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Abstract 24 

Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in 25 
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preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, 26 

feature, and shape information for further analysis. In this article, we document the software and 27 

demonstrate its use in studies of shape variation in healthy and diseased humans. The number of 28 

different shape measures and the size of the populations make this the largest and most detailed shape 29 

analysis of human brains every conducted. Brain image morphometry shows great potential for 30 

providing much-needed biological markers for diagnosing, tracking, and predicting progression of 31 

mental health disorders. Very few software algorithms provide more than measures of volume and 32 

cortical thickness, and more subtle shape measures may provide more sensitive and specific biomarkers. 33 

Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, 34 

depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the 35 

largest set of manually labeled, publicly available brain images in the world and compare them against 36 

state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly 37 

available. 38 

 39 

Author Summary 40 

Brains vary in many ways, including their shape. Analysing differences in shape between brains 41 

or changes in brain shape over time has been used to characterize morphology of diseased 42 

brains, but these analyses conventionally rely on simple volumetric shape measures. We 43 

believe that access to a greater variety of shape measures could provide greater sensitivity and 44 

specificity to morphological disturbances, and could aid in diagnosis, tracking, and prediction 45 

of the progression of mental health disorders. Mindboggle is open source software that 46 

provides neuroscientists (and indeed, anyone interested in computing shapes) tools for 47 

computing a variety of shape measures, including area, volume, thickness, curvature, geodesic 48 

depth, travel depth, Laplace-Beltrami spectra, and Zernike moments. In addition to 49 

algorithmic contributions, we conducted evaluations and applied Mindboggle to conduct the 50 
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most detailed shape analysis of human brains. 51 

 52 

1. Introduction 53 

This article summarizes years of work on the Mindboggle project (http://mindboggle.info), including 54 

development and application of software that automates the extraction, identification, and shape analysis 55 

of features from human brain magnetic resonance imaging (MRI) data. The principal original 56 

contributions of the Mindboggle software include (1) a hybrid approach to combine different software 57 

packages’ gray/white matter segmentations, (2) new algorithms for volume and surface shape measures 58 

devoted to brain images, including travel depth and cortical thickness, and (3) new shape-based feature 59 

extraction algorithms for brain structures such as folds, sulci, and fundi. Further contributions described 60 

in this article include (1) evaluations of Mindboggle volume and surface shape measurement algorithms 61 

against other software algorithms, (2) evaluation of Mindboggle’s fundus extraction algorithm against 62 

other software algorithms, (3) Python implementations of algorithms for general-purpose shape 63 

measures such as Laplace-Beltrami spectra and Zernike moments, and (4) application of Mindboggle to 64 

provide the most detailed shape measures computed on human brain image data. This Introduction 65 

provides background and motivation for the project, Methods outlines the history of the project and the 66 

software’s input, processing steps, and output, Results describes evaluations and applications of the 67 

software, and Discussion provides commentary and future directions. 68 

 69 

1.1. The promise of brain imaging for finding biological markers of mental illness 70 

Brain images have been used to derive biological markers of mental illness and disease for years, most 71 

notably to predict prognoses among patients with behavioral disorders, often more accurately than 72 

current behavioral instruments such as widely used scales and structured interviews. For example, brain 73 

images have been used to predict relapse in methamphetamine dependence [1],� onset of psychosis in 74 

at-risk individuals [2,3],� recovery from depression eight months later [4],� response to drug treatment 75 
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for depression [5,6], anxiety [7]�, and for cognitive behavioral therapy in schizophrenia [8] and social 76 

anxiety disorder [9,10] (see [11] for a more extensive review).� Despite the above promising 77 

experimental results, there is still a dearth of reliable biomarkers [12].� The importance of identifying 78 

new biomarkers is reflected in the National Institute of Mental Health’s Strategic Objectives: “Currently, 79 

very few biomarkers have been identified for mental disorders due in part to their complexity and an 80 

incomplete understanding of the neurobiological basis of mental disorders...” 81 

 82 

1.2. Variation in human brains and the “correspondence problem” 83 

A significant impediment to our understanding of mental health is variation in human brain anatomy, 84 

physiology, function, connectivity, response to treatment, and so on. The normal range of variation must 85 

first be established to determine what is outside of this range, and only then can we hope to address 86 

neuropsychiatric assessment, diagnosis, prognosis, treatment, or prevention. An effective biomarker 87 

traditionally consists of one or more measures that maximize the separability between groups while 88 

minimizing the variance within each group. Brain images provide many ways of measuring different 89 

aspects of the brain, but it is not always clear how to compare these measures over time or across 90 

individuals. Comparing brains presumes that a brain-to-brain correspondence or mapping has been 91 

solved. To do this, scientists ubiquitously co-register images to each other, either individually or in 92 

groups, commonly with the use of a standard template brain or labeled atlas. However, registration alone 93 

does not guarantee correspondence [13] and templates are often not representative of the group being 94 

studied [14,15].� Additional factors that affect the quality of registration are often ignored. For 95 

example, we have empirically demonstrated that registration algorithms vary widely in their accuracy 96 

[16], that even the best require removal of non-brain matter to perform adequately [17,18],� and 97 

conventional registration is less robust to missing regions than feature-based registration methods [19].� 98 

Despite this, many brain imaging studies co-register brains based on image similarity, assume alignment 99 

of corresponding anatomy [20], and compare the brains at the level of a small extent such as a sphere or 100 
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rectilinear volume, which can be on the order of 1/100,000th the volume of the image. 101 

 102 

1.3. Anatomical feature-based correspondence 103 

Neuroanatomists rely instead on high-level “features” such as distinctive cortical folding patterns and 104 

relative positions of subcortical structures to consistently identify anatomical structures or label brain 105 

regions ([21,22]; survey results related to [23]; personal communications with neuroanatomists). Such 106 

morphological features may also be identified by using multimodal imaging data and classifiers trained 107 

on such data [24]. In addition to whole (gyrus and sulcus) folds, components such as sulcal pits and 108 

sulcal fundi hold promise for establishing correspondence across brains. Sulcal pits, points of maximal 109 

depth or curvature in sulci, are interesting because they may be well conserved structures formed early 110 

in development [25–27] and have been used to characterize conditions such as polymicrogyria [28].� 111 

Sulcal fundi are defined as curves that run along the depths of sulci. They form branching skeletons that 112 

simplify the complex pattern of folds of the brain, may be measured for morphometry studies, and are 113 

used to help define the boundaries between gyri [22]. Like pits, fundi are thought to characterize early 114 

stages of morphological development, and therefore may exhibit abnormalities in neurodevelopmental 115 

and heritable disorders. 116 

 117 

1.4. Shape measures as biomarkers 118 

To compare features across individuals we need to quantify them. One quantification method is to 119 

characterize the quantities and distributions of grayscale values within a volume, but this does not work 120 

well for features of limited extent, such as a point, line, or surface patch. Another method is to coregister 121 

a given brain or brain feature with a reference and to define similarity with the reference based on the 122 

registration itself (deformation-based morphometry). Yet another method is to directly measure shape, 123 

where shape is defined as the geometrical information that remains when location, scale and rotation are 124 

removed from an object [29]. Publicly available brain image datasets that include any shape measures 125 
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usually provide only a few shape measures per anatomical region: volume (such as the Internet Brain 126 

Volume Database, http://www.nitrc.org/projects/ibvd), surface area, and/or cortical thickness. These 127 

measures are useful for studies of neurogenesis or atrophy in morphological development, degeneration, 128 

injury, and disease progression. Volume measurement is almost ubiquitous in such studies, and cortical 129 

thickness measures derived from structural MRI data have been reported to help characterize a variety of 130 

disorders [30] such as mild cognitive impairment and Alzheimer’s disease [31–33], multiple sclerosis 131 

[34], schizophrenia [35], autism spectrum disorder [36], and alcohol dependence [37], and to predict 132 

onset or progression of, for example, Alzheimer’s disease [38–44], major depressive disorder [45], and 133 

attention-deficit/hyperactivity disorder [46]. 134 

 135 

More subtle shape measures may provide more sensitive and specific biomarkers, and combining shape 136 

measures in a multivariate analysis can improve results over any single measure [47]. The lack of shape 137 

measures may be attributable to the paucity of software programs such as BrainVisa [48,49] 138 

(https://www.nitrc.org/projects/brainvisa_ext) that compute more nuanced measures.� Sulcal width has 139 

been used to differentiate between groups with mild cognitive impairment [50] and global and local 140 

gyrification indices computed from sulci have been used to characterize schizophrenia [51] and early-141 

onset vs. intermediate-onset bipolar disorder as well as bipolar and unipolar depression [52–54]. More 142 

abstract shape measures such as Zernike moments (see below) have been used in patient classification, 143 

such as to distinguish cases of dementia [55]. 144 

 145 

2. Methods 146 

Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in 147 

preprocessed T1-weighted MRI data, and outputs volume, surface, and tabular data containing label, 148 

feature, and shape information for further analysis. Mindboggle can be run on the command line as 149 

“mindboggle” and also exists as a cross-platform Docker container for convenience and 150 
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reproducibility of results. The software runs on Linux and is written in Python 3 and Python-wrapped 151 

C++ code called within a modular Nipype pipeline framework (http://nipy.org/nipype, doi: 152 

10.5281/zenodo.50186) to promote a modular, flexible design that captures provenance information 153 

[56]. We have tested the software most extensively with Python 3.5.1 on Ubuntu Linux 14.04. Issues 154 

and bugs are tracked on GitHub (https://github.com/nipy/mindboggle/issues) and support questions are 155 

posted on NeuroStars (https://neurostars.org/t/mindboggle/) with the tag “mindboggle”. 156 

 157 

Mindboggle’s flexible, modular, open source pipeline facilitates the addition of functions for computing 158 

almost any shape measure in any programming language.  We initialized Mindboggle with shape 159 

measures that we thought have great potential for describing the shapes of brain structures and that 160 

complement shape measures supplied by existing software packages.  It is just as easy to include 161 

functions in Mindboggle for volume-based as it is for surface-based measures, but we decided to focus 162 

primarily on surface-based shape measures to complement the volume-based methods available in 163 

standard brain image analysis packages.  We also want to emphasize in this work intrinsic shape 164 

measures of brain structures rather than shapes inferred by registration-based methods such as voxel-165 

based, tensor-based, and deformation-based morphometry that rely on a reference or canonical template 166 

and are sensitive to errors in registration.  We also do not consider density values to be intrinsic shape 167 

measures, as they do not describe the shape of an object, but quantify values obtained within an object, 168 

in an analogous manner as one would quantify an fMRI signal or PET ligand binding within a voxel or 169 

region of interest. 170 

 171 
  172 
 173 

2.1. History of the Mindboggle open source brain morphometry platform 174 

2005: The initial version of the Mindboggle software (https://osf.io/gfwcn/) was written in Matlab 175 

(Mathworks, Inc., Natick, MA) as part of a doctoral dissertation [57]. It introduced a feature-driven 176 
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approach to label human brain MRI data using one atlas [19] or multiple atlases [58]. 177 

 178 

2009: With generous funding from the National Institute of Mental Health, we began to write 179 

Mindboggle from scratch in Python with some surface mesh measurements programmed in C++, all run 180 

from a software pipeline written in the Nipype framework. 181 

 182 

2010: To ensure that the most consistent and accurate anatomical labels are assigned to brain image 183 

data, we introduced a new cortical labeling protocol with 62 labels (Fig 1) called the Desikan-Killiany-184 

Tourville (DKT) protocol [22,23] (http://mindboggle.info/labels.html). We applied this protocol to 185 

manually edit the anatomical labels for 101 individuals (20 of which also include CMA non-cortical 186 

labels [59] (http://www.cma.mgh.harvard.edu/manuals/segmentation/)). The resulting Mindboggle-101 187 

dataset [22,60] (http://mindboggle.info/data.html, https://osf.io/nhtur/) is still the largest publicly 188 

available set of manually edited human brain labels in the world. These brains were used to construct 189 

multiple templates [61] and atlases [62], including the joint fusion [63] volume atlas 190 

(https://osf.io/d2cmy/?action=download&version=1) used by the Mindboggle software for volume-191 

based segmentation and labeling, and the DKT-40 and DKT-100 surface atlases [62] used for labeling 192 

cortical surfaces by the FreeSurfer software package [64–66] 193 

(https://surfer.nmr.mgh.harvard.edu/fswiki). The DKT-100 is used as the default atlas for labeling brains 194 

in FreeSurfer (version 6). The Mindboggle-101 brains are used for evaluations and shape analyses 195 

described in the Results section. 196 

 197 

2013: A prototype for online, interactive visualization of Mindboggle shape analysis data won a 198 

hackathon challenge at the Human Brain Mapping (HBM 2013) conference. After use of the XTK 199 

(https://github.com/xtk/X#readme) WebGL JavaScript library [67,68], we used the threejs 200 

(http://threejs.org/) and D3 JavaScript libraries in a second (HBM 2015 [69]) and third (HBM 2016) 201 
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hackathon to create the ROYGBIV online interactive brain image viewer (Fig 1; 202 

http://roygbiv.mindboggle.info), which is under active development 203 

(https://github.com/binarybottle/roygbiv). 204 

 205 

Fig 1. Cortical labels displayed in the ROYGBIV interactive online brain image viewer. 206 
The anatomical labels included in the DKT cortical labeling protocol [22] used to label the Mindboggle-207 
101 data are displayed on a left cortical surface. These two panels show the current state of our 208 
prototype for a browser-based interactive visualization of the left hemisphere of a human brain [69] and 209 
accompanying plot of some of Mindboggle’s shape measures for a selected region 210 
(http://roygbiv.mindboggle.info). 211 
 212 
2015: Mindboggle processed Alzheimer's Disease Neuroimaging Initiative (ADNI; adni.loni.usc.edu; 213 
[70]) and AddNeuroMed [71] data for an international Alzheimer’s disease challenge [72] 214 
(https://www.synapse.org/Synapse:syn2290704/wiki/60828). Teams performed statistical analyses on 215 
Mindboggle shape measures to try and determine which brains had Alzheimer’s disease, mild cognitive 216 
impairment, or were healthy, and to try and estimate a cognitive measure (mini-mental state exam 217 
score). The Results section presents an analysis of some of these data. 218 
 219 

2016: Mindboggle is launched for broader public use after making the following improvements: 220 

● Software ported from Python 2 to Python 3 221 

● Docstring tests provided for almost every function 222 

● GitHub repository transferred to the nipy.org community’s GitHub account 223 

● Online documentation updated automatically 224 

● Online support via NeuroStars with the tag “mindboggle” 225 

● Online tests run automatically 226 

 227 

The documentation is updated online (https://readthedocs.org/projects/mindboggle) and the tests are 228 

updated online (https://circleci.com/gh/nipy/mindboggle) every time a commit is made to the GitHub 229 

repository (https://github.com/nipy/mindboggle). 230 

 231 

2.2. Input data and preprocessing 232 

For running individual functions on surface meshes, the only inputs to the software are outer cortical 233 
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surface meshes constructed from T1-weighted MRI data by software such as FreeSurfer, Caret [73] or 234 

BrainVISA [48], once converted to an appropriate format (see below). For this study we used FreeSurfer 235 

v5.1-derived labels and meshes, but the recently released FreeSurfer version 6 is recommended because 236 

it uses Mindboggle’s DKT-100 surface-based atlas (with the DKT31 labeling protocol) by default to 237 

generate labels on the cortical surfaces, and generates corresponding labeled cortical and non-cortical 238 

volumes (wmparc.mgz) [74]. To preprocess data for use by Mindboggle, run the following FreeSurfer 239 

command on a T1-weighted $IMAGE file (e.g., subject1.nii.gz) to output a $SUBJECT folder (e.g., 240 

subject1): 241 

 242 

recon-all -all -i $IMAGE -s $SUBJECT 243 

 244 

The recon-all command performs many steps (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all), 245 

but the ones that are most relevant include (1) segmentation of the brain image into different tissue 246 

classes (gray/white/cerebrospinal fluid), (2) reconstruction of a triangular surface mesh approximating 247 

the pial surface for each brain hemisphere, and (3) anatomical labeling of each surface and each volume. 248 

 249 

To refine segmentation, labeling, and volume shape analysis, Mindboggle optionally takes output from 250 

the Advanced Normalization Tools (ANTs, v2.1.0rc3 or higher recommended; 251 

http://stnava.github.io/ANTs/), which performs various image processing steps such as brain volume 252 

extraction [17,75], tissue-class segmentation [76], and registration-based labeling [16,18,75]. To 253 

generate the ANTs transforms and segmentation files used by Mindboggle, run the 254 

antsCorticalThickness.sh script [75] on the same $IMAGE file, set an output $PREFIX, and 255 

provide paths to the OASIS-30 Atropos template files in directory $TEMPLATE (backslash denotes a 256 

line return): 257 

 258 
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antsCorticalThickness.sh -d 3 -a IMAGE -o PREFIX \ 259 

 -e $TEMPLATE/T_template0.nii.gz \ 260 

 -t $TEMPLATE/T_template0_BrainCerebellum.nii.gz \ 261 

 -m $TEMPLATE/T_template0_BrainCerebellumProbabilityMask.nii.gz \ 262 

 -f $TEMPLATE/T_template0_BrainCerebellumExtractionMask.nii.gz \ 263 

 -p $TEMPLATE/Priors2/priors%d.nii.gz 264 

 265 

Links to the template (https://osf.io/bx35m/?action=download&version=1) and example input data 266 

(https://osf.io/8cf5z/) can be found on the Mindboggle website. 267 

 268 

2.3. Mindboggle processing steps 269 

The following steps are performed by Mindboggle (http://mindboggle.info/software.html): 270 

1: Convert FreeSurfer formats to NIfTI volumes and VTK surfaces. 271 

2: Optionally combine FreeSurfer and ANTs gray/white segmented volumes and fill with labels. 272 

3: Compute volumetric shape measures for each labeled region. 273 

4: Compute shape measures for every cortical surface mesh vertex. 274 

5: Extract cortical surface features. 275 

6: Segment cortical surface features with labels. 276 

7: Compute shape measures for each cortical surface label or sulcus. 277 

8: Compute statistics for each shape measure in Step 4 for collections of vertices. 278 

 279 

Step 1: Convert FreeSurfer formats to NIfTI volumes and VTK surfaces: 280 

Mindboggle performs all of its processing in two open standard formats: NIfTI (.nii.gz; 281 

http://nifti.nimh.nih.gov/) for volume images and VTK (.vtk, Visualization Toolkit; http://www.vtk.org/) 282 

for surface meshes. ANTs output already supports NIfTI; given FreeSurfer input, the first step that 283 
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Mindboggle performs is to convert FreeSurfer volume and surface formats to NIfTI and VTK for further 284 

processing. All volume images in this study have a resolution of 1x1x1 mm3 per voxel (volume 285 

element). All surface-based shape measures are computed on the “pial surface” (cortical-cerebrospinal 286 

fluid boundary) by default, since it is sensitive to differences in cortical thickness. 287 

 288 

Step 2: Optionally combine FreeSurfer and ANTs gray/white segmented volumes and fill with 289 

labels: 290 

This optional step of the pipeline will be skipped in the future when methods for tissue class 291 

segmentation of T1-weighted MR brain images into gray and white matter improve. FreeSurfer and 292 

ANTs make different kinds of mistakes while performing tissue class segmentation (Fig 2). After visual 293 

inspection of the gray/white matter boundaries in over 100 EMBARC 294 

(http://embarc.utsouthwestern.edu/, https://clinicaltrials.gov/ct2/show/NCT01407094) brain images 295 

processed by FreeSurfer, we found that at least 25 brains had significant overcropping of the brain, 296 

particularly in ventral regions such as lateral and medial orbitofrontal cortex and inferior temporal lobe 297 

due to poor surface mesh reconstruction in those regions. This corroborates Klauschen’s observation that 298 

FreeSurfer underestimates gray matter and overestimates white matter [77]. We also found that ANTs 299 

tends to include more cortical gray matter than FreeSurfer, but at the expense of losing white matter that 300 

extends deep into gyral folds, and sometimes includes non-brain tissue such as transverse sinus, sigmoid 301 

sinus, superior sagittal sinus, and bony orbit. 302 

 303 

Mindboggle attempts to reconcile the differences between FreeSurfer and ANTs segmentations by 304 

combining them. The relabel_volume function converts the (wmparc.mgz) labeled file generated 305 

by FreeSurfer and the (BrainSegmentation.nii.gz) segmented file generated by the ANTs Atropos 306 

function [76] to binary files of pseudo-white matter and gray (including deep gray) matter. The 307 

combine_2labels_in_2volumes function overlays FreeSurfer white matter atop ANTs cortical 308 
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gray, by taking the union of cortex voxels from both binary files as gray matter, the union of the non-309 

cortex voxels from the two binary files as white matter, and assigning intersecting cortex and non-cortex 310 

voxels as non-cortex. While this strategy often preserves gray matter bordering the outside of the brain, 311 

it still suffers from over-inclusion of non-brain matter, and sometimes replaces true gray matter with 312 

white matter in areas where surface reconstruction makes mistakes.  313 

 314 

The FreeSurfer/ANTs hybrid segmentation introduces new gray-white matter boundaries, so the 315 

corresponding anatomical (gyral-sulcal) boundaries generated by FreeSurfer and ANTs need to be 316 

updated accordingly. Mindboggle uses ImageMath’s PropagateLabelsThroughMask function 317 

in ANTs to propagate both FreeSurfer and ANTs anatomical labels to fill the gray and white matter 318 

volumes independently. The FreeSurfer-labeled cerebellum voxels overwrite any intersecting cortex 319 

voxels, in case of overlap. 320 

 321 

Fig 2. FreeSurfer and ANTs gray/white matter segmentation.  322 
Left: Coronal slice of a T1-weighted brain MRI. Middle: Cross-section of FreeSurfer inner (magenta) 323 
and outer (green) cortical surfaces overlaid on top of the same slice. The red ellipse circumscribes a 324 
region where the FreeSurfer surface reconstruction failed to include gray matter on the periphery of the 325 
brain. Right: Cross-section of ANTs segmentation. The blue ellipse circumscribes a region where the 326 
ANTs segmentation failed to segment white matter within a gyrus that the FreeSurfer correctly 327 
segmented (compare with the middle panel). The purple box in the lower right highlights a region 328 
outside of the brain that the ANTs segmentation mistakenly includes as gray matter. To reconcile some 329 
of these discrepancies, Mindboggle currently includes an optional processing step that combines the 330 
segmentations from FreeSurfer and ANTs. This step essentially overlays the white matter volume 331 
enclosed by the magenta surface in the middle panel atop the gray/white segmented volume in the right 332 
panel. 333 
 334 

Step 3: Compute volumetric shape measures for each labeled region: 335 

● volume 336 

● thickness of cortical labels (thickinthehead) 337 

As mentioned in the Introduction, the most common shape measures computed for brain image data are 338 

volume and cortical thickness for a given labeled region of the brain. Volume measurements are 339 
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influenced by various factors such as cortical thickness, surface area [78], and microstructural tissue 340 

properties [79]. Computing the volume per labeled region is straightforward: Mindboggle’s 341 

volume_per_brain_region function simply multiplies the volume per voxel by the number of 342 

voxels per region. In contrast, cortical thickness can be estimated using a variety of MRI processing 343 

algorithms [49,75,80–83]. Since Mindboggle accepts FreeSurfer data as input, we include FreeSurfer 344 

cortical thickness [80] estimates with Mindboggle’s shape measures. When surface reconstruction from 345 

MRI data produces favorable results (see above), FreeSurfer cortical thickness measures can be highly 346 

reliable [81,84,85]. See Results for our evaluation of cortical thickness measures. 347 

 348 

To avoid surface reconstruction-based problems with the cortical thickness measure, we built a function 349 

called thickinthehead that computes a simple thickness measure for each cortical region from a 350 

brain image volume without relying on surface data (Fig 3). The thickinthehead function first 351 

saves a brain volume that has been segmented into cortex and non-cortex voxels into separate binary 352 

files, then resamples these cortex and non-cortex files from, for example, 1mm3 to 0.5mm3 voxel 353 

dimensions to better represent the contours of the cortex. Next it extracts outer and inner boundary 354 

voxels of the cortex by morphologically eroding the cortex by one (resampled) voxel bordering the 355 

outside of the brain and bordering the inside of the brain (non-cortex). Then it estimates the middle 356 

cortical surface area by the average volume of the outer and inner boundary voxels of the cortex. 357 

Finally, it estimates the thickness of a labeled cortical region as the volume of the labeled region divided 358 

by the middle surface area of that region. The thickinthehead function calls the ImageMath, 359 

Threshold, and ResampleImageBySpacing functions in ANTs. 360 

 361 
Fig 3. Thickinthehead estimates average cortical thickness per brain region.  362 
Mindboggle’s thickinthehead algorithm estimates cortical thickness for each brain region without 363 
relying on cortical surface meshes by dividing the volume of a region by an estimate of its middle 364 
surface area. Clockwise from lower left: 3-D cross-section and sagittal, coronal, and axial slices. The 365 
colors represent the inner and outer “surfaces” of cortex created by eroding gray matter bordering white 366 
matter and eroding gray matter bordering the outside of the brain. The middle surface area is estimated 367 
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by taking the average volume of these inner and outer surfaces. 368 
 369 

Step 4: Compute shape measures for every cortical surface mesh vertex: 370 

● surface area 371 

● mean curvature 372 

● geodesic depth 373 

● travel depth 374 

● convexity (FreeSurfer) 375 

● thickness (FreeSurfer) 376 

 377 

Aside from the convexity and thickness measures inherited from FreeSurfer, shape measures computed 378 

for each vertex of a cortical surface triangular mesh are generated by Mindboggle’s open source C++ 379 

code (using the Visualization Toolkit, VTK) developed by Joachim Giard: surface area, mean curvature, 380 

geodesic depth, and travel depth. Surface area is computed per vertex (as opposed to per face of the 381 

mesh to be consistent with all other Mindboggle shape measures) as the area of the Voronoi polygon 382 

enclosing the vertex  (Fig 4). Area can be used to normalize other values computed within a given 383 

region such as a gyrus or sulcus [86]. 384 

 385 

Fig 4. Surface area per vertex.  386 
Mindboggle computes surface area for each surface mesh vertex as the area of the Voronoi polygon 387 
enclosing the vertex. Left: Lateral view of a left cortical hemisphere colored by surface area per vertex. 388 
Right: Closeup of the surface mesh. Mindboggle uses area to normalize other shape values computed 389 
within a given region such as a gyrus or sulcus. 390 
 391 

Curvature is an obvious shape measure for a curved and folded surface like the cerebral cortex and has 392 

the potential to help make inferences about other characteristics of the brain, such as sulcus width, 393 

atrophy [87,88], structural connections [89] and differential expansion of the cortex [90]. Mindboggle 394 

computes both mean and Gaussian curvatures based on the relative direction of the normal vectors in a 395 
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small neighborhood (Fig 5), which works best for low resolution or for local peaks, but can be sensitive 396 

to the local linear geometry of the mesh. Increasing the radius of the neighborhood mitigates this 397 

sensitivity, so a neighborhood parameter corresponding to the radius of a geodesic disk is defined in the 398 

unit of the mesh. If coordinates are in millimeters, the default setting of 2 results in an analysis of the 399 

normal vectors within a 2mm radius disk. Other options include computing both mean and Gaussian 400 

curvatures based on the local ratios between a filtered surface and the original surface area (the filtering 401 

is done using Euclidean distances, so it's best for less accurate but fast visualization), or computing the 402 

mean curvature based on the direction of the displacement vectors during a Laplacian filtering (a good 403 

approximation based on the Laplacian, but underestimates very large, negative or positive, curvatures 404 

due to saturation). 405 

 406 
Fig 5. Curvature per vertex.  407 
Mindboggle computes curvature for each surface mesh vertex. This medial view of the left cortical 408 
hemisphere is colored by curvature per vertex (green indicates flat regions).  409 
 410 

Depth is an important measure characterizing the highly folded surface of the human cerebral cortex. 411 

Since much of the surface is buried deep within these folds, an accurate measure of depth is useful for 412 

defining and extracting deep features, such as sulci [91,92], sulcal fundus curves [93–95], and sulcal pits 413 

[26,96,97]. Depth may also serve as an indicator of developmental stage [26].  414 

 415 

We are aware of three predominant methods for measuring depth of points on the surface of the cerebral 416 

cortex, where depth is the distance between a given point on the brain surface to an outer reference 417 

surface of zero depth (the portions of the brain surface in contact with the outer reference surface are 418 

gyral crowns or crests). The first is Euclidean depth, the distance along a straight path from the point on 419 

the brain to the outer reference surface. A straight path has the undesirable property that it will cross 420 

through anything, which can make a highly folded surface indistinguishable from a slightly folded 421 

surface that fills the same volume. The second is geodesic depth, the shortest distance along the surface 422 
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of the brain from the point to where the brain surface makes contact with the outer reference surface. 423 

Geodesic paths are very sensitive to slight or gradual changes in depth, resulting in exaggerated 424 

distances where the outer reference surface does not wrap the brain closely. Geodesic paths are also 425 

greatly affected by cavities, so distances can be exaggerated where there are irregularities, particularly in 426 

the bottoms of sulcus folds. The third measure, FreeSurfer software’s “convexity,” while not explicitly 427 

referred to as depth, is used to indicate relative depth. It is based on the displacement of surface mesh 428 

vertices after inflating the surface mesh [64]. This can result in assigning positive depth to points on the 429 

outermost surface of the brain such as on a gyral crest, however, which is not consistent with an intuitive 430 

measure of depth. 431 

 432 

Travel depth was introduced as a hybrid depth measure for macromolecules, defined as the shortest 433 

distance that a solvent molecule would travel from the convex hull of the macromolecule without 434 

penetrating the macromolecule surface. It was first defined for surfaces but using a voxel-based 435 

algorithm [98] that uses Dijkstra’s algorithm for finding shortest paths, and was later refined to use a 436 

much faster and more accurate vertex-based computation [99]. A detailed description of the latter 437 

follows. The travel depth algorithm constructs a combination of Euclidean paths outside the cortical 438 

surface and estimated geodesic paths along the cortical surface. The principal idea of the algorithm lies 439 

in the classification of a surface into “visible” and ”hidden” areas (Fig 1 in Supplement 1). A point on 440 

the surface is considered “visible” by another point if they can be connected by a straight line without 441 

intersecting the volume enclosed by the surface. In other words, there is a “line of sight” between the 442 

two points that does not run through the interior of the surface. A point is considered “hidden” from 443 

another point if it is not visible and can only be reached by a path running either along the surface or 444 

connecting points of the surface without intersecting the enclosed volume. 445 

 446 

The above implementations of travel depth use a convex hull (Fig 2 in Supplement 1), as do most 447 
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measures of cortical depth such as the adaptive distance transform [100], while other algorithms do not 448 

define a zero-depth reference surface but rely instead on convergence of an algorithm, such as the depth 449 

potential map [101]. The shape of the brain is concave in places, resulting in some gyral crowns that do 450 

not touch the convex hull. For example, in Fig 3 in Supplement 1, the gyri of the medial temporal lobe 451 

are assigned positive depth, resulting in an unreasonably high depth for the folds of that region. Since 452 

the convex hull is not suitable for application to brain images, or for surfaces with global concavities, we 453 

define and construct a different reference surface that we call the wrapper surface (Fig 5 in Supplement 454 

1). The wrapper surface has to be chosen such that the top of a gyrus has zero depth. We compute a 455 

wrapper surface as follows. We create a volume image representing the interior of the mesh, dilate this 456 

image with a probe of radius r, then erode it with the same probe. This operation is also known as 457 

morphological closing, and it is important to carefully set the probe radius. If the radius is too large, the 458 

wrapper surface will be similar to the convex hull, and if the radius is too small, the wrapper surface will 459 

be too close to the original surface and the travel depth will be close to zero even inside folds. We used 460 

an empirically determined radius of 5 mm. The wrapper surface mesh is an isosurface of this 461 

morphologically closed image volume, created using the marching cubes algorithm. On a brain mesh 462 

with 150,000 vertices and 300,000 triangles, the algorithm takes around 200 seconds on an ordinary 463 

computer when the wrapper surface is provided. The generation of the wrapper surface takes an 464 

additional 20 seconds for a probe radius of 5 mm.  465 

 466 

Mindboggle’s travel depth algorithm assigns a depth value to every vertex in a mesh, is faster and more 467 

accurate than voxel-based approaches, assigns more reasonable path distances that are less sensitive to 468 

surface irregularities and imaging artifacts than geodesic distances, and is faithful to the topology of the 469 

surface. Fig 6 shows an example of geodesic and travel depth values, and the Results section 470 

summarizes our comparison of travel depth with geodesic depth and FreeSurfer convexity measures. 471 

 472 
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Fig 6. Geodesic depth and travel depth per vertex.  473 
Mindboggle computes geodesic depth (left) and travel depth (right) for each surface mesh vertex. This 474 
medial view of the sulcus folds from the left cortical hemisphere is colored by depth, with the deepest 475 
vertices in yellow. Note that the deepest vertices according to geodesic depth reside toward the center of 476 
the insula (center fold), whereas the deepest vertices according travel depth run along the deepest 477 
furrows of the insula, as one would expect. 478 
      479 

Step 5: Extract cortical surface features: 480 

● folds 481 

● fundus per fold 482 

 483 

Mindboggle extracts hierarchical structures from cortical surfaces [102,103], including folds and fundus 484 

curves running along the depths of the folds. A fold is a group of connected, deep vertices (left side of 485 

Fig 7). When assigned anatomical labels, folds can be broken up into sulci (right side of Fig 7). To 486 

extract folds, a depth threshold is used to segment deep vertices of the surface mesh. We have observed 487 

in the histograms of travel depth measures of cortical surfaces that there is a rapidly decreasing 488 

distribution of low depth values (corresponding to the outer surface, or gyral crowns) with a long tail of 489 

higher depth values (corresponding to the folds). Mindboggle’s find_depth_threshold function 490 

therefore computes a histogram of travel depth measures, smooths the histogram's bin values, convolves 491 

to compute slopes, and finds the depth value for the first bin with zero slope. The extract_folds 492 

function uses this depth value, segments deep vertices, and removes extremely small folds (empirically 493 

set at 50 vertices or fewer out of a total mesh size of over 100,000 vertices). 494 

 495 
Fig 7. Cortical fold extraction and sulcus segmentation.  496 
Top left: Lateral view of the left hemisphere of a brain with folds labeled red. Mindboggle extracts 497 
cortical surface folds based on a depth threshold that it computes from the distribution of travel depth 498 
values. Bottom left: individually colored folds from the same brain. The red surface shows that folds can 499 
be broadly connected, depending on the depth threshold, and therefore do not map one-to-one to 500 
anatomical region labels. Top right: The same folds with individually colored anatomical labels. These 501 
labels can be automatically or manually assigned (as in the case of this Mindboggle-101 subject). 502 
Bottom right: Individually colored sulci. Mindboggle uses the anatomical labels to segment folds into 503 
sulci, defined as folded portions of cortex whose opposing banks are labeled with sulcus label pairs in 504 
the DKT labeling protocol [22]. Each label pair is unique to one sulcus and represents a boundary 505 
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between two adjacent gyri, so sulcus labels are useful to establish correspondences across brains. 506 
Portions of folds that are missing are not defined as sulci by the DKT labeling protocol. 507 
 508 

A fundus is a branching curve that runs along the deepest and most highly curved portions of a fold (Fig 509 

8). As mentioned above, fundi can serve as boundaries between anatomical regions and are interesting 510 

for their relationship to morphological development and disorders. But they are too tedious, time-511 

consuming, and difficult to be drawn in a consistent manner on the surface meshes derived from MR 512 

images. Mindboggle provides multiple functions for extracting fundi which are optionally generated 513 

from the command line; the extract_fundi function described below is used by default and is 514 

evaluated against other fundus extraction methods in the Results section. This function extracts one 515 

fundus from each fold by finding the deepest vertices inside the fold, finding endpoints along the edge of 516 

the fold, connecting the former to the latter with tracks that run along deep and curved paths (through 517 

vertices with high values of travel depth multiplied by curvature), and running a final filtration step. A 518 

more detailed description of these four steps follows. In the first step, the deepest vertices are those with 519 

values at least two median absolute deviations above the median (non-zero) value. If two of these deep 520 

vertices are within (a default of) 10 edges from each other, the vertex with the higher value is chosen to 521 

reduce the number of possible fundus paths as well as to reduce computation time. To find the endpoints 522 

in the second step, the find_outer_endpoints function propagates multiple tracks from seed 523 

vertices at median depth in the fold through concentric rings toward the fold’s edge, selecting maximal 524 

values within each ring, and terminating at candidate endpoints. The final endpoints are those candidates 525 

at the end of tracks that have a high median value. If two candidate endpoints are within (a default of) 10 526 

edges from each other, the endpoint with the higher value is chosen; otherwise the resulting fundi can 527 

have spurious branching at the fold’s edge. The connect_points_erosion function connects the 528 

deepest fold vertices to the endpoints with a skeleton of 1-vertex-thick curves by erosion. It erodes by 529 

iteratively removing simple topological points and endpoints in order of lowest to highest values, where 530 
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a simple topological point is a vertex that when added to or removed from an object on a surface mesh 531 

(such as a fundus curve) does not alter the object's topology. 532 

 533 
Fig 8. Sulcal fundi.  534 
This figure shows three views of the outside of a single sulcus (taken from the top middle fold in Fig 7) 535 
to clearly show a simple example of a fundus (red branching curve). Mindboggle extracts one fundus 536 
from each fold by finding the deepest vertices inside the fold, finding endpoints along the edge of the 537 
fold, connecting the former to the latter with tracks that run along deep and curved paths, and running a 538 
final filtration step. Just as anatomical labels segment folds into sulci, sulcus labels segment fold fundi 539 
into sulcal fundi.  540 

 541 

Step 6: Segment cortical surface features with labels: 542 

● sulci from folds  543 

● fundus per sulcus 544 

 545 

Since folds are defined as deep, connected areas of a surface, and since folds may be connected to each 546 

other in ways that differ across brains, there usually does not exist a one-to-one mapping between folds 547 

of one brain and those of another. To address the correspondence problem, we need to find just those 548 

portions of the folds that correspond across brains. To accomplish this, Mindboggle segments folds into 549 

sulci, which do have a one-to-one correspondence across non-pathological brains (right side of Fig 7). 550 

Mindboggle defines a sulcus as a folded portion of cortex whose opposing banks are labeled with one or 551 

more sulcus label pairs in the DKT labeling protocol. Each label pair is unique to one sulcus and 552 

represents a boundary between two adjacent gyri, and each vertex has one gyrus label. The 553 

extract_sulci function assigns vertices in a fold to a sulcus in one of two cases. In the first case, if 554 

a vertex has a label that is in only one label pair in the fold, it is assigned that label pair’s sulcus if it can 555 

be connected through vertices with one of the pair’s labels to the boundary between the two labels. In 556 

the second case, the segment_regions function propagates labels from a label boundary to vertices 557 

whose labels are in multiple label pairs in the fold. Once sulci are defined, the segment_by_region 558 
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function uses sulcus labels to segment fold fundi into sulcal fundi, which, like sulci, are features with 559 

one-to-one correspondence across non-pathological brains. 560 

 561 

Step 7: Compute shape measures for each cortical surface label or sulcus: 562 

● surface area 563 

● Laplace-Beltrami spectrum 564 

● Zernike moments 565 

 566 

In addition to shape measures computed for each vertex of a surface (Step 4), Mindboggle also 567 

computes shape measures that apply to collections of vertices such as gyri and sulci (Step 6): surface 568 

area (sum of surface areas across vertices), Laplace-Beltrami spectra, and Zernike moments.  569 

 570 

Martin Reuter established important properties of the spectrum that relates to a shape’s intrinsic 571 

geometry with his “Shape-DNA” method [104–106]. This approach is specifically valuable for non-rigid 572 

shapes, such as anatomical structures: it is insensitive to local bending, as it quantifies only non-573 

isometric deformation, e.g., stretching. The spectrum corresponds to the frequencies of the modes of the 574 

shape and its real-valued components, the eigenvalues, therefore describe different levels of detail (from 575 

more global low-frequency features to localized high-frequency details, Fig 9). The eigen-576 

decomposition of the Laplace-Beltrami operator is computed via a finite element method (FEM). 577 

Mindboggle’s Python fem_laplacian function is based on Reuter’s Shape-DNA Matlab 578 

implementation, and their eigenvalues agree to the 16th decimal place, attributable to machine precision.  579 

 580 

To calculate the distance between the descriptors of two shapes, Reuter describes several approaches, 581 

e.g., Lp-norm, Hausdorff distance and weighted distances. One of the more prominent and simple 582 

distance measures is the Euclidean distance (L2 norm) of the first N smallest (non-zero) eigenvalues, 583 
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where N is called the truncation parameter. To account for the linearly increasing magnitude of the 584 

eigenvalues (Weyl’s law), Reuter recommends to divide each value by its area and its index (done by 585 

default in Mindboggle). As an alternative, the Weighted Spectral Distance (WESD) [107] is included in 586 

Mindboggle (but not used by default). It computes the Lp-norm of a weighted difference between the 587 

vectors of the N smallest Eigenvalues. This approach forms a pseudo-metric and also avoids domination 588 

of higher components on the final distance, making it insensitive to the truncation parameter N (with a 589 

decreasing influence as N gets larger). Additionally, the choice of p (for the Lp-norm) influences how 590 

sensitive the metric is to finer as opposed to coarser differences in the shape; as p increases, WESD 591 

becomes less sensitive to differences at finer scales. 592 

 593 

Fig 9. Laplace-Beltrami spectra. 594 
Mindboggle computes a Laplace-Beltrami spectrum for each feature (gyrus, sulcus, etc.), which relates 595 
to its intrinsic geometry, after Reuter et al.’s “Shape-DNA” method [104–106]. The components of the 596 
spectrum correspond roughly to the level of detail of the shape, from global to local, shown left to right 597 
for the 2nd, 3rd, and 9th spectral components for two different left brain hemispheres (top and bottom). 598 
 599 

Moments can describe the shape of objects, images, or statistical distributions of points, and different 600 

types of moments confer different advantages [108]. Geometric moments of 3-D coordinates have been 601 

used to construct shape descriptors for human brain morphometry [109] because of desirable 602 

characteristics such as invariance to rotation, symmetry, and scale, and they can be computed for any 603 

topology. Zernike moments [110] have also been applied to human brain morphometry for classifying 604 

dementia patients [55] and confer several advantages over geometric moments. They form a set of 605 

orthogonal descriptors, where each descriptor contains independent information about the structure, 606 

allowing the original shape to be reconstructed from the moments. They have been extensively 607 

characterized for shape retrieval performance and are robust to noise. Zernike moments can also be 608 

calculated at different orders (levels of detail): low order moments represent low frequency information 609 

while high orders represent high frequency information. Mikhno et al. [55] implemented Pozo et al.’s 610 
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[111] efficient 3-D implementation of Zernike moments in Matlab, and helped us test our Python 611 

implementation to ensure they give consistent results. The length of the descriptors exponentially 612 

increases with order, so order 20 yields 121 descriptors while order 35 yields 342, for example. Values 613 

are generally less than or equal to one, with values much greater than one indicating instability in the 614 

calculation, which could be due to the way the mesh is created or due to calculating at an order that is 615 

too high given the resolution or size of the object. 616 

 617 

Step 8: Compute statistics for each shape measure in Step 4 for collections of vertices: 618 

● median 619 

● median absolute deviation 620 

● mean 621 

● standard deviation 622 

● skewness 623 

● kurtosis 624 

● lower quartile 625 

● upper quartile 626 

 627 

There can be thousands of vertices in a single feature such as a gyrus, sulcus, or fundus, so it makes 628 

sense to characterize a feature’s shape as either a distribution of per-vertex shape values (Step 4), or as a 629 

single shape value (Step 7). Mindboggle’s stats_per_label function generates tables containing 630 

both, with summary statistical measures representing the distributions of per-vertex shape values.  631 

2.4. Mindboggle output 632 

Example output data generated by Mindboggle is accessible at http://osf.io/8cf5z/. As with the input 633 

formats, volume files are in NIfTI format, surface meshes are in VTK format, and tables are comma-634 

delimited. Each file contains integers that correspond to anatomical labels or features (0-24 for sulci). 635 
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All output data are in the original subject’s space, except for additional surfaces and mean coordinates in 636 

MNI152 space [112]. The Appendix contains a directory tree with outputs from most of the optional 637 

arguments, and does not include interim results stored in a working directory or downloaded files in a 638 

cache directory. 639 

 640 

3. Results 641 

Mindboggle has been and continues to be subjected to a variety of evaluations (https://osf.io/x3up7/) and 642 

applied in a variety of contexts. In this section, we compare related shape measures (3.1), evaluate 643 

fundus extraction algorithms (3.2), and evaluate the consistency of shape measures between scans (3.3). 644 

We also demonstrate Mindboggle’s utility in measuring shape differences between left and right 645 

hemispheres (3.4), and in measuring brain shape variation (3.5). 646 

 647 

3.1. Comparisons between brain shape measures 648 

We compared shape measures with one another in a representative individual from the Mindboggle-101 649 

data set (Fig 10) and for the entire data set (Fig 11, Fig 12, and Fig 13) to emphasize to the reader that 650 

shape measures are not independent of one another and that care must be taken when comparing 651 

differently defined shape measures or when using one as a proxy for another. Fig 10 plots over 130,000 652 

vertices of one brain hemisphere, where the coordinates are two different shape measures assigned to 653 

each vertex: geodesic depth by travel depth (top) and mean curvature by travel depth (bottom). This 654 

figure demonstrates that curvature is positively correlated with depth and that geodesic depth produces 655 

higher shape values than travel depth, and may exaggerate depth, such as in the insula (also clearly 656 

evident in Fig 6 and Fig 11). 657 

 658 
Fig 10. Relationships between brain shape measures. 659 
In these plots, we compare a pair of shape measures for each vertex of each right cortical region in a 660 
representative individual from the Mindboggle-101 brains, colored arbitrarily by region. 661 
Top: In this plot comparing two measures of depth, geodesic depth is higher than travel depth, and may 662 
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exaggerate depth, such as in the insula (gray dots extending to the upper left). 663 
Bottom: In this plot of mean curvature by travel depth, we again see that the shape measures are not 664 
independent of one another. As one might expect, we see greater curvature at greater depth. 665 

 666 

Fig 11. Comparison between cortical depth measures.  667 
This superposition of two box and whisker plots is a comparison between two measures of cortical 668 
surface depth applied to the 101 Mindboggle-101 brains: Mindboggle’s travel depth and geodesic depth. 669 
These surface measures are computed for every mesh vertex, so the plots were constructed from median 670 
depth values, with one value per labeled region. Geodesic depth deviates most from travel depth for the 671 
insular regions (far right). 672 
 673 
Fig 12. Comparison between cortical curvature measures.  674 
This superposition of two box and whisker plots is a comparison between two measures of cortical 675 
surface curvature applied to the 101 Mindboggle-101 brains: Mindboggle’s mean curvature and 676 
FreeSurfer’s curvature measure. These surface measures are computed for every mesh vertex, so the 677 
plots were constructed from median curvature values, with one value per labeled region. Deviations 678 
between the two curvature values are most evident for the entorhinal regions (fourth pair from the left). 679 
 680 
Fig 13. Comparison between cortical thickness measures.  681 
This superposition of two box and whisker plots is a comparison between two measures of cortical 682 
thickness applied to the 101 Mindboggle-101 brains: Mindboggle’s thickinthehead (black) and 683 
FreeSurfer’s thickness (red) measures. FreeSurfer’s thickness is defined per surface mesh vertex, so the 684 
red plot was constructed from median thickness values, with one value per labeled region. 685 
 686 
 687 

While it may be useful to compare the distributions of two different shape measures for each region over 688 

a population (as in Fig 11, Fig 12, and Fig 13), we also computed the distance correlation between 689 

related shape measures for each cortical region in the Mindboggle-101 subjects (Table 1; 690 

https://osf.io/9cn7s/). To compare related (travel and geodesic depth, mean and FreeSurfer curvature) 691 

surface shape measures, we computed the distance correlation between each pair of shape measures 692 

across all of the vertices per region, and computed the average of the distance correlations per region 693 

across the 101 subjects. Distance correlation enabled a comparison of the pattern of values for a given 694 

region between two shape measures without regard for their absolute values. Mindboggle’s travel depth 695 

and geodesic depth measures were very highly correlated for 60 of the 62 regions, with distance 696 

correlations ranging from 0.91 to 1.00 (all but four greater than 0.95). The two outliers were the left and 697 

right insula (0.29 and 0.31), which corroborates our earlier assertion that geodesic depth can exaggerate 698 

depth values compared to travel depth in regions such as the insula. Mindboggle’s mean curvature and 699 
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FreeSurfer’s curvature measures had distance correlations ranging from 0.73 (insula) to 0.91 (rostral 700 

middle frontal), with the top 10 values all for frontal and parietal regions. Since thickinthehead 701 

values are computed per region, not per vertex, to compare thickinthehead with median FreeSurfer 702 

thickness values, we constructed a pair of vectors for each region with 101 values, each value 703 

corresponding to the shape measure for that region in a subject, and computed the distance correlation 704 

between the two vectors. The highest distance correlations (0.8 to 0.7) were obtained by frontal and 705 

parietal regions, and the lowest correlations (0.3 to 0.2) by precuneus, parahippocampal, fusiform, and 706 

cingulate regions. 707 

 708 

 709 
  710 
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 711 
 712 

Cortical region 
travel depth vs. 
geodesic depth 

mean curvature vs.  
FreeSurfer curvature 

thickinthehead vs. 
FreeSurfer thickness 

 left right left right left right 
caudal anterior cingulate 0.97 0.96 0.83 0.83 0.39 0.38 
caudal middle frontal 0.99 0.99 0.88 0.88 0.72 0.70 
cuneus 0.99 0.99 0.84 0.83 0.52 0.51 
entorhinal 0.96 0.96 0.77 0.75 0.38 0.33 
fusiform 0.97 0.97 0.83 0.83 0.22 0.20 
inferior parietal 0.99 0.99 0.88 0.88 0.56 0.50 
inferior temporal 0.98 0.98 0.84 0.84 0.31 0.39 
isthmus cingulate 0.91 0.93 0.78 0.79 0.19 0.30 
lateral occipital 0.99 0.99 0.86 0.86 0.54 0.57 
lateral orbitofrontal 0.92 0.92 0.80 0.81 0.54 0.54 
lingual 0.97 0.98 0.83 0.82 0.45 0.62 
medial orbitofrontal 0.97 0.97 0.82 0.82 0.42 0.57 
middle temporal 0.99 1.00 0.88 0.88 0.49 0.40 
parahippocampal 0.96 0.97 0.81 0.84 0.44 0.26 
paracentral 0.99 0.99 0.87 0.87 0.64 0.59 
pars opercularis 0.98 0.98 0.89 0.89 0.65 0.47 
pars orbitalis 0.98 0.98 0.90 0.90 0.43 0.50 
pars triangularis 1.00 1.00 0.90 0.90 0.63 0.47 
pericalcarine 0.96 0.97 0.76 0.78 0.34 0.37 
postcentral 1.00 1.00 0.87 0.87 0.71 0.63 
posterior cingulate 0.99 0.99 0.84 0.83 0.29 0.38 
precentral 0.99 0.99 0.88 0.88 0.70 0.54 
precuneus 0.98 0.98 0.86 0.86 0.29 0.48 
rostral anterior cingulate 0.98 0.97 0.80 0.79 0.26 0.35 
rostral middle frontal 0.99 0.99 0.91 0.91 0.75 0.61 
superior frontal 0.99 0.99 0.89 0.89 0.80 0.71 
superior parietal 0.99 0.99 0.89 0.89 0.69 0.76 
superior temporal 0.99 0.99 0.86 0.85 0.59 0.52 
supramarginal 1.00 1.00 0.88 0.87 0.65 0.60 
transverse temporal 0.97 0.98 0.76 0.74 0.67 0.69 
insula 0.29 0.31 0.73 0.73 0.46 0.38 
 713 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2016. ; https://doi.org/10.1101/091322doi: bioRxiv preprint 

https://doi.org/10.1101/091322
http://creativecommons.org/licenses/by/4.0/


29 

Table 1. Distance correlations between related shape measures 714 
To compare pairs of related (travel and geodesic depth, mean and FreeSurfer curvature) surface shape 715 
measures, we computed the distance correlation between vectors of shape values for all vertices in each 716 
cortical region, and averaged the distance correlations across the 101 Mindboggle-101 subjects. For 717 
thickinthehead and FreeSurfer thickness measures, we computed the distance correlation between 718 
vectors of median shape values for all 101 Mindboggle-101 subjects for each cortical region. 719 

 720 

 721 

3.1.1. Comparison between travel depth and FreeSurfer’s convexity measure 722 

As described above, travel depth uses a reference wrapper surface that lies closer to the cortical surface 723 

than a convex hull would. In particular, the wrapper lies closer to the medial temporal lobe, so the gyri 724 

in this area have depth values equal to zero as one would want. FreeSurfer’s convexity measure [80], 725 

often used to indicate relative depth, leads to non-zero and even negative values for vertices on these 726 

gyri (Fig 4 in Supplement 1). We computed the mean and standard deviation of four statistical 727 

measures of travel depth and FreeSurfer’s convexity values for over 130,000 vertices in a representative 728 

cortical surface. For this comparison, we consider a point to be close to the wrapper surface if the 729 

distance between the two is smaller than 0.1 mm, a depth value is considered small if it is less than 0.1 730 

mm, and a convexity value is considered small if it is less than the smallest convexity value for all the 731 

vertices in the mesh. For travel depth, by definition all vertices (and only those vertices) that are close to 732 

the wrapper surface have a small depth. For convexity, almost all vertices (97.71%) that have a small 733 

convexity value are close to the wrapper surface, but they represent only 6.89% of the vertices close to 734 

the wrapper surface (Table 1 in Supplement 1). One conclusion we drew from this comparison is that 735 

while both travel depth and FreeSurfer’s convexity measures represent depth well for deep portions of a 736 

surface, travel depth provides a more faithful representation for shallow portions. 737 

 738 

3.1.2. Comparison between cortical thickness measures 739 

We are aware of only one study directly comparing FreeSurfer with manual cortical thickness measures, 740 

where the manual estimates were made in nine gyral crowns of a post-mortem brain, selected for their 741 
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low curvature and high probability of having been sampled perpendicular to the plane of section [113]. 742 

We compared thickinthehead, FreeSurfer, and ANTs cortical thickness estimates in different 743 

populations, including the Mindboggle-101 subjects (Fig 13) and in the 40 EMBARC control subjects 744 

(https://osf.io/jwhea/). For 16 cortical regions in the 40 subjects, we measured scan-rescan reliability of 745 

cortical thickness measures, and we compared thickness measures with published estimates based on 746 

manual delineations of MR images of living brains [114]. Forty percent of FreeSurfer estimates for the 747 

640 labels were in the published ranges of values, whereas almost ninety percent of 748 

thickinthehead‘s estimates were within these ranges (as mentioned above, Klauschen observed 749 

that FreeSurfer underestimates gray matter and overestimates white matter [77]). ANTs values deviated 750 

further from the published estimates and were less reliable (greater inter-scan and inter-subject ranges) 751 

than the FreeSurfer or thickinthehead values. 752 

 753 

3.2. Evaluation of fundus extraction algorithms 754 

This section presents the first quantitative comparison of fundus extraction software algorithms. Since 755 

there exists no ground truth for fundus curves, we must resort to other means of evaluation. We leave it 756 

to future work to determine their utility for practical applications such as diagnosis and prediction of 757 

disorders. Since the DKT labeling protocol defines many of its anatomical label boundaries along 758 

approximations of fundus curves, we used the manually edited anatomical label boundaries in the 759 

Mindboggle-101 dataset as gold standard data to evaluate the positions of fundi extracted by four 760 

different algorithms in 2013. Specifically, for each of the 48 fundi/sulci defined by the DKT protocol, 761 

we computed the mean of the minimum Euclidean distances from the label boundary vertices in the 762 

sulcus to the fundus vertices in the sulcus, as well as from the fundus vertices in the sulcus to the label 763 

boundary vertices in the sulcus. The algorithms included Mindboggle’s default 764 

connect_points_erosion function described above, Forrest Bao’s pruned minimum spanning 765 

tree algorithm [102], Gang Li’s algorithm [115], and an algorithm in the BrainVisa software [95]. The 766 
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final algorithm was omitted from the results because too few fundi were extracted to make an adequate 767 

comparison (BrainVisa extracts 65 sulci per hemisphere, and it is possible that the program did not 768 

define some folds as sulci that contain fundi according to the DKT labeling protocol).  769 

 770 

All of the fundi, summary statistics, and results are available online (https://osf.io/r95wb/). While there 771 

was no clear winner, we can summarize our comparison by computing the mean distance between fundi 772 

and label boundaries across all sulci for the three methods and by tallying how many sulci had the 773 

smallest mean distance among the methods. When measured from label boundaries to fundi, Gang Li’s 774 

and Mindboggle’s fundi were closer than were Forrest Bao’s (mean distances of 2.09mm and 2.38mm 775 

vs. 3.65mm, respectively; 25 and 21 vs. 2 closest sulci), whereas when measured from fundi to label 776 

boundaries, Forrest Bao’s fundi were closer than were Mindboggle’s or Gang Li’s (mean distances of 777 

3.33mm vs. 4.06mm and 4.65mm, respectively; 41 vs. 5 and 2 closest sulci). When measuring from 778 

either direction, the maximum distances averaged across all sulci were higher for Forrest Bao’s fundi 779 

(11.65mm and 11.61mm) than for Mindboggle’s (10.84mm and 9.75mm) or Gang Li’s (11.12mm and 780 

6.87mm).  781 

 782 

3.3. Consistency of shape measures between MRI scans of the same person 783 

For a shape measure to be useful in comparative morphometry, it should be more sensitive to differences 784 

in anatomy than to differences in MRI scanning setup or artifacts. To get a sense of the degree of 785 

scan/rescan consistency of our shape measures, we ran Mindboggle on 41 Mindboggle-101 subjects with 786 

a second MRI scan (OASIS-TRT-20 and MMRR-21 cohorts). We computed the fractional shape 787 

difference per cortical region as the absolute value of the difference between the region’s shape values 788 

for the two scans divided by the first scan’s shape value. For the volumetric shape measures (volume 789 

and thickinthehead cortical thickness), shape value is computed by region; for the surface-based 790 

shape measures (area, travel and geodesic depth, mean and FreeSurfer curvature, and FreeSurfer 791 
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thickness), shape value is assigned the median value across all vertices within a region. All shape tables, 792 

statistical summary tables, and accompanying plots are available online (https://osf.io/mhc37/).  793 

 794 

Table 2a gives the average across the 41 subjects of the fractional shape differences between MRI scans 795 

for each of the 31 left cortical regions, and for each shape measure, and Table 2b gives a statistical 796 

summary of the differences. In general, the values are low enough to suggest high inter-scan shape 797 

consistency, but we will point out values greater than or equal to 0.10. Of the volumetric shape measures 798 

(volume and thickinthehead), only one value exceeded or equaled 0.10: entorhinal volume (0.21). 799 

Entorhinal cortex had the second smallest volume of manually labeled MRI cortical regions in 101 800 

healthy human brains [22] (after transverse temporal cortex; see https://osf.io/st7nk/), and low 801 

scan/rescan consistency for small brain structures corroborates Jovicich’s observation in 2013 [116]: 802 

“We found that the smaller structures (pallidum and amygdala) yielded the highest absolute volume 803 

reproducibility errors, approximately 3.8% (average across sites), whereas all other structures had errors 804 

in the range 1.8-2.2% (average across sites), with the longitudinal segmentation analysis. Our absolute 805 

% errors in test-retest volumetric estimates are comparable to those reported by previous studies 806 

(Kruggel et al., 2010; Morey et al., 2010; Reuter et al., 2012).” Regarding cortical thickness measures, 807 

Jovicich observed: “The thickness reproducibility results of the various structures were largely 808 

consistent across sites and vendors, with errors in the range 0.8 – 5.0% for the longitudinal analysis 809 

(table 7).” Of the surface shape measures, the following exceeded or equaled 0.10 for three measures 810 

(travel depth, geodesic depth, and FreeSurfer curvature): entorhinal, medial orbitofrontal, and (caudal 811 

anterior, rostral anterior, and isthmus) cingulate regions; and for at least one of the measures: lateral 812 

orbitofrontal, parahippocampal, pericalcarine, and insular regions. The greatest differences were for 813 

FreeSurfer curvature in the pericalcarine (0.34), insula (0.28), and rostral anterior cingulate (0.23), 814 

followed by entorhinal volume (0.21) and travel depth (0.20). FreeSurfer curvature had the greatest 815 

number of outliers (Table 2b) and was the only shape measure that spanned negative to positive values, 816 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2016. ; https://doi.org/10.1101/091322doi: bioRxiv preprint 

https://doi.org/10.1101/091322
http://creativecommons.org/licenses/by/4.0/


33 

so regions with very small median curvature values could have inflated these fractions. Future 817 

evaluations will assess the impact that differences in scans have on morphometry-based clinical 818 

research. 819 

 820 
  821 
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 822 
 823 

Cortical region volume thick area travel  geodesic curv FScurv FSthick 
caudal anterior cingulate 0.04 0.05 0.05 0.10 0.10 0.06 0.18 0.04 
caudal middle frontal 0.04 0.05 0.05 0.03 0.03 0.05 0.07 0.04 
cuneus 0.04 0.06 0.04 0.06 0.05 0.03 0.05 0.05 
entorhinal 0.21 0.06 0.09 0.20 0.16 0.06 0.14 0.05 
fusiform 0.03 0.04 0.03 0.04 0.05 0.03 0.05 0.03 
inferior parietal 0.03 0.04 0.02 0.03 0.02 0.04 0.05 0.04 
inferior temporal 0.05 0.04 0.03 0.07 0.06 0.03 0.06 0.02 
isthmus cingulate 0.04 0.08 0.07 0.11 0.13 0.04 0.11 0.04 
lateral occipital 0.03 0.02 0.03 0.08 0.07 0.03 0.04 0.04 
lateral orbitofrontal 0.09 0.05 0.04 0.08 0.10 0.05 0.09 0.04 
lingual 0.03 0.04 0.04 0.05 0.06 0.03 0.04 0.04 
medial orbitofrontal 0.07 0.06 0.06 0.14 0.10 0.06 0.11 0.05 
middle temporal 0.03 0.05 0.03 0.04 0.03 0.03 0.05 0.03 
parahippocampal 0.04 0.04 0.04 0.11 0.12 0.06 0.09 0.03 
paracentral 0.07 0.04 0.05 0.08 0.08 0.04 0.07 0.06 
pars opercularis 0.04 0.06 0.04 0.03 0.03 0.03 0.06 0.03 
pars orbitalis 0.06 0.05 0.04 0.06 0.07 0.05 0.09 0.04 
pars triangularis 0.03 0.06 0.03 0.06 0.05 0.04 0.09 0.04 
pericalcarine 0.06 0.06 0.04 0.03 0.03 0.10 0.34 0.07 
postcentral 0.04 0.02 0.03 0.03 0.03 0.03 0.05 0.06 
posterior cingulate 0.04 0.08 0.05 0.09 0.09 0.05 0.09 0.04 
precentral 0.04 0.03 0.02 0.02 0.02 0.03 0.04 0.04 
precuneus 0.03 0.05 0.03 0.03 0.04 0.03 0.07 0.04 
rostral anterior cingulate 0.04 0.09 0.06 0.10 0.10 0.08 0.23 0.05 
rostral middle frontal 0.04 0.07 0.03 0.04 0.03 0.05 0.06 0.04 
superior frontal 0.02 0.04 0.02 0.06 0.04 0.03 0.04 0.03 
superior parietal 0.04 0.03 0.02 0.03 0.03 0.04 0.05 0.05 
superior temporal 0.04 0.05 0.03 0.02 0.03 0.02 0.04 0.02 
supramarginal 0.04 0.04 0.03 0.04 0.04 0.04 0.07 0.04 
transverse temporal 0.06 0.07 0.04 0.02 0.03 0.04 0.07 0.06 
insula 0.03 0.09 0.03 0.01 0.01 0.05 0.28 0.03 
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 824 
Table 2a. Shape differences between MRI scans 825 
This table lists shape differences between two scans of the same brain averaged across 41 brains. The 826 
shape differences are computed for each of the 31 left cortical regions as the absolute value of the 827 
difference between the region’s shape values between the two scans divided by the first scan’s shape 828 
value. For the surface-based shape values, we used the median value for all vertices within each region. 829 
[thick = thickinthehead cortical thickness; travel = travel depth; geodesic = geodesic depth; curv = 830 
mean curvature; FScurv = FreeSurfer’s curvature; FSthick = FreeSurfer’s thickness]  831 
 832 
 833 
 834 
 mean std min 25% 50% 75% max >0.50 >0.25 

volume 0.047 0.044 0.002 0.019 0.035 0.063 0.213 5 21 

thickinthehead 0.052 0.046 0.001 0.017 0.039 0.078 0.183 0 16 

area 0.039 0.038 0.001 0.014 0.030 0.054 0.182 2 6 

travel depth 0.061 0.050 0.002 0.024 0.050 0.085 0.229 1 36 

geodesic depth 0.059 0.049 0.002 0.022 0.048 0.082 0.222 2 35 

mean curvatures 0.044 0.038 0.001 0.016 0.033 0.059 0.170 0 7 

FreeSurfer curvature 0.094 0.091 0.004 0.033 0.070 0.127 0.433 17 78 

FreeSurfer thickness 0.041 0.036 0.001 0.014 0.032 0.060 0.147 0 0 

 835 
Table 2b. Summary statistics of shape differences between MRI scans 836 
This table gives a statistical summary of the shape differences between two scans of the same brain for 837 
41 brains. The “mean” column is the average of the mean values in Table 1a, while the other columns 838 
contain averages of their respective values over the 31 regions; for example, the “std” column contains 839 
the average of the std values computed for each of the 31 regions. [>0.50 and >0.25 give the number of 840 
regions (out of 1,271 = 31 regions times 41 subjects) where the fractional absolute difference was above 841 
0.50 and 0.25, respectively.] 842 
 843 
 844 
 845 

  846 
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 847 

3.4. Measuring shape differences between left and right hemispheres 848 

To measure interhemispheric shapes differences, we computed the fractional shape difference per 849 

cortical region as in the preceding section, replacing inter-scan differences with interhemispheric 850 

differences (https://osf.io/dp4zy/), and using all 101 Mindboggle-101 brains. Table 3a gives the average 851 

across the 101 subjects of the fractional shape differences between hemispheres for each of the 31 852 

cortical regions, and for each shape measure, and Table 3b gives a statistical summary of the 853 

differences. The values are much higher than the corresponding inter-scan differences in the previous 854 

section, suggesting that shape differences between hemispheres are greater than shape differences 855 

between MRI scans of the same hemisphere. 856 

 857 

 858 
  859 
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 860 
 861 

Cortical regions volume thick area travel geodesic curv FScurv FSthick 
caudal anterior cingulate 0.26 0.06 0.32 0.27 0.21 0.11 0.32 0.06 
caudal middle frontal 0.14 0.04 0.20 0.14 0.13 0.10 0.16 inf 
cuneus 0.12 0.06 0.17 0.32 0.24 0.10 0.15 0.04 
entorhinal 0.17 0.08 0.23 0.41 0.30 0.10 0.21 0.09 
fusiform 0.08 0.05 0.15 0.14 0.13 0.07 0.10 0.04 
inferior parietal 0.23 0.05 0.25 0.11 0.11 0.06 0.09 0.03 
inferior temporal 0.09 0.04 0.14 0.21 0.16 0.07 0.08 0.05 
isthmus cingulate 0.14 0.04 0.17 0.21 0.20 0.10 0.18 0.07 
lateral occipital 0.09 0.04 0.14 0.22 0.18 0.05 0.07 0.04 
lateral orbitofrontal 0.06 0.05 0.11 0.23 0.26 0.09 0.12 0.05 
lingual 0.11 0.04 0.12 0.15 0.13 0.08 0.11 0.05 
medial orbitofrontal 0.08 0.05 0.18 0.27 0.19 0.10 0.17 0.06 
middle temporal 0.11 0.04 0.12 0.17 0.15 0.07 0.10 0.05 
parahippocampal 0.11 0.05 0.13 0.36 0.29 0.15 0.19 0.08 
paracentral 0.16 0.04 0.18 0.25 0.20 0.08 0.16 0.04 
pars opercularis 0.18 0.04 0.33 0.20 0.23 0.10 0.17 0.05 
pars orbitalis 0.22 0.05 0.32 0.37 0.40 0.13 0.20 0.06 
pars triangularis 0.20 0.05 0.32 0.30 0.24 0.12 0.21 0.06 
pericalcarine 0.18 0.06 0.21 0.10 0.11 0.45 inf 0.06 
postcentral 0.09 0.03 0.12 0.13 0.13 0.10 0.14 0.05 
posterior cingulate 0.13 0.04 0.13 0.21 0.18 0.09 0.15 0.05 
precentral 0.07 0.03 0.09 0.10 0.10 0.07 0.11 0.04 
precuneus 0.06 0.03 0.11 0.17 0.14 0.07 0.13 0.03 
rostral anterior cingulate 0.22 0.07 0.36 0.21 0.18 0.10 1.23 0.06 
rostral middle frontal 0.08 0.03 0.17 0.14 0.12 0.08 0.09 0.04 
superior frontal 0.06 0.03 0.14 0.19 0.14 0.06 0.07 0.04 
superior parietal 0.07 0.02 0.15 0.12 0.12 0.07 0.12 0.03 
superior temporal 0.07 0.03 0.12 0.10 0.10 0.09 0.11 0.04 
supramarginal 0.12 0.03 0.19 0.17 0.16 0.08 0.13 0.04 
transverse temporal 0.24 0.06 0.24 0.10 0.10 0.18 0.27 0.06 
insula 0.06 0.04 0.07 0.05 0.03 0.10 0.32 0.05 

 862 
 863 
Table 3a. Shape differences between left and right hemispheres 864 
Shape differences between hemispheres are computed for each of the 31 cortical regions in all 101 of the 865 
Mindboggle-101 subjects as the absolute value of the difference between the region’s left and right 866 
shape values divided by the left shape value. For the surface-based shape values, we used the median 867 
value for all vertices within each region. (Refer to Table 1a caption for abbreviations.) 868 

 869 
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 870 
 mean std min 25% 50% 75% max >0.50 >0.25 

volume 0.129 0.091 0.002 0.058 0.117 0.180 0.448 38 443 

thickinthehead 0.044 0.036 0.001 0.017 0.037 0.064 0.169 0 4 

area 0.183 0.163 0.002 0.074 0.148 0.248 1.025 165 744 

travel depth 0.198 0.199 0.003 0.074 0.150 0.257 1.251 211 764 

geodesic depth 0.173 0.163 0.002 0.067 0.133 0.229 1.009 148 658 

mean curvatures 0.104 0.113 0.002 0.038 0.079 0.141 0.872 59 192 

FreeSurfer curvature 0.190 0.435 0.003 0.074 0.150 0.250 3.890 205 626 

FreeSurfer thickness 0.050 0.077 0.001 0.018 0.036 0.062 0.691 23 28 

 871 
 872 
Table 3b. Summary statistics of shape differences between left and right hemispheres 873 
This table gives a statistical summary of the interhemispheric shape differences for the 101 Mindboggle-874 
101 brains. The “mean” column is the average of the mean values in Table 3a, while the other columns 875 
contain averages of their respective values over the 31 regions; for example, the “std” column contains 876 
the average of the std values computed for each of the 31 regions. [>0.50 and >0.25 give the number of 877 
regions (out of 3,131 = 31 regions times 101 subjects) where the fractional absolute difference was 878 
above 0.50 and 0.25, respectively.] 879 
 880 

 881 

3.7. Measuring human brain shape variation 882 

To estimate the normal range of variation in the shapes of healthy adult human brains, we applied 883 

Mindboggle software in 2015 to compute shape measures for our Mindboggle-101 dataset (see 2.1: 2010 884 

above). The result is the largest set of shape measures computed on healthy human brain data (See 885 

Supplement 2 and https://osf.io/gzshf/ for detailed results) [117,118]. We are treating these as 886 

normative data against which anyone can compare similarly processed images of different healthy 887 

populations as well as patient populations. 888 

 889 

The data we analysed consist of repeated measurements on five distinct real-valued shape measures 890 

(mean curvature, geodesic depth, travel depth, FreeSurfer convexity, and FreeSurfer thickness) for each 891 

of 31 distinct regions per brain hemisphere in each of the 101 subjects. Each subject was scanned at one 892 
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of five different laboratories. At the bottom of Fig 14 is one example of the many heatmap tables we 893 

have generated from these data (all results are accessible at https://osf.io/d7hx8/). Each table presents 894 

one value for each labeled region or sulcus for each of the 101 subjects. The value is either volume or 895 

thickinthehead cortical thickness for volumetric images, or for one of the five surface shape 896 

measures above, one of eight summary statistical measures (mean, median, median absolute deviation, 897 

standard deviation, lower and upper quartiles, skewness, and kurtosis) computed across all vertices in 898 

the surface mesh of the labeled region or sulcus.  899 

 900 

We organized the data in a nested fashion: brain hemisphere is nested within subject, and subject is 901 

nested within laboratory. In addition to the five shape measurements and the three nested classification 902 

factors, the data also include three covariates: sex (male, female), age (integer variable), and handedness 903 

(left, right; we relabeled two ambidextrous subjects as left-handed). Given the grouped nature of the 904 

data, we used linear mixed models for the statistical modeling of the data. To assess the importance of 905 

each of the covariates and nested classification factors, we fitted 24 distinct linear mixed models for 906 

each shape measure and brain region combination to assess the importance of each of the covariates 907 

(sex, handedness, and age as fixed effects) and nested classification factors (laboratory, subject, and 908 

brain hemisphere as random effects). For each shape measure, we decomposed the total variance into the 909 

variance between laboratories, between subjects within a laboratory, between brain hemispheres within a 910 

subject, and within brain hemispheres. 911 

 912 

For each shape measure and brain region combination, we used the Bayesian Information Criterion 913 

(BIC) score to select the best model among the 24 competing models. A BIC score is a goodness of fit 914 

measure used to perform model selection among models with different dimensions (number of 915 

parameters), and is proportional to the negative log likelihood of the model penalized by the number of 916 

parameters in the model. It strikes a balance between model fit (measured by the log-likelihood score) 917 
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and model complexity (measured by the number of parameters in the model). In the context of linear 918 

models, an over-parameterized model will always have a larger log-likelihood score than a more 919 

parsimonious model, but it will also likely overfit the data. Nonetheless, by including a penalty 920 

proportional to the number of parameters in the model, the BIC score can be used to compare models 921 

with different dimensions since over-parameterized models are penalized to a greater extent. The smaller 922 

the BIC score, the better the model fits the data. 923 

 924 

Two models stood out as the best models for the mean curvature, travel depth, FreeSurfer convexity, and 925 

FreeSurfer thickness shape measures across the 31 brain regions (Supplement 2). Both models include 926 

handedness and age as fixed effects. They only differ by the inclusion of the extra “subject within lab” 927 

nesting level. For all shape measures and brain regions, the bulk of the variability was concentrated in 928 

the residual, not in the hemisphere (“side”), subject, or laboratory (top of Fig 14). 929 

 930 

Fig 14. Brain shape variation in healthy humans. 931 
Top: Overview of the variance results for five shape measures computed on each of 31 manually labeled 932 
cortical regions (combined across both hemispheres for this figure) in the 101 Mindboggle-101 healthy 933 
human brains. The table shows the relative contributions of subject, hemisphere, and residual to describe 934 
the variability for each shape measure, with a greater contribution coded by a darker blue. For all shape 935 
measures and brain regions, most of the variability was concentrated in the residual. See Supplement 2 936 
for a description of the statistical models. Bottom: An example heatmap table containing 4,848 cells, 937 
where each cell is color-coded (increasing from red to yellow) to represent the median absolute 938 
deviation of travel depth values across all vertices in each of 48 sulcus surface meshes for the 101 939 
subjects. 940 
 941 

We repeated the same analysis as above on two scans acquired three years apart from hundreds of the 942 

ADNI participants (126 with Alzheimer’s, 199 healthy controls) as part of an international Alzheimer’s 943 

challenge (see Section 2.1: 2015 above) to see if we could find changes in brain shape measures that 944 

correlate with changes in ADNI-MEM cognitive scores over the course of three years. This resulted in 945 

the most detailed shape analysis of brains with Alzheimer's disease ever conducted [118] 946 

(https://osf.io/d7hx8/). To identify shape measures associated with Alzheimer’s disease, we used the 947 
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average of the ranks of the following tests in that study: Kolmogorov-Smirnov test to see if there was a 948 

difference between distributions at baseline and at three years, and correlation of change in shape and 949 

change in ADNI-MEM cognitive scores.  950 

 951 

We found that healthy brains and brains with Alzheimer’s disease have similar shape statistical 952 

summaries, but changes in the following shape measures after a three-year interval were significantly 953 

correlated with changes in ADNI-MEM cognitive score: 954 

 955 

● Volume for right caudal anterior cingulate and left: entorhinal, inferior parietal, (middle, 956 

superior) temporal, superior frontal, precuneus, and supramarginal gyri 957 

● FreeSurfer thickness for left and right: entorhinal, fusiform, inferior parietal, (inferior, middle, 958 

superior) temporal, superior frontal, precuneus, and supramarginal gyri; left: (caudal 959 

middle/lateral, orbito/rostral middle) frontal, and pars triangularis gyri; right lingual gyrus 960 

● Mean curvature for left and right rostral middle frontal gyri; left (middle, superior) temporal 961 

gyri; right inferior temporal gyri 962 

 963 

 964 

  965 
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 966 

4. Discussion 967 

In this article, we have documented the Mindboggle open source brain morphometry platform and 968 

demonstrated its use in studies of shape variation in healthy and diseased humans. The number of 969 

different shape measures and the size of the populations make this the largest and most detailed shape 970 

analysis of human brains every conducted. There are many ways in which the open source software 971 

community can extend Mindboggle’s capabilities, and there are many possible applications for 972 

Mindboggle to brain and non-brain data. Here we will very briefly summarize this article’s results and 973 

point toward possible further evaluations and alternative approaches. 974 

 975 

4.1. Summary of results 976 

In this section we summarize the findings of our evaluations in the Results section. Shape measures are 977 

not independent of one another, and some related shape measures exaggerate values for certain 978 

morphological structures (such as geodesic vs. travel depth for the insula). Mindboggle’s thickinthehead 979 

cortical thickness measure is consistent across scans and across brains and generated values that are 980 

closer to published ranges of values than FreeSurfer or ANTs values. Mindboggle’s travel depth 981 

measure provides a more faithful representation of depth for shallow portions than FreeSurfer’s 982 

convexity measure. Mindboggle’s fundi are comparable to Gang Li’s fundi in terms of average 983 

proximity to manual label boundaries, but there was no clear winner in our evaluation of fundus 984 

extraction algorithms. Mindboggle’s shape measures are reasonably consistent across scans of the same 985 

brain, with some exceptions (such as entorhinal volume). We found that for the shape measures and 986 

populations we studied that shape differences between hemispheres were greater than shape differences 987 

between MRI scans of the same hemisphere, and that the variability within each brain hemisphere was 988 

higher than the variability between brain hemispheres in a participant or between participants. Finally, 989 

we reported which brain regions were significantly correlated with changes in ADNI-MEM cognitive 990 
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score after a three-year interval as part of an international Alzheimer’s challenge. 991 

 992 

4.2. Further evaluations and enhancements of Mindboggle 993 

The Mindboggle software will continue to be subjected to evaluations of its algorithms as well as of its 994 

applicability to new datasets of healthy and diseased brains. Data exist to conduct evaluations of 995 

test/retest reliability and reproducibility [119,120], with different imaging parameters [121], with genetic 996 

information [122], with heritability information [123], at higher field strengths [124], etc. Some data 997 

also exist for evaluating features such as sulcal pits [125]. Including different types of brain images can 998 

enable multivariate analyses, independent corroboration of morphology, and can even help to better 999 

interpret the factors that influence morphology [79]. We also intend to evaluate Mindboggle output by 1000 

analyzing interactions among shape measures to find higher order morphological relationships with 1001 

brain shape differences.  1002 

 1003 

There are many ways to enhance Mindboggle’s functionality and applicability to pathological brains. 1004 

Taking advantage of different and multiple types of images, atlases, labels, features, and shape measures 1005 

are clear ways to expand and improve Mindboggle, and the software was built using the Nipype 1006 

framework specifically to enable modular and flexible inclusion of different algorithms. Even the inputs 1007 

to Mindboggle can change to take advantage of promising new algorithms that combine surface 1008 

reconstruction with whole-brain segmentation in a way that is more robust to white-matter abnormalities 1009 

[126]. Use of probabilistic labels, features, and shape measures could lead to more careful 1010 

interpretations of morphometry studies.  1011 

 1012 

4.3. Alternative approaches to Mindboggle: Deep learning and beyond 1013 

The Mindboggle software extracts and identifies features for shape analysis. This approach is based on 1014 

human-designed features (brain structure and label definitions and algorithmic implementations) and 1015 
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assumes the validity of the designed feature model. The tremendous success that machine learning 1016 

(especially deep learning) approaches have had across domains [127] are strong evidence that such 1017 

approaches may improve automated feature extraction, identification and labeling for features that a 1018 

human would never consider designing. Machine learning has recently been demonstrated to recognize 1019 

the multi-modal ‘fingerprint’ of cortical areas [24]. In 2011, we advocated a novel application of 1020 

convolutional networks to build discriminative features and were able to demonstrate automated 1021 

volumetric labeling of the cerebral cortex, without human intervention to build handcrafted features or 1022 

to provide other prior knowledge [128]. At the time we had very limited training data (40 manually 1023 

labeled brains), but with the Mindboggle-101 dataset, tables of shape statistics generated by 1024 

Mindboggle, and with improved deep learning architectures, we may now be in a better position to apply 1025 

deep learning to this problem. It may be helpful to explore ways in which priors and invariances can be 1026 

modeled and integrated into deep learning approaches to reduce the amount of required training data and 1027 

to integrate human expert information. This may be particularly beneficial for pathological conditions 1028 

with tumors, lesions, and edemas, etc. that do not conform to a canonical reference brain or are difficult 1029 

to obtain in sufficient quantities to train a deep learning algorithm. Indeed, thousands or millions of 1030 

curated and labeled examples are usually required for deep learning algorithms, which points to the 1031 

promise of unsupervised approaches that do not require expert feedback during training and can learn 1032 

from messier data or from less data. Combining algorithmic approaches to feature extraction and 1033 

morphometry with machine learning and unsupervised approaches has great potential applications in 1034 

characterizing not just healthy human brain variation but in diagnosing, tracking, and predicting 1035 

unhealthy conditions. 1036 

 1037 

 1038 

Supporting Information 1039 

 1040 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2016. ; https://doi.org/10.1101/091322doi: bioRxiv preprint 

https://doi.org/10.1101/091322
http://creativecommons.org/licenses/by/4.0/


45 

Document S1. Travel depth 1041 

 1042 

Document S2. Variance components analysis of the shapes of 62 cortical regions in 101 human 1043 

brains 1044 

 1045 

Appendix S3. Mindboggle output directory tree 1046 

 1047 
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