequency of term in GO database.  
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Supplementary Figure 4: Gene Ontology enrichment analysis for meQTL targets in fetal brain. Gene Ontology (GO) enrichment analysis via the ‘gometh’ function in the MissMethyl R package. The results 
for the “biological processes” group were pruned to remove overlapping terms using the REVIGO software. Results shown for meQTL targets of ASD-related (PGC p-value < 1E-4) SNPs and their proxies (r2) 
against a background of all meQTL targets (n = 53 vs n = 7,863; Panels A+B) and for meQTL targets against a background of all CpG sties tested (n = 7,863 vs n = 314,554; Panels C+D). meQTL targets all 
defined via meQTL p-value threshold = FDR 5%. Panels A+C) The top 10  biological process by GO enrichment p-value after REVIGO pruning. Panel B+D) A multi-dimensional scaling projection of the 
semantic similarity in nominally significant (enrichment p-value < 0.05) GO terms produced by REVIGO. Clusters are identified via labeling of the terms with both the least redundancy and highest degree 
of enrichment (‘dispensability’ value < 0.15). Color reflect degree of significance and increasing size reflects greater frequency of term in GO database.  
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Supplementary Table 1: Summary of meQTL evidence across tissue type. 

Scenario Blood 
Cord 

Blood 

Fetal 

Brain 
SNPs 

% of Total 

SNPs 

Independent 

Sites 

% of Total Independent 

Sites 

1    125,869 4.65% 6,640 4.15% 

2    407,722 15.08% 22,135 13.83% 

3    30,691 1.14% 1,354 0.85% 

4    722,703 26.73% 42,561 26.58% 

5    528 0.02% 18 0.01% 

6    6,299 0.23% 333 0.21% 

7    4,940 0.18% 237 0.15% 

8    1,405,261 51.97% 86,821 54.23% 
   SUM 2,704,013  160,099  

Results are shown for meQTLs associated at FDR = 5% threshold in blood and cord blood datasets and threshold of 1E-8 in fetal 

brain. 

Only SNPs that were included in all three tissues in their respective meQTL queries are included in this analyis (n = 2,704,013). 

Independent sites were constructed by grouping SNPs into bins defined by recombination hot spot data from 1000 Genomes (see 

Methods). 

For example, scenario 1 lists that there are a total of 125,869 SNPs that are meQTLs in blood, cord blood, and fetal brain, which fall 

into 6,640 loci. 
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Supplementary Table 2: Summary of meQTL evidence for PGC results. 

 

Scenario Blood 
Cord 

Blood 

Fetal 

Brain 
SNPs % of Total SNPs 

Independent 

Sites 

% of Total Independent 

Sites 

1    5 0.46% 2 0.80% 

2    74 6.76% 18 7.23% 

3    0 0.00% 0 0.00% 

4    195 17.82% 28 11.24% 

5    19 1.74% 8 3.21% 

6    75 6.86% 13 5.22% 

7    0 0.00% 0 0.00% 

8    726 66.36% 180 72.29% 
   SUM 1094  249  

Results are shown for meQTLs associated at FDR = 5% threshold in blood and cord blood datasets and threshold of 1E-8 in fetal 

brain. 

All SNPs in PGC, regardless of if they were tested in the respective meQTL studies, are included in this analysis. 

Independent sites were constructed by grouping SNPs into bins defined by recombination hot spot data from 1000 Genomes (see 

Methods). 

For example, scenario 1 lists that there are a total of 5 SNPs that are meQTLs in blood, cord blood, and fetal brain, which fall into 2 

loci. 
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