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Abstract

Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and
zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between
positive and negative feedback effects provided by relatively fast amplifying currents and slower
resonant currents. In 2D neuronal systems, amplifying currents are required to be slaved to
voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems,
additional currents operating at various effective time scales may modulate and annihilate
existing resonances and generate antiresonance (minimum amplitude response) and antipha-
sonance (zero-phase response with phase monotonic properties opposite to phasonance). We
use mathematical modeling, numerical simulations and dynamical systems tools to investi-
gate the mechanisms underlying these phenomena in 3D linear models, which are obtained as
the linearization of biophysical (conductance-based) models. We characterize the parameter
regimes for which the system exhibits the various types of behavior mentioned above in the
rather general case in which the underlying 2D system exhibits resonance. We consider two
cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant
and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a
response amplification if the amplifying current is faster than the resonant current, (ii) res-
onance and phasonance attenuation and annihilation if the amplifying and resonant currents
have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current
is slower than the resonant current. We investigate the underlying mechanisms by extending
the envelope-plane diagram approach developed in previous work (for 2D systems) to three
dimensions to include the additional gating variable, and constructing the corresponding enve-
lope curves in these envelope-space diagrams. We find that antiresonance and antiphasonance
emerge as the result of an asymptotic boundary layer problem in the frequency domain cre-
ated by the different balances between the intrinsic time constants of the cell and the input
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frequency f as it changes. For large enough values of f the envelope curves are quasi-2D and
the impedance profile decrease with the input frequency. In contrast, for f ≪ 1 the dynamics
is quasi-1D and the impedance profile increases above the limiting value in the other regime.
Antiresonance is created because the continuity of the solution requires the impedance profile
to connect the portions belonging to the two regimes. If in doing so the phase profile crosses
the zero value, then antiphasonance is also generated.

1 Introduction

The response of a neuron to oscillatory inputs can be characterized by the so-called impedance
(Z) and phase (φ) profiles, which are the curves of the impedance amplitude (or simply
impedance) and phase-shift (or simply phase) as a function of the input frequency (f) respec-
tively [1–3]. A neuron exhibits subthreshold (membrane potential) resonance and phasonance
if the impedance profile peaks at a nonzero input (resonant) frequency fres and the phase
profile vanishes at a non-zero input (phasonant) frequency fphas. The latter indicates that the
input and output peak at the same time for f = fphas. Several neuron types have been shown
to exhibit subthreshold resonance and phasonance in response to oscillatory inputs in both
current and voltage clamp experiments and in models [1, 2, 4–40]. Subthreshold resonance,
phasonance and intrinsic oscillations are related, but different phenomena, and neurons may
exhibit one(s) in the absence of the other(s) [2–4,41,42].

The functionality of neuronal resonance has not been fully established yet. However, several
lines of work have demonstrated the role of resonance for network oscillatory activity either
directly or indirectly [38, 43–47] both experimentally and theoretically. The role played by
resonance in network oscillations is further supported by the fact that the resonant frequency
of certain neuron types coincides with the oscillatory frequency of the networks in which they
are embedded [12,13,26,48]

Subthreshold resonance results from the interaction between positive and negative feedback
effects provided by the amplifying and resonant gating variables that govern the dynamics
of the participating ionic currents. Neurons with only a passive leak current are low-pass
filters: the impedance profile is a decreasing function of f and the response is always delayed.
Resonance requires the presence of a gating variable that opposes changes in voltage such as
these associated to the so-called resonant currents (e.g., hyperpolarization-activated mixed-
cation Ih and slow-potassium IKs). The gating variables associated to so-called amplifying
currents (e.g., persistent sodium INap and inward-rectifying potassium IKir) favor changes in
voltage and therefore enhance the voltage response in the resonant frequency band [1–3].

In previous work we have carried out a thorough analysis of subthreshold resonance and
phasonance in 2D linearized and nonlinear neuronal models of quadratic type having a fast
(instantaneous) amplifying current and a slower resonant current [3,41,42]. By combining bio-
physical (conductance-based) modeling, numerical simulations and dynamical systems tools
we have identified the biophysical and dynamic mechanisms underlying the generation of reso-
nance and phasonance and described the effects that changes in the maximal conductances and
other model parameters have on fres, fphas and the additional attributes characterizing the
shapes of the impedance and phase profiles. In these studies we have used linear and quadratic
models, representing the linearization and “quadratization”, respectively, of biophysical mod-
els of Hodgkin-Huxley type [49] describing the neuronal subthreshold dynamics, and we have
investigated the role played by various types of resonant and amplifying currents, and their
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combinations, through these simplified models.
For 2D models to exhibit resonance the fast amplifying gating variable is constrained to

be instantaneously fast and slaved to voltage. These models fail to capture complex phenom-
ena such as the presence of troughs in the impedance profile that have been experimentally
observed in hippocampal interneurons [18] and more recently in the so-called LP neurons of
the crab stomatogastric ganglion pyloric network [37], and have been shown theoretically to
emerge in models with slower amplifying gating variables [2]. We refer to this phenomenon as
antiresonance and the associated emergence of an additional zero in the phase profile as an-
tiphasonance, and we refer to the corresponding characteristic frequencies as fares and faphas,
respectively. For antiresonance and antiphasonance to occur the additional degree of freedom
provided by the slower amplifying gating variable is necessary. To our knowledge, the mecha-
nisms of generation of antiresonance and antiphasonance as well as the mechanisms that govern
the modulation of underlying 2D resonances by the interaction between two ionic currents with
slow dynamics and either the similar or opposite feedback effects in oscillatory forced systems
have not been investigated.

The goal of this paper is to address these issues for 3D linear models representing the
linearization of conductance-based models. These models have a resonant gating variable
and an additional gating variable that can be either resonant or amplifying. This gives rise
to two types of interactions between cooperative and competitive feedback effects operating
at comparable or different time scales. Antiresonance and antiphasonance occur when the
amplifying gating variable is slower than the resonant one. The antiresonant patterns, in the
presence of an underlying 2D resonance, are shaped by a trade-off between the time constant
and linearized conductance of this amplifying gating variable. In [50] we have investigated
how these different ways of interaction shape the intrinsic subthreshold oscillatory properties
of linearized and nonlinear models and the complex dependence of these oscillatory patterns on
the model parameters. Here we extend our study to models receiving oscillatory forcing. As for
2D systems, this extension is not straightforward, primarily because even linear systems can
exhibit subthreshold resonance in the absence of intrinsic subthreshold oscillations [2,3,41,42].

For our mechanistic analysis we extend the envelope-plane diagram approach developed
in [41] (see also [42]) to the 3D space to include the additional gating variable. We view the
dynamics of the oscillatory forced 3D system as the result of the response limit cycle trajecto-
ries tracking the oscillatory motion of the voltage nullsurface as time progresses. This allows
us to construct the so-called envelope curves in the 3D envelope-space diagram. The envelope
curves consist of the points corresponding to the peaks of these response limit cycle trajectories
in the v-direction (maximum voltage and the corresponding values of the other coordinates).
The envelope-space diagrams contain geometric and dynamic information about the frequency
response properties of the system to oscillatory inputs, and are the frequency analogous to the
phase-space diagrams. The envelope curves are trajectories in the envelope-space diagrams
parametrized by the input frequency as trajectories in the phase-space diagrams are curves
parametrized by time. This approach allow us to identify the principles that govern (i) the
modulation and annihilation of existing resonances, and (ii) the generation of antiresonance
and antiphasonance. In addition, it allows us to determine the conditions under which these
phenomena occur. For visualization purposes, we use projections of the envelope-space dia-
grams onto the relevant planes for the participating variables in addition to the 3D diagrams.

An important outcome of this analysis is the identification of the mechanism of generation
of antiresonance and antiphasonance as an asymptotic boundary layer problem in the frequency
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domain. This is the result of the different balances between the input frequency f and the
cell’s intrinsic time constants (independent of f) as f changes. For values of f away from
zero the dynamics are 2D and governed by the underlying 2D resonant system independently
of the slow amplifying variable. In contrast, for values of f close to zero the dynamics are
quasi-1D and the resistance Z(0), which depends on the maximal conductance of the slow
variable, increases above the limit of the impedance for the 2D system as f approaches zero.
The trough in the impedance profile is created because the continuity of the solution requires
the impedance profile to connect the portions belonging to the two regimes. If in doing so the
phase profile crosses the zero value, then antiphasonance is also generated.

The investigation of the voltage response to sinusoidal inputs has typically focused on how
preferred frequency responses are generated by the presence of a negative feedback (resonance
and phasonance) and how the voltage response is enhanced at the preferred frequency band
by the presence of a positive feedback (amplification). While these two processes are often
discussed separately [1,2], they are intertwined: amplifying currents cannot generate resonance
in the absence of a resonant current, but they can modify the values the resonant and phasonant
frequencies as well as other attributes of the impedance and phase profiles [3,41,51]. Therefore,
the study presented here includes the mechanisms of selection of the resonant and phasonant
frequencies in addition to the generation and amplification of resonance.

The outline of the paper is as follows. In Section 3.1 we revisit the biophysical and dy-
namic mechanisms of generation of resonance and phasonance in 2D models (voltage v and a
resonant gating variable x1). For future use, we introduce the description of so-called dynamic
phase-plane for 2D oscillatory forced systems, which include the envelope-plane diagrams and
envelope-curves mentioned above. In Section 3.2 we discuss the three limiting and special cases
where the voltage response dynamics of the 3D system (v, x1 and a second gating variable
x2) reduces to the voltage response dynamics for quasi-2D systems, and therefore they can be
understood in terms of the results from previous work. In Section 3.3 we identify the basic
mechanisms of modulation and annihilation of resonance / phasonance and the generation of
antiresonance / antiphasonance in the forced 3D model. As a baseline case for our study we
use a representative set of parameter values for the underlying 2D system such that this 2D
system exhibits resonance but no intrinsic oscillations. In Section 3.4 we extend this investiga-
tion to understand how the trade-off between the maximal conductance and time constant of
the x2 shape the preferred response properties of the 3D model identified in Section 3.3 using
the same baseline parameter values as we used there . We consider the interplay of both (i)
two resonant gating variables, and (ii) one resonant and one amplifying gating variables. In
Section 3.5 we investigate the dynamic mechanisms of resonance modulation and annihilation
and the generation of antiresonance and antiphasonance. To this end, we extend the dynamic
phase-space approach discussed in Section 3.1 to include the three variables (voltage and the
two gating variables). The mechanistic principles we extract from this study have a more
general validity than the specific sets of parameter values considered in the previous sections.
Finally, in Section 4 we discuss our results, limitations and implications for neuronal dynamics.
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2 Methods

2.1 Conductance-based models

We use the following biophysical (conductance-based) models of Hodgkin-Huxley type [49,52]
to describe the neuronal subthreshold dynamics

C
dV

dt
= −IL −

∑

j

Ij + Iapp + Iin(t), (1)

dxj
dt

=
xj,∞(V )− xj

τk,j(V )
, j = 1, 2. (2)

In the current-balance equation (1), V is the membrane potential (mV), t is time (ms), C
is the membrane capacitance (µF/cm2), Iapp is the applied bias (DC) current (µA/cm2),
IL = GL (V −EL) is the leak current, and Ij = Gj xj , (V −Ej) are generic expressions for ionic
currents (with j an index) with maximal conductance Gj (mS/cm2) and reversal potentials
Ej (mV) respectively. The dynamics of the gating variables xj are governed by the kinetic
equations (2) where xj,∞(V ) and τj,x(V ) are the voltage-dependent activation/inactivation
curves and time constants respectively. The generic ionic currents Ij we consider here are
restricted to have a single gating variable xj and to be linear in xj. This is typically the
case for persistent sodium (INap), h- (hyperpolarization-activated, mixed-cation, inward), and
slow-potassium (M-type) (IKs) currents. Our discussion and results can be easily adapted to
include ionic currents having two gating variables raised to powers different from one such as
T-type calcium and A-type potassium currents [1].

The input current Iin(t) (µA/cm
2) in eq. (1) has the form

Iin(t) = Ain sin(Ω t) with Ω =
2πf

T
, (3)

where T = 1000 ms and f is the input frequency (Hz).
In this paper we focus on 3D models describing the dynamics of V and the two gating

variables. Additional currents whose gating variables evolve on a very fast time scale (as
compared to the other variables) can be included by using the adiabatic approximation xk =
xk,∞(V ). Here we include one such fast current I3 = G3 x3,∞(V ) (V − E3). Additional fast
currents can be included without significantly changing the formalism used here.

2.2 Linearized conductance-based models

Linearization of the autonomous part (Iin(t) = 0) of system (1)-(2) around the fixed-point
(V̄ , x̄1, x̄2) yields [2]

C
dv

dt
= −gLv − g1w1 − g2 w2 + Iin(t), (4)

τ̄1
dw1

dt
= v − w1, (5)

τ̄2
dw2

dt
= v − w2, (6)
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where

v = V − V̄ , w1 =
x1 − x̄1
x′1,∞(V̄ )

, w2 =
x2 − x̄2
x′2,∞(V̄ )

, (7)

x̄j = xj,∞(V̄ ), τ̄j = τx,j(V̄ ) j = 1, 2, (8)

gj = Gj x
′

j,∞(V̄ ) (V̄ − Ej), j = 1, 2, 3, (9)

and

gL = GL +G1 x1,∞(V̄ ) +G2 x2,∞(V̄ ) +G3 x3,∞(V̄ ) + g3. (10)

Note that the gating variables w1 and w2 in (7) have units of voltage ([v] = [w1] =V).
The effective leak conductance gL (10) contains information about the biophysical leak

conductance GL, the ionic conductances, and their associated voltage-dependent activation /
inactivation curves. The fast ionic current I3 contributes to gL with an additional term g3. The
signs of the effective ionic conductances gj determine whether the associated gating variables
are either resonant (gj > 0) or amplifying (gj < 0) [1, 2]. Specific examples are the gating
variables associated to Ih (resonant), IKs (resonant), INap (amplifying) and IKir (amplifying).
All terms in gL are positive except for the last one that can be either positive or negative.
Specifically, gL can become negative for negative enough values of g3. This and the other
linearized conductances are affected not only by the respective biophysical conductances, but
also by the magnitudes and signs of the activation (σ < 0) and inactivation (σ > 0) curves
and their derivatives, which are typically given by expressions of the form

x∞(V ) =

(

1 + e
σ

V −V
1/2

Vslp

)

−1

(11)

and

x′
∞
(V ) = −

σ

Vslp

(

1 + e
σ

V −V
1/2

Vslp

)

−2

e
σ

V −V
1/2

Vslp (12)

where V1/2 and Vslp > 0 are constants.

2.3 Biophysical- and geometric-based rescaled models

System (4)-(6) can be rescaled in order to reduce the number of parameters of the autonomous
part (from six to four) and to capture the relative effects of the linearized conductances g1
and g2 and their time constants τ̄1 and τ̄2. Here we use two different rescalings. The so-called
biophysical rescaling uses dimensionless conductances and is appropriate for the analysis of
the dependence of the resonant properties in terms of the ionic conductances and the role
of the time constants in effectively strengthening these conductances. It is close to the one
that combines the biophysical description with the time-scale separation between variables
and has been used in [2] (see also [3]). The so-called geometric rescaling is amenable for the
mechanistic analysis using dynamical systems tools (“dynamic” phase-space analysis) and is
an extension of the one we used in [41]. For the biophysically related questions we will use the
original linearized (4)-(6) model. However, the biophysical rescaling shows that the principles
extracted from our study are valid beyond the representative parameter values we used.
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2.3.1 Rescaled model I: Biophysical dimensionless conductances

Define the following dimensionless time

t̂ =
t

τ̄1
(13)

and parameters

γl =
glτ̄1
C

γ1 =
g1τ̄1
C

γ2 =
g2τ̄1
C

η =
τ̄1
τ̄2

(14)

Substitutying into (4)-(5) we obtain

dv

dt̂
= −γlv − γ1w1 − γ2w2 + Îin(t̂) (15)

dw1

dt̂
= v − w1 (16)

dw2

dt̂
= η [v −w2] (17)

where

Îin(t) = Âin sin(2πf t̂/T̂ ) with Âin =
Ainτ̄1
C

(18)

with T̂ = T/τ̄1 = 1000/τ1. Note that [f ] = Hz, and [v] = [w1] = [w2] = V.

2.3.2 Rescaled model II: Geometric/dynamic description

Define the following dimensionless time and (dimensional) voltage variables

t̂ =
gl
C

t v̂ =
gl
g1

v (19)

and parameters

α =
g1
gl

ǫ =
C

τ̄1gl
κ =

g2
g1

η =
τ̄1
τ̄2
. (20)

Substitutying into (4)-(5) we obtain

dv

dt̂
= −v − w1 − κw2 + Îin(t̂), (21)

dw1

dt̂
= ǫ [αv − w1], (22)

dw2

dt̂
= ǫ η [αv − w2] (23)

where

Îin(t) = Âin sin(2πf t̂/T̂ ) with Âin =
Ain

g1
, (24)
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with T̂ = Tgl/C = 1000gl/C. Note that [f ] = Hz, and [v] = [w1] = [w2] = V.
System (21)-(23) can be thought of as a 3D extension of the 2D linear system investigated

in [41] to which it reduces for κ = 0. Geometrically, the parameter α is the slope of the
w-nullcline and can be thought of as representing the strength of the gain of the feedback in
the linearized system. The parameter ǫ represents the time scale separation between v and w1

and η represents the time scale separation between w1 and w2.
Since for resonant gating variables g1 > 0, the sign of both α and ǫ depends on whether

gL is positive or negative. In the absence of fast amplifying currents (G3 = g3 = 0), gL > 0
and then both α > 0 and ǫ > 0. When an amplifying current is present and its contribution
to gL is small enough, the sign of both α and ǫ remains positive. However, when stronger
contributions of the fast amplifying current causes gL to be negative, the sign of both α and ǫ
are also negative. Since resonance becomes amplified as gL decreases [3], we expect resonance
to be more amplified for negative values of both ǫ and α as compared to positive ones as in [41].
The cases including values of α and ǫ having different signs are excluded from this study since
the underlying autonomous system is either unstable (saddle) or stable (node) but does not
exhibit resonance [41].

2.3.3 Linking the rescalings I and II

The parameters in the autonomous parts of the rescaled systems (15)-(17) and (21)-(23) are
related by the following equations

ǫ =
1

γl
, α =

γ1
γl
, κ =

γ2
γ1

. (25)

The dimensionless parameter η is common to both rescaled models.

2.4 Decoupling the input frequency from the oscillatory input

For the type of analysis we present in this paper it is useful to rescale time t → t/f in order
to separate the effect of the input frequency f from the input’s time dependence [42]. After
dropping the “hat” from the time and input current, system (4)-(6) becomes

dv

dt
=

gL
C f

[

−v −
g1
gL

w1 −
g2
gL

w2 +
Iin,1
gL

(t)

]

, (26)

dw1

dt
=

1

τ̄1 f
[ v − w1 ], (27)

dw2

dt
=

1

τ̄2 f
[ v − w2 ], (28)

where

Iin,1(t) = Ainsin(2π t /1000). (29)

In system (26)-(28) the sinusoidal input function has the same frequency for all values of f ,
which affects the speed of the voltage response. Similarly, system (21)-(23) becomes

dv

dt
=

1

f
[−v − w1 − κw2 + Iin,1(t) ], (30)
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dw1

dt
=

ǫ

f
[αv − w1], (31)

dw2

dt
=

ǫ η

f
[αv − w2]. (32)

In geometric / dynamic terms, this shows that the input frequency f affects the speed of
the trajectories in the phase space without affecting the direction of the underlying vector
field [41, 42]. Additionally, this transformation highlights the different balances that arise
between the effective time constant (f−1) “imposed” by the oscillatory input and the cell’s
intrinsic time constants as the input frequency changes.

When w1 and w2 are identical (and have the same initial conditions) the 3D system (30)-
(32) is effectively 2D. By substituting these variables by w eqs. (30)-(32) reduce to

dv

dt
=

1

f
[−v − (1 + κ)w + Iin,1(t) ], (33)

dw

dt
=

ǫ

f
[αv − w], (34)

In what follows we drop the “bar” sign from the time constants τ1 and τ2.

2.5 Voltage response to sinusoidal input currents: impedance

amplitude and phase

The voltage response of a neuron receiving an oscillatory current input at a frequency f can
be characterized by its amplitude (normalized by the input amplitude) and phase (or phase-
shift). Together, these quantities constitute the so called impedance function Z(f) (a complex
quantity). For simplicity, here we use the term impedance, and we use the notation Z(f), to
refer to the impedance amplitude. We refer to the graphs of Z(f) and φ(f) as the impedance
and phase profiles.

For a linear system receiving sinusoidal input currents of the form (3), the voltage response
is given by

Vout(t; f) = Aout(f) sin (Ω t+ φ(f)) (35)

where Aout(f) is the voltage amplitude. The impedance amplitude is given by

Z(f) =
Aout(f)

Ain
. (36)

When the input and output frequencies coincide, as it always happens for linear systems, the
phase φ(f) captures the difference between the peaks of the voltage output and input current
normalized by the oscillation period. Eqs. (57)-(58) in the Appendix give the analytical
expressions for the impedance and phase profiles.
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2.5.1 Impedance and phase profiles for 2D linear systems: resonance and
phasonance

For 2D linear systems the impedance profiles are either a decreasing function of f (red curve in
Fig. 1-a1), representing a low-pass filter response, or a non-monotonic graph exhibiting a peak
Zmax at a non-zero input frequency (blue curve in Fig. 1-a1) representing a resonant response
at the (resonant) frequency fres. The phase profile may be either an increasing function of
f converging asymptotically to φ = π/2 (red curve in Fig. 1-a2), and representing a delayed
response for all values of f , or a non-monotonic graph exhibiting a zero-phase response at a
non-zero input frequency fphas (blue curve in Fig. 1-a2) that we refer to as the phasonant
frequency. For f = fphas the input current and output voltage peak at the same time. For
f < fphas, the voltage response is advanced, while for f > fphas the voltage response is delayed.
We have investigated the mechanisms of generation of resonance and phasonance in 2D linear
systems in [41].

2.5.2 Impedance and phase profiles for 3D linear systems: emergence of
antiresonance and antiphasonance

For certain parameter regimes (discussed later in this paper) the voltage response for 3D
linear systems is more complex than for 2D linear ones [2, 18] . The impedance profile may
exhibit a trough Zmin at an (anti-resonant) input frequency f = fares in addition to the
peak at f = fres (Fig. 1-b1). The phase profile may have an additional zero-frequency cross at
f = faphas (antiphasonance) in addition to the one at f = fphas (Fig. 1-b1). For f = faphas and
f = fphas the input current and output voltage peak at the same time. The voltage response
is delayed for f < faphas and f > fphas and advanced for f satisfying fphas < f < faphas.

2.5.3 Attributes of the impedance and phase-profiles

The investigation of the role of resonant and amplifying currents requires the tracking of
changes in both the impedance and phase profiles as a certain model parameter changes. It is
helpful to characterize these graphs by using a small number of attributes (Fig. 1) that capture
the salient properties of their shapes. Some of these attributes have been defined earlier: fres,
fphas, fares, faphas, Zmax and Zmin. When fares = 0, Zmin = Z0 (= Z(0)).

In addition, we will use the resonance amplitude QZ = Zmax−Zmin and the antiresonance
amplitude Q0 = Zmax − Z0. In the absence of antiresonance, QZ = Q0. The half-width
frequency band Λ1/2 is the length of the frequency interval in between fres and the input
frequency value at which Z(f) = Zmax/2, and measures the system’s selectivity to input
frequencies in the resonant frequency band. We do not explicitly analyze this attribute in this
paper.

3 Results

The investigation of the mechanisms of generation of resonance, phasonance, antiresonance and
antiphasonance consists primarily of understanding how and under what conditions fres), fphas,
fares) and faphas transition from zero to positive values respectively. Alternatively, resonance
requires QZ > 0 and Q0 < QZ (for systems exhibiting resonance but not antiresonance QZ =
Q0).
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Figure 1: Representative Impedance (Z) and phase (φ) profiles (curves of Z and φ vs. the input

frequency f) for 2D (a) and 3D (a,b) linear systems. (a1) The impedance Z is characterized by four

attributes: the resonant frequency fres, the impedance peak Zmax, the resonance amplitude QZ = Zmax−Z(0), and

the half-bandwidth Λ1/2. (a2) The phase φ is characterized by two attributes: the zero-crossing frequency fphas

and the phase minimum φmin. (b1) The impedance Z is characterized by additional attributes: the anti-resonant

frequency fares, the impedance local minimum Zmin and Q0 = Zmax − Z0. The resonance amplitude is defined as

QZ = Zmax−Zmin and it coincides with the definition in panel a (in the absence of antiresonance Zmin = Z0). (b2)

The phase φ is characterized by two additional attributes: the phase local maximum φmax and the zero-crossing

phase faphas on the descending portion of φ.
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If a neuron exhibits resonance, the mechanisms of amplification of the voltage response in
the resonant frequency band consist primarily of understanding how the resonance amplitude
QZ and the maximal impedance Zmax increase as certain model parameter increases. These two
attributes convey different information about the voltage response in the resonant frequency
band. This is particularly important for neurons, since QZ may increase (decrease), while Zmax

decreases (increases), thus bringing the voltage further away from (closer to) the threshold for
spike generation in the resonant frequency band.

3.1 Mechanisms of generation of resonance and phasonance in
2D linear systems revisited

3.1.1 Biophysical mechanisms

In [3,41] we identified the basic mechanisms of generation of resonance for the two-dimensional
linear system (4)-(5) with g2 = 0 (henceforth, the 2D system). Additionally, we carried a thor-
ough analysis of the properties of the attributes of the voltage response and their dependence
on the linearized conductances, gL and g1, and the time constant τ̄1. One lesson from these
studies is that resonance and phasonance involve the complex interaction not only between
the linearized conductances, but also the effective time scales. We revisit these results here
and we refer the reader to [3, 41,42] for a more detailed discussion.

Resonance in 2D linear systems can be created by three fundamental mechanisms involving:
(i) an increase in g1, (ii) an increase in gL, and (iii) an increase in τ̄1. Relevant aspects of the
dependences of the main attributes of the voltage response (fres, fphas, Zmax and Z0) with
these parameters are summarized in Fig. 2.

For g1 = 0, fres = fphas = fnat = 0 and Zmax = Z0 (QZ = 0). As g1 increases above
certain threshold value, resonance is generated by an unbalanced decrease in Zmax and Z0,
which is more pronounced for Z0 (Fig. 2-b1). This threshold value for g1 depends on both gL
and τ̄1. The 2D system may exhibit resonance, phasonance and intrinsic oscillations. If this
happens, fres, fphas and fnat are increasing functions of g1 (Fig. 2-a1).

The ability of the 2D system to exhibit resonance for gL = 0 depends on the values of both
g1 and τ̄1. For the example in Fig. 2 the 2D system exhibits resonance for gL = 0. While fres
is an increasing function of gL, fphas is independent of gL and fnat is a decreasing function
of gL for a significantly large range of values of gL (Fig. 2-a2). Resonance is amplified by a
combined increase in both Zmax and Z0 as gL decreases, which is significantly more pronounced
for Zmax (Fig. 2-b2). While resonance is still present for large values of gL, QZ decreases very
fast as gL increases and approaches zero. This attenuation of the voltage response constitutes
an effective annihilation of the resonance phenomenon.

The monotonic behavior of the resonance amplitude QZ is not necessarily associated with
a specific monotonic behavior of fres and fphas. In fact, fres increases with increasing values
of g1, but it first increases and then decreases with increasing values of gL (Fig. 2-a).

The mechanism of generation of resonance by increasing values of τ̄1 (and fixed values of
both g1 and gL) involves an increase in Zmax, while Z0 remains unchanged (Fig. 2-a2 and
-b2). This amplification of the voltage response (compare the solid- and dashed-blue curves
in Fig. 2-b) is accompanied by a decrease in fres, fphas and fnat (compare the corresponding
solid and dashed curves in Fig. 2-a).
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Figure 2: Attributes of the voltage response for the 2D system (4)-(6) with g2 = 0 for representative

parameter values. (a) fres, fphas and fnat as a function of g1 for gL = 0.25 (a1) and as a function of gL for

g1 = 0.25 (a2). (b) Zmax and Z0 as a function of g1 for gL = 0.25 (b1) and as a function of gL for g1 = 0.25 (b2).

The superimposed red-solid and red-dashed curves indicate that Z0 is independent of τ1. We used the following

parameter values C = 1 and Ain = 1.
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3.1.2 Dynamic mechanisms

For the 2D system (g2 = 0), the properties of the voltage response to sinusoidal inputs result
from the interplay of the cell’s intrinsic time scales and the input’s time scale. From (26)-(27)
with g2 = 0, the former is determined by the effective time constants C g−1

L and τ̄−1
1 . The latter

is determined by the input frequency f . The time scale separation between v and w1 is given
by C g−1

L τ̄−1. The parameter g1 (or g1 g
−1

L ) controls the strength of the negative feedback.
For f → 0, the cell response is instantaneous regardless of the values of the time constants.

The voltage v is slaved to the current input. Therefore, the voltage maximum value is equal to
the cell’s resistance (Z(0) = Z0 = (gL+g1)

−1) and the voltage and the input peak at the same
time, so φ(0) = 0 (e.g., Figs. 3-a and -b). For very large values of f , on the other extreme, the
voltage response is very slow as compared to the input’s speed. The voltage reaches very small
extreme values and peaks with a delay approaching π/2. In the limit of f → ∞, regardless of
the values of the time constants, the voltage response is zero (Figs. 3-a and -b).

Resonance occurs if for an intermediate frequency range Z(f) > Z0, while phasonance
requires the voltage response to be able to peak before the sinusoidal input (advanced response)
for a range of input frequencies [41]. In both cases, the cell’s response is optimal at f = fres
and f = fphas, respectively, in the sense that it is neither too fast nor too slow to reach a
maximum value and to peak in-phase with the input respectively. This requires appropriate
combinations of the dimensionless parameters g1 g

1
L and C g−1

L τ̄−1 such that the former is large
enough and the latter is small enough.

3.1.3 The dynamic phase-plane

All this is better captured by the rescaled 2D model (30)-(31) with κ = 0 (henceforth the 2D
model) and the dynamic phase-plane approach we used in [41] (see also [42] for an extension to
2D nonlinear systems). Fig. 3-c shows the superimposed voltage traces for representative input
frequencies f (see panels a and b) during one cycle for the linear 2D model with a sinusoidal
input of the form (3) for a representative value of Ain. The black curve is a caricature of the
sinusoidal input whose peak time serves as the phase reference (φ = 0).

Fig. 3-d shows the projection of the phase-space (for v, w and t) onto the v-w plane
(henceforth the phase-plane) with the superimposed limit cycle response (LCR) trajectories
corresponding to the voltage response curves for the input frequencies shown in Fig. 3-c. For
clarity, we show the envelope-plane diagram without the LCR trajectories in Fig. 3-e.

We view the nullcline for the autonomous 2D model as the baseline for the analysis. As
t progresses, this v-nullcline moves cyclically, parallel to itself in between the two red-dashed
lines corresponding to Iin,1 = Ain (top) and Iin,1 = −Ain (bottom). Clearly, the distance
between the moving v-nullcline and the baseline v-nullcline is equal to Ain.

3.1.4 Envelope-plane diagrams and envelope curves

The black dots in the LCR trajectories in Fig. 3-d note the points for which they reach their
maximum v-values. As f increases these points span the blue curves, which we refer to as
the upper and lower envelope-curves [41]. We refer to the diagrams such as these in Fig. 3-e,
containing the v-nullclines (solid and dashed), the w-nullcline and the envelope-curves, as the
envelope-plane diagrams.

Envelope-plane diagrams contain geometric and dynamic information about a system’s
frequency response to oscillatory inputs, and are the frequency analogous to phase-plane di-
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agrams [41]. Trajectories in the envelope-plane diagrams (upper and lower envelopes) are
curves parameterized by the input frequency as trajectories in the phase-planes are curves
parametrized by time. (Neither f nor t are explicit in these diagrams.) The cusp (“hori-
zontal peak”) in the envelope curve corresponds to the peak in the impedance profile, and
hence it corresponds to f = fres. The point on the envelope-plane curve tangent to the upper
dashed-red line corresponds to f = fphas since this tangency indicates that both the limit cycle
trajectory and the v-nullcline reach their maximum at the same time.

The shape of the limit cycle trajectories depend on the interaction between the input
frequency f and the underlying vector field [41]. We use this framework to explain the repre-
sentative cases discussed above for the 2D linear system (30)-(31) (with w1 substituted by w
and κ = 0)

3.1.5 Quasi-one dimensional dynamics for low values of the input frequency
f

For values of f ≪ 1 both equations are very fast (dv/dt → ∞ and dw/dt → ∞), and therefore
the RLC trajectories track the motion of the fixed-point almost instantaneously (in a quasi-
steady-state fashion). In the limit f → 0, the RLC trajectory moves cyclically along the w-
nullcline in between the fixed-points generated by the dashed-red lines (intersection between
these lines and the w-nullcline). The v-coordinate of this fixed-point is equal to (1 +α)−1Ain.
For slightly higher values of f , such as f = 1, the RLC trajectories become elliptic-like around
the w-nulcline, reflecting the emergence of a horizontal (off w-nullcline) direction of motion.

3.1.6 Quasi-one dimensional dynamics for high values of the input fre-
quency f

For large enough values of f ≫ 1, both equations are very slow (dv/dt → 0 and dw/dt → 0),
and therefore the RLC trajectory evolves with a very low speed relative to the motion of the
v-nullcline. Therefore, the v-nullcline “comes back” while the RLC trajectory has only reached
a very small distance from the fixed-point and is forced to reverse direction. As a result, the
amplitude of the RLC trajectory is small as compared to other values of f (e.g., limit cycle
trajectory for f = 60). In the limit f → ∞, the amplitude of the RLC trajectory is zero (the
limit cycle shrinks to the origin).

3.1.7 Two-dimensional dynamics for input frequencies in the resonant fre-
quency band

For intermediate values of f there is a transition in the shapes of the RLC trajectories between
these two limit cases. Specifically, they first widen as their major axes rotate clockwise,
and then they shrink while their major axis remains almost horizontal. Geometrically, the
system exhibits resonance if for at least one of these RLC trajectories it is satisfied that
vmax(f) > vmax(0) as in Fig. 3-d for f = 6 and f = fres = 12. The latter corresponds to the
peak of the envelope-plane curve (Fig. 3-e). The system exhibits phase-resonance if both the
v-nullcline and a RLC trajectory reach the upper dashed-red line at exactly the same time,
thus generating a tangency between the envelope-plane curve and the dashed-red v-nullcline
(Fig. 3-e). For the parameters in Fig. 3-d, the points on the envelope-curve corresponding to
fres and fphas are very close (Fig. 3-e, bottom), almost indistinguishable.
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For the limiting cases (f = 0 and f → ∞), the RLC trajectories are quasi one-dimensional.
For intermediate values of f the RLC trajectories are neither too fast nor too slow, and then,
while they are “left behind” by the moving v-nullcline, they can take advantage of the two-
dimensional vector field without being constrained to move in quasi-one-dimensional directions.
For the appropriate parameter values it is this degree of freedom that allows RLC trajectories
to reach values of vmax(f) larger than vmax(0), and so to exhibit resonance.
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Figure 3: Resonance and phasonance in 2D linear models. (a) Impedance profile (fres = 12). (b) Phase

profile (fphas = 11.1). The natural frequency is fnat = 10. (c) Voltage traces for representative input frequency

values. All curves are rescaled to have the same period (1000 ms). A caricature of the sinusoidal input (black

curve) is included for reference below the curves. The dashed vertical lines note the peaks of the corresponding

functions. The zero-phase response is indicated by the dashed-black vertical line (peak of the sinusoidal input). (d)

Envelope-plane diagram. The red and green lines are the v- and w-nullclines respectively. The v-nullcline (solid-red)

moves cyclically in between the displaced v-nullclines for ±Ain (dashed-red) following the sinusoidal input. The gray

curves are the response limit cycle response trajectories corresponding to the voltage traces in panel c. The upper

and lower envelope curves (solid blue curves) join the maximum (upper) and minimum (lower) points respectively

on the response limit cycle response trajectories as f increases from f = 0 (intersection between the dashed-red and

green lines) to f → ∞ (intersection between the solid-red and green lines determining the fixed-point). Because of

linearity, the upper and lower envelope-curves are symmetric with respect to the fixed-point. (e) “Clean” envelope-

plane diagram. The v-coordinates of the envelope-curve are Z Ain. The maximum value of v on the envelope curve

corresponds to f = fres. The point on the envelope curve tangent to the upper dashed-red line corresponds to

f = fphas. The bottom panel is a magnification of the top one.
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3.2 Resonance and phasonance in 3D linear systems: limiting
and special quasi-2D cases

The results for the 2D system described above can be used to explain the dynamics of the 3D
linear system in three special cases for τ2: (i) τ2 → 0 (w2 has instantaneous dynamics), (ii)
τ2 → ∞ (w2 has very slow dynamics), and (iii) τ2 = τ1 (w1 and w2 have identical dynamics).
We assume that τ1 is away from τ2 in the first two cases.

In the first case, w2 is slaved to v (w2 ∼ v) and, therefore, g2 can be absorbed into gL.
A resonant (amplifying) gating variable will effectively increase (decrease) the value of gL,
and therefore attenuate (amplify) the voltage response and increase (decrease) the resonant
frequency. The envelope-curve lives in the w1 = w2 plane (Fig. 4-b).

In the second case η → 0. Provided that f is away from zero, w2 has no dynamics
(dw2/dt → 0). From the frequency-dependent properties point of view, system (4)-(6) behaves
effectively as the 2D system described in Section 3.1 whose resistance is given by

Z(0) =
1

gL + g1
. (37)

However, the 2D reduction is no longer valid when f < η, and therefore, a frequency boundary
layer is created in the vicinity of f = 0 where the dynamics are quasi-1D and Z(0) is given by

Z(0) =
1

gL + g1 + g2
. (38)

In other words, as f decreases Z(f) → (gL + g1)
−1, but Z(0) = (gL + g1 + g2)

−1. As we will
discuss later in the paper, the abrupt transition required by the continuity of the solution to
match these two values as f → 0 is the main component of the generation of antiresonance and
antiphasonance. Away from this frequency band, the envelope-curve lives in the (horizontal)
v -w1 plane (Figs. 4-c and -d).

In the third case, after transients have disappeared w2 = w1, then the two terms g1 w1 +
g2 w2 in eq. (4) can be combined into one with g1 replaced by g1+g2. A resonant (amplifying)
gating variable x2 will effectively increase (decrease) the resonant effect of w1 and therefore
increase (decrease) the resonant frequency and increase (decrease) the resonance amplitude.
The envelope-curve lives in the v = w2 plane (Fig. 4-a).

The resulting modulatory effects on the dynamics of he 2D system caused by values of g2 6= 0
are expected to persist for values of τ2 away from these special cases, but close enough to them,
where the dynamics is effectively quasi-2D. In the next Section we examine how changes in τ2
affects the behavior of the the voltage response as its qualitative behavior transitions through
the cases discussed above.

3.3 Modulation and annihilation of existing resonances and

emergence of antiresonance: basic biophysical mechanisms

Here we investigate the consequences of negative (g2 > 0) and positive (g2 < 0) feedback
effects on the voltage response for the 3D system. We chose a 2D baseline system (g2 = 0)
in a parameter regime (C = 1, gL = 0.25, g1 = 0.25 and τ1 = 100) for which it exhibits
both resonance and phasonance (blue curves in Fig. 5-a). We examine how changes in the
linearized conductance g2 affect the voltage response for g2 = 0 for representative values of
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Figure 4: Envelope-space diagrams for the linear 3D model in the quasi-2D regimes. The (upper)

envelope curves (solid blue) join the maximum points of the response limit cycle response trajectories as the input

frequency f increases from f = 0 (blue dot on the w1-nullsurface) to f → ∞ (at the origin). The red curves are

the projection of the envelope-curves onto the v-w1 (horizontal) plane. The lower envelope curves (not shown) are

symmetric to the upper ones with respect to the origin (fixed-point of the autonomous system). We used the following

parameter values: α = 1, ǫ = 0.05 and κ = −1.2. The dynamics become increasingly 2D as η decreases as indicated

by the larger portions of the envelope-curves (blue) that are almost superimposed to their projections (red) onto the

v-w1 planes. (a) η = 1000. The envelope curve “’lives” in the v = w2 plane. (b) η = 1. The envelope curve “’lives”

in the w1 = w2 plane. (c) η = 0.1. The envelope curve “lives” in the v-w1 plane, except for the zero frequency band.

(d) η = 0.01. The envelope curve “lives” in the v-w1 plane, except for the zero frequency band.
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the time constant τ2 that increases from the top to the bottom panels. These values have
been chosen to be below and comparable to τ1. We divided our study into two cases: (i)
interaction between two negative feedback effects (g2 > 0, Fig. 5), and (ii) interaction between
a negative and a positive feedback effects (g2 < 0, Fig. 6). In both the cooperative (g2 < 0) and
competitive (g2 < 0) feedback cases the voltage response is affected in qualitatively different
ways depending on the values of τ2 (relative speed of the two processes). However, these
differences are more pronounced for the latter.

3.3.1 Interaction between two negative feedback effects: modulation of the
voltage response

The interaction between two negative feedback effects (g2 > 0) modulates the voltage response
without generating antiresonances (Fig. 5). The “direction” and properties of this modulation
depends on the value of τ2. When w2 is fast (τ2 = 0.1, Fig. 5-a), an increase in g2 causes a
strong attenuation of the voltage response accompanied by slight changes in fres and fphas.
This is expected from our previous discussion in Section 3.2. This attenuation involves a strong
decrease in Zmax and a smaller decrease in Z0.

In contrast, for larger values of τ2, there is an amplification of the voltage response as g2
increases that is caused by an increase in Qz due to a smaller decrease in Zmax than in Z0

(Figs. 5-b and -c). This is accompanied by increases in fres and fphas. These effects are more
pronounced for τ2 = 50 (< τ1) (Fig. 5-b) than for τ2 = τ1 = 100 (Fig. 5-b). As τ2 increases
further, Zmax approaches a constant value (not shown) and so does QZ since Z0 is independent
of τ2. As expected, the impedance and phase profiles for different values of g2 almost coincide
for larger values of f except in the lowest frequency band whose size decreases with increasing
values of τ2 (compare Figs. 5-b and -c).

From (38), an increase (decrease) in g2 causes a decrease (increase) in Z0. In a separate set
of simulations we have considered combined changes in the values of g1 and g2 such that g1+g2
remains constant (g1 + g2 = 0.25) and, therefore, Z0 also remains constant. The results (not
shown) are qualitatively similar to these presented here (Figs. 5 and 6). One difference is that
the impedance and phase profiles coincide along these level sets for τ2 = τ1 = 100 and there
is a small amplification of the voltage response as with increasing values of g2 as τ2 increases
above τ2 = 100. This is not surprising since g1 decreases as g2 increases and the activation of
w2 is delayed as compared to w1. This amplification of the voltage response is accompanied
with small decreases in both fres and fphas.

3.3.2 Interaction between a slow negative and a relatively fast positive feed-
back effects: amplification of the voltage response

For low values of τ2, an increase in |g2| produces a strong amplification of the voltage response
(Fig. 6-a) and a slight decrease in fres and fphas. For larger values of τ2 < τ1 the amplification
of the voltage response as |g2| increases is less pronounced than for τ2 = 0.1 (Fig. 6-b) and
both fres and fphas decrease. The weaker amplification of the voltage response results from a
smaller increase in Zmax and a larger increase in Z0 as |g2| increases. This in turn results from
the slower activation of the positive feedback. This trend continues as long as τ2 is below τ1.
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Figure 5: Impedance and phase profiles for system (4)-(6) with g2 > 0 (interaction between two

resonant feedback effects) for representative sets of parameter values. The gray lines in the left panels

connect the peaks of the impedance profiles. We used the following parameter values C = 1, gL = 0.25, g1 = 0.25,

τ1 = 100 and Ain = 1.
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3.3.3 Interaction between negative and positive feedback effects with com-
parable slow dynamics: annihilation of resonance

As τ2 approaches τ1 both resonance and phasonance are annihilated as g2 decreases (|g2|
increases) past a threshold value (Fig. 6-c). For the green curve in Fig. 6-c, the voltage
response at non-zero frequencies is not fast enough to raise above Z0 and, therefore, QZ = 0.

Note that the slower activation of the positive feedback renders the voltage response almost
unaffected by increasing values of |g2| for values of f outside a small vicinity of f = 0 whose
size decreases with increasing values of τ2 (compare Figs. 6-b, -c and -d, left panels).

3.3.4 Interaction between a slow and a slower negative feedback effects:
generation of antiresonance and antiphasonance

As τ2 increases above τ1, both antiresonance and antiphasonance emerge (Fig. 6-d). As for
τ2 = 100 (Fig. 6-c), for τ2 = 200 (Fig. 6-d) the slower activation of w2 renders the values of
Zmax almost unaffected by increasing values of |g2|. However, the interaction between a faster
negative feedback and a slower positive feedback causes Z(f) to decrease below Zmax before
reaching this value. This antiresonance mechanism restitutes resonance. An analogous effect
is observed in the phase profiles where antiphasonance emerges as |g2| increases for τ2 > τ1.

For values of g1 and g2 such that g1+g2 remain constant (not shown), the picture does not
qualitatively change for values of τ2 < τ1. For τ2 = τ1 = 100, the impedance and phase profiles
coincide. antiresonance and antiphasonance still emerge for values of τ2 = 200, but both
phenomena are much less pronounced that in the case described in the previous paragraphs.

3.4 The shaping of the attributes of the impedance and phase
profiles by the complex interplay of g2 and τ̄2

Here we extend the results from the previous sections to provide a global picture of how changes
in g2 and τ2 affect the voltage response of the 3D linear system to sinusoidal inputs. Our results
are presented in Figs. 7 to 11 for the same set of baseline parameter values as in Figs. 5 and
6. The colormap diagrams code for the values attributes of the impedance and phase profiles
in the g2 - τ2 parameter space for fixed-values of the baseline parameters. The other graphs in
each figure correspond to representative curves of for these attributes as a function of τ2 and
g2. In these graphs we include the corresponding curves for τ1 = 10 (dashed) in addition to
the (baseline) τ1 = 100 (solid).

3.4.1 Dependence of the modulating effects of the resonant gating variable
x2 (g2 > 0) on g2 and τ2

For values of g2 > 0 the 3D system exhibits no antiresonances (Figs. 7-a and -b, showing
that QZ and Q0 are identical). The impedance and phase profiles are qualitatively similar to
these for the 2D system. The presence of an additional resonant gating variable modulates the
voltage response and the resonance and phasonance phenomena, though not always in obvious
ways.

As discussed above, the effect of changes in the values of g2 on the resonant properties of the
3D system depends on the values of τ2 (Fig. 7-a). For large enough values of τ2, increasing g2
causes an increase in QZ , similarly to its dependence on g1 described above. This dependence
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Figure 6: Impedance and phase profiles for system (4)-(6) with g2 < 0 (interaction between a negative

and a positive feedback effects) for representative sets of parameter values. The gray lines in the left

panels connect the peaks of the impedance profiles. We used the following parameter values C = 1, gL = 0.25,

g1 = 0.25, τ1 = 100 and Ain = 1.
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is inverted for low values of τ2: in the presence of a fast negative feedback, increasing g2 causes
an attenuation of the voltage response and a decrease in QZ .

3.4.2 The modulation mechanisms of the resonant gating variable x2 (g2 > 0)
depend on τ1

We show this in Fig. 7-d. For large enough values of τ1 (solid curves), the increase in QZ as g2
increases results from a combined decrease in both Zmax and Z0 , which is more pronounced
for Z0 than for Zmax. In contrast, for low enough values of τ1 (dashed lines), Zmax remains
constant as g2 increases, while Z0 decreases.

Increasing the value of τ2 causes an amplification of the voltage response and an increase
in QZ , which depend on the value of g2. As τ2 increases, the negative feedback effect provided
by x2 is slower, and therefore the voltage response can increase to higher values before this
increase is opposed by x2. This amplification is more pronounced for larger values of τ1 (Fig.
7-c).
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Figure 7: Resonance amplitudes for system (4)-(6) with a resonant gating variable x2 (g2 > 0) for a

representative set of parameter values. Top panels (a, b): Colormap diagrams for QZ (a) and Q0 (b) in

Gg2 - τ2 parameter space for τ1 = 100. Bottom panels (c, d): Representative curves of Zmax, Z0 and Zmin as

a function of τ2 (c) and g2 (d) for τ1 = 100 (solid) and τ1 = 10 (dashed). The superimposed red and green curves

indicate that no antiresonances are present. The superimposed green-solid and green-dashed curves indicate that

Z0 (and Zmin) does not change with τ2. We used the following parameter values C = 1, gL = 0.25, g1 = 0.25 and

Ain = 1.

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2016. ; https://doi.org/10.1101/091207doi: bioRxiv preprint 

https://doi.org/10.1101/091207


3.4.3 Increasing values of τ2 generate bumps in the fres and fphas patterns

Both fres and fphas increase with increasing values of g2 (Figs. 8-a and -b) with fres > fphas
(Fig. 8-d). Their values and rates of change depend on τ2. Following our discussion in Section
3.2, their dependence can be thought of a transition from the values corresponding to τ2 → 0
(2D system with gL substituted by gL+g2) to the values corresponding to τ2 → ∞ (2D system
with g2 = 0). This transition is non-monotonic and involves an increase in both fres and fphas
for low enough values of τ2 followed by a decrease as τ2 continues to increase (Fig. 8-d). These
properties of these “bumps” depend not only on the value of g2 (Figs. 8-a and -b) but also on
the value of the τ1: the smaller τ1 the stronger the bumps.
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Figure 8: Resonant, phasonant and natural frequencies for system (4)-(6) with a resonant gating

variable x2 (g2 > 0) for a representative set of parameter values. Top panels (a, b, c): Colormap

diagrams for fres (a), fphas (b) and fnat (c) in g2 - τ2 parameter space for τ1 = 100. Bottom panels (d, e):

Representative curves of fres, fphas and fnat as a function of τ2 (d) and g2 (e) for τ1 = 100 (solid) and τ1 = 10

(dashed). We used the following parameter values C = 1, gL = 0.25, g1 = 0.25 and Ain = 1.

3.4.4 Antiresonances are generated by the interplay of a slow resonant (g1 >
0) and a slower amplifying (g2 < 0)) gating variables

For values of g2 < 0 antiresonance emerge provided τ2 is large enough and g2 negative enough
(large enough in absolute value). This is reflected in the different colormap diagrams for QZ

and Q0 (Figs. 9-a and -b) in these parameter regimes. Figs. 9-d show the dependence of QZ
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and Q0 with g2 for representative values of τ̄2 and τ̄1. Since Z0 is independent of τ̄1 and τ̄2,
the solid and dashed red curves (τ1 = 100 and τ1 = 10, respectively) coincide in panels c and
d. In addition, the red and green curves coincide in panels d1 (left and right, respectively).

For τ1 = 100 and τ2 = 100 (panels d1, solid lines) Zmin = Z0 (QZ = Q0) for all values
of g2. In contrast, for τ1 = 100 and τ2 = 200 (panel d2, solid lines), the solid red (Z0)
and green (Zmin) curves separate as g2 decreases, indicating the generation of antiresonances.
Note that QZ = Zmax − Z0 < 0 for the lowest values of g2 in panel d2 (see also 6-d). For
τ1 = 10 (dashed curves), the antiresonances emerge for lower values of τ2 and higher values
of g2 (panels d, dashed curves, red-dashed and -solid curves are superimposed). These results
show that the trade-off between currents for the generation of resonance does not only involve
the conductances, voltage-dependencies and time scales associated to the amplifying gating
variable but also the properties of the resonant gating variable x1.
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Figure 9: Resonance amplitudes for system (4)-(6) with an amplifying gating variable x2 (g2 < 0) for

a representative set of parameter values. Panels a, b: Colormap diagrams for QZ (a) and Q0 (b) in G2 - τ2

parameter space for τ1 = 100. Panels c, d: Representative curves of Zmax, Z0 and Zmin as a function of τ2 (c) and

h2 (d) for τ1 = 100 (solid) and τ1 = 10 (dashed). The superimposed red-solid and red-dashed lines indicate that Z0

does not depend on τ2. We used the following parameter values C = 1, GL = 0.25, G1 = 0.25 and Ain = 1.
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3.4.5 fres and fphas decrease with decreasing values of g2 < 0, but have a
non-monotonic (“anti-bump-like”) dependence with τ2

Fig. 10 shows that both fres and fphas decrease with decreasing values of g2 < 0 with rates
that depend on the value of τ̄2 (Fig. 10-a and -b). Similarly to the case g2 > 0, the transition
from τ̄2 = 0 to τ̄2 → ∞ is non-monotonic and involves a decrease and subsequent increase
in both fres and fphas in a relatively small range of values of τ̄2. This range increases with
decreasing values of τ̄1 (compare the solid and dashed curves in Fig. 10-d for τ̄1 = 100 and
τ̄1 = 10 respectively). The changes in the values of fres and fphas within these ranges are more
pronounced for τ̄1 = 10 (dashed curves) than for τ1 = 100 (solid curves) respectively. The
dependence of fres and fphas with g2 is monotonic (Fig. 10-e).
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Figure 10: Resonant, phasonant and natural frequencies for system (4)-(6) with an amplifying gating

variable x2 (g2 < 0) for a representative set of parameter values. Top panels (a, b, c): Colormap diagrams

for fres (a), fphas (b) and fnat (c) in g2 - τ2 parameter space for τ1 = 100. Bottom panels (d, e): Representative

curves of fres, fphas and fnat as a function of τ2 (d) and g2 (e) for τ1 = 100 (solid) and τ1 = 10 (dashed). We used

the following parameter values C = 1, gL = 0.25, g1 = 0.25 and Ain = 1.

3.4.6 fares and faphas increase with decreasing values of g2 < 0, but have a
non-monotonic (“bump-like”) dependence with τ2

Fig. 11 illustrates the dependence of fares and faphas with g2 and τ̄2 for representative param-
eter values. Comparison between Figs. 11-a and -b shows that antiresonance may exist in the
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absence of antiphasonance. Comparison between Figs. 11 and 10 shows that fares and faphas
are always smaller than fres and fphas. Similarly to fres and fphas, fares and faphas are larger
the smaller the values of τ̄1. While typically fres > fphas, for a given set of parameter values,
there are parameter regimes where fares < faphas (Fig. 11–c, dashed curves). The dependence
of fares and faphas with τ2 is not necessarily monotonic and may exhibits “bumps” where
these quantities first increase and then decrease. The dependence of fares and faphas with g2
is monotonic, but faphas typically decrease faster than fares and these curves may intersect
(Fig. 11-d).
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Figure 11: Antiresonant and antiphasonant frequencies for system (4)-(6) with an amplifying gating

variable x2 (G2 < 0) for a representative set of parameter values. Top panels (a, b): Colormap diagrams

for fares (a) and faphas (b) in g2 - τ2 parameter space for τ1 = 100. Bottom panels (c, d): Representative curves

of fares and faphas as a function of τ2 (c) and g2 (d) for τ1 = 100 (solid) and τ1 = 10 (dashed). In panel d1,

fres = faphas = 0. We used the following parameter values C = 1, gL = 0.25, g1 = 0.25 and Ain = 1.

3.5 Dynamic mechanisms of generation of antiresonance and
antiphasonance

Here we extend the analysis of 2D linear systems introduced in Section 3.1 to explain the
mechanisms of generation of antiresonance and antiphasonance in the 3D linear system. We
use the rescaled model (30)-(32) introduced in Section 2.3.2 (geometric rescaling). From our
discussion in Section 3.4.4 and Fig. 6 (see also Section 3.2) antiresonance occurs when (i) x1
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is resonant (g1 > 0), and (ii) x2 is amplifying (g2 < 0) and slower than x1 (τ2 < τ1). Assuming
gL > 0, this yield α > 0 and κ < 0. We will focus on the transition of η from η > 1 (τ2 > τ1)
to η < 1 (τ2 < τ1) as we did in Fig. 4. We will use parameter values similar to the ones used
in the previous sections: α = 1 and ǫ = 0.05.

As discussed above and shown in Fig. 6, one immediate consequence of the presence of the
second amplifying gating variable (κ < 0) is an increase in the cell’s resistance, given by

Z(0) =
1

1 + α (1 + κ)
. (39)

This has different consequences depending on the values of η and κ: resonance amplification
(Fig. 6-b), resonance annihilation (Fig. 6-c) and generation of antiresonance/antiphasonance
(Fig. 6-d).

3.5.1 Envelope-space diagrams: projections onto the v-w1 and v-w2 planes

In analogy to the sinusoidally forced 2D models discussed in Section 3.1.2, we view the dynam-
ics of the oscillatory forced 3D model (30)-(32) as the result of the RLC trajectory tracking
the oscillatory motion of the v-nullsurface

Nv,t(v) = −v − κ w2 +At, (40)

where At representes the oscillatory input (29), in between the levels corresponding to A250 = 1
and A750 = −1. The w1- and w2-nullsurfaces are both given by the same expression

Nw1
(v) = Nw2

(v) = αv, (41)

and are independent of the oscillatory input.
In order to facilitate the visualization of this “moving phase-space” we look at its projections

onto the v-w1 and v-w2 planes, which we refer to simply as the envelope-plane diagrams (Fig.
12). The corresponding v-nullclines are given by

Nv,1 = −v and Nv,2 = −
v

κ
, (42)

and the associated “moving v-nullclines” are given by

Nv,1,t = −v +At and Nv,2,t, =
−v +At

κ
. (43)

We refer to the projections of the w1- and w2-nullsurfaces as the w1- and w2-nullclines re-
spetively.

We use the limiting 2D regimes presented in Fig. 12 as the baseline for our discussion.
The w1- envelope-plane diagrams shown in Fig. 13 (left) are extensions to 2D type shown
in Fig. 3 (panels d and e) for the same parameter values as in Fig. Fig. 12-c. For f = 0
(blue dot) the envelope-curve (blue) is located at the intersection of the v- and w1-nullclines,
which reflects the fast dynamics of the RLC trajectory along the w1-nullcline. As f → ∞ the
RLC trajectory approaches the origin. The points in the envelope curve for fres and fphas are
the peak in the v-direction (fres) and the tangency point between the envelope-curve and the
dashed-red line (fphas), reflecting the fact that the RLC trajectory and the v-nullcline reached
their maximum levels at the same time. For η = 0 (Fig. 12-a) w2 is a constant and therefore
the envelope-curve (right panel) evolves along the v-direction and has no frequency-dependent
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effect on the system. For η = 1 and κ = 0 (Fig. 12-b) w2 and w1 have identical dynamics and
therefore the w1- and w2 envelope curves are identical. However, since κ = 0, w2 is following
v, but not feeding back onto its dynamics. According to eqs. (42) and (43) the v-nullcline in
the right panel is vertical for all values of At.

In both cases (Figs. 12-a and -b), the evolution of the RLC trajectories with increasing
values of f is as in Fig. 3-d. For f = 0 the RLC trajectory moves along the w1-nullcline. As
f increases the RLC trajectory becomes elliptic-like and the major axis rotates towards the v-
(horizontal) direction as its length increases. As f continues to increase, the RLC trajectory
begins to shrink and eventually shrinks to the fixed-point (origin) as f → ∞. It is important
to note that the rays connecting the origin with the points in the envelope-plane curve are not
necessarily the major axis of the corresponding elliptic-like RLC trajectories.

The changes in shape (and the direction of the major axis) of the RLC trajectories as f
increases result from the changes in the effective speed of the RLC trajectories as the balance
between ǫ and f change in eq. (31). The smaller this quotient, the larger the horizontal
component of the direction of motion. We refer the reader to [41] for a detailed discussion.

3.5.2 The envelope-plane diagram and RLC trajectories for w1 and w2 have
different dependences with their time-scale separation η

Fig. 12-c illustrates how the shapes of the envelope-plane curves are affected by the relative
speed η of w1 and w2 in the simplest cases in which the 2D system is effectively decoupled
from w2 (κ = 0), but the dynamics of w2 is dependent on v. The evolution of the RLC
trajectories in the v-w1 plane (Fig. 13-a, left) is as described above , but the evolution of
the RLC trajectories in the v-w2 plane follows different “rules” (Fig. 13-c, right), which gives
rise to the envelope curves with different shapes than in the left panel. First, for low values
of f (e.g., f = 0.5) the RLC trajectory is wider for v-w2 than for v-w1. This is because the
horizontal components of the direction of motion are (locally) larger for w2 than for w1 due
to the smaller time constant of the corresponding equations. This, in turn causes the RLC
trajectories’ major axis to rotate faster for w2 than for w1 (compare the RLC trajectories for
f = 4 in Fig. 13). Second, as f increases, the RLC trajectories in the v- w2 plane first shrink
(from f = 0.5 to f = 4), then expand (f = 46) and then shrinks again (f = 400). This is not
only in contrast to the behavior of the RLC trajectories in the v-w1 for this particular value
of η, but also for other values (e.g., η = 1 in Fig. 12-b).

3.5.3 Resonance attenuation and annihilation by increasing levels of the
amplifying gating variable with η = 1 result from effective 2D dynamics

In Section 3.3.2 we showed that when τ2 = τ1 = 100 (Fig. 6-b) decreasing negative values of
g2 cause first an attenuation of the voltage response and then the annihilation of resonance
(see also Fig. 9-a and -d1). Here we demonstrate that this phenomenon is generally valid for
comparable time constants as captured by η = 1 (τ1 = τ2).

Figs. 14-a1, -b1 and -c1 show the envelope-plane diagrams for the 3D linear system for
three representative values of κ < 0 (decreasing from a to c) and η = 1. For κ = 0 this
system exhibits resonance (Fig. 12-b) that results from the 2D linear mechanisms invesigated
in [41] and mentioned above. As κ decreases the resistance Z(0) increases according to (39)
moving the blue dot up along the w1- and w2-nullclines in the corresponding envelope plane
diagrams. Resonance is attenuated because the vertex of the envelope-plane curve remains
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Figure 12: Envelope-plane diagrams for the linear 3D model in the limiting 2D regimes. The red and

green nullclines are the projections of the v-, w1- and w2-nullsurfaces onto the v-w1 (left) and v-w2 (right) planes.

The v-nullcline (solid-red) moves cyclically in between the displaced v-nullclines for ±Ain (dashed-red) following the

sinusoidal input. The (upper) envelope curves (solid blue) join the maximum points of the projection of the limit

cycle response trajectories onto the corresponding planes as the input frequency f increases from f = 0 (intersection

between the dashed-red and green lines in the left panel) to f → ∞ (intersection between the solid-red and green

lines determining the fixed-point in the left panel). The lower envelope curves (not shown) are symmetric to the

upper ones with respect to the origin (fixed-point of the autonomous system). (a) κ = −1 and η = 0. w2 is constant

and therefore has no frequency-dependent effect on the 3D system. (b) κ = 0 and η = 1. w2 is decoupled from the

3D system. (b) κ = 0 and η = 0.1. w2 is decoupled from the 3D system. We used the following parameter values:

α = 1 and ǫ = 0.05.
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Figure 13: Projections of the envelope-space diagram onto the v-w1 and v-w2 planes and representative

response limit cycle trajectories for the linear 3D model in the limiting 2D regimes. The paramter values

correspond to Fig. 12-c.

almost fixed and therefore the angle between the two portions of the envelope-plane curve
increases (Fig. 14-a1). As κ continues to increase this angle reaches ninety degrees, thus
annihilating resonance (Fig. 14-b1 and -c1).

Key to this mechanism is the fact that the envelope-curves’ vertices remain almost un-
changed with changing values of κ. The primary reason for that is Quasi-2D dynamics for
η = 1 discussed in Section 3.2 (Fig. 4-b) and also illustrated in Fig. 17-b for κ = −1.2. More
specifically, the two variables w1 and w2 are identical, and therefore the system is effectively
2D and governed by eqs. (33)-(34). Figs. 14-a2, -b2 and -c2 show the envelope-plane diagrams
for the 2D system and the same values of κ as in the left (a1, b1 and c1) panels. The envelope
curves in the 2D v-w planes and the 3D projections onto the v-w1 and v-w2 planes are almost
identical.

As explained in [41], for 2D linear systems the envelope-plane curve remains inside the
triangle bounded by the w-nullcline, the horizontal v-axis and the displaced v-nullcline (dashed-
red). The first two are independent of κ, while the latter experiences a change in slope from
negative (Fig. 14-a2) to positive (Fig. 14-c2) as κ increases, but not the v-intercept, thus
preventing the envelope-plane curve to peak at higher values of v.

3.5.4 Phasonance annihilation

Phasonance is annihilated for the same reason since as κ decreases, the envelope-plane curve
looses its ability to “touch” the displaced (dashed) v-nullcline and therefore the only tangent
point between the envelope-curve and the displaced v-nullcline is the blue dot.

3.5.5 Generation of antiresonance and antiphasonance

In Sections 3.3.4 and 3.4.4 we have shown that antiresonance and antiphasonance emerge as
the result of the interplay of a slow resonant gating variable (g1 > 0) and a slower amplifying
(g2 < 0) gating variable (see Figs. 6-d and 9-d2). In terms of the geometric rescaling (Section
2.3.2), these differences in the signs of the linearized conductances and the time constants
associated to w1 and w2 are given by κ < 0 and η < 1.
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Figure 14: Projections of the envelope-space diagrams for the linear 3D model with η = 1 (w1 and w2

have identical dynamics) on the v-w1, v-w2 and v-w planes. The red and green nullclines are the projections

of the v-, w1- and w2-nullsurfaces onto the v-w1 (left) and v-w2 (right) planes, respectively. The v-nullcline (solid-

red) moves cyclically in between the displaced v-nullclines for ±Ain (dashed-red) following the sinusoidal input. The

(upper) envelope curves (solid blue) join the maximum points of the projection of the limit cycle response trajectories

onto the corresponding planes as the input frequency f increases from f = 0 (intersection between the dashed-red

and green lines in the left panel) to f → ∞ (intersection between the solid-red and green lines determining the

fixed-point in the left panel). The lower envelope curves (not shown) are symmetric to the upper ones with respect

to the origin (fixed-point of the autonomous system). Panels a2, b2 and c2 show the envelope-plane diagram for the

equivalent 2D linear system (33)-(34). (a) κ = −0.5 and η = 1. (b) κ = −1 and η = 1. (b) κ = −1..2 and η = 1.

We used the following parameter values: α = 1 and ǫ = 0.05.
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Here we explain these phenomena in terms of the envelope-space diagrams (and their
projections onto the v-w1 and v-w2 planes). Our results are presented in Figs. 15 and 16.
In Fig. 15 we present the w1- and w2-envelope-plane diagrams for η = 0.1 and the same
representative values of κ < 0 as in Fig. 14.

As discussed in Section 3.2 (Figs. 4-c and -d for κ > 0) for low enough values of η < 1 the
dynamics of the 3D system is quasi-2D (v-w1 plane) except for a boundary frequency layer in
the vicinity of zero. This remains true for κ < 0 (Figs. 17-c and -d). Because of that, not
only the horizontal portion of the envelope-curve remains almost unchanged as κ changes, but
also a significant portion of the envelope-curve for the lower values of f along the displaced
v-nullcline (dashed-red). In contrast, as for the η = 1 case explained above, decreasing values
of κ cause Z(0) to move up along the w1- and w2-nullclines.

Both antiresonance and antiphasonance are generated because the continuity of the so-
lutions for changing values of f requires the envelope curve to decrease from Z(0) to the
v-w − 1 plane at the level of the displaced v-nullcline (dashed-red) and then move along this
v-nullcline towards the vertex of the triangular region. In doing so, Z(f) reaches a minimum
for fares > 0 before arriving to the maximum at the vertex (f = fres) and φ “touches” the
displaced v-nullcline twice: at the crossing point (faphas) on its way down and at the tangency
point (fphas). The behavior of the RLC trajectories for κ = −1.2 for representative values of
f is shown in Fig. 16.

4 Discussion

In previous work we have investigated the biophysical and dynamic mechanisms of genera-
tion of subthreshold resonance and phasonance in 2D linear and linearized conductance-based
models [3,41] and in 2D conductance-based models with nonlinearities of quadratic type [42].
Resonance and phasonance in these models result from the interaction between positive and
negative feedback effects provided by the passive (leak) current, a fast amplifying current
(slaved to voltage) and a slower resonant current. Each of these currents was assumed to have
a single gating variable, although the results are generally valid, at least at the linearized level.
More recently, we have investigated how the interplay of positive and negative feedback effects
with different time constants shape the intrinsic subthreshold oscillatory patterns in 3D linear
and linearized conductance-based models having either two resonant gating variables or one
resonant and one amplifying gating variables where the latter is not slaved to voltage and
can be slower than the former [50]. These models may also include fast gating variables with
instantaneous dynamics (slaved to voltage).

In this paper we have extended this work to include the response of 3D linear models to
oscillatory inputs. Our goal was to understand how the cell’s response patterns are shaped by
the cooperative activity of the intrinsic feedback processes and time scales and the time scale
of the external input determined by its frequency. These models have been studied previously
in [2]. One lesson from these and previous studies, including our own, is that the frequency
preference properties of cells in response to oscillatory inputs cannot necessarily be predicted
from the cell’s intrinsic oscillatory dynamics.

In addition to resonance and phasonance, which are also exhibited by the 2D models, the
3D models exhibit antiresonance and antiphasonance that require the extra degree of freedom
provided the third gating variable. To our knowledge this is the first study that addressed
the mechanism of generation of antiresonance and antiphasonance. For these phenomena to
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Figure 15: Projections of the envelope-space diagrams for the linear 3D model onto the v-w1 and

v-w2 planes in the limiting 2D regimes. The red and green nullclines are the projections of the v-, w1- and

w2-nullsurfaces onto the v-w1 (left) and v-w2 (right) planes. The v-nullcline (solid-red) moves cyclically in between

the displaced v-nullclines for ±Ain (dashed-red) following the sinusoidal input. The (upper) envelope curves (solid

blue) join the maximum points of the projection of the limit cycle response trajectories onto the corresponding planes

as the input frequency f increases from f = 0 (intersection between the dashed-red and green lines in the left panel)

to f → ∞ (intersection between the solid-red and green lines determining the fixed-point in the left panel). The

lower envelope curves (not shown) are symmetric to the upper ones with respect to the origin (fixed-point of the

autonomous system). (a) κ = −0.5 and η = 0.1. (b) κ = −1 and η = 0.1. (b) κ = −1.2 and η = 0.1. We used the

following parameter values: α = 1 and ǫ = 0.05.
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Figure 16: Projections of the envelope-space diagrams onto the v-w1 and v-w2 planes (left and middle)

and representative response limit cycle trajectories (right) for the linear 3D model in an antireso-

nance regime. The parameter values correspond to Fig. 15-c. The left and middle panels are the envelope-plane

diagrams; i.e., the projections of the 3D envelope-space diagram onto the v-w1 and v-w2 planes with the superim-

posed projections of the RLC trajectories. The right panels show the 3D envelope-curve and the corresponding RLC

trajectories.
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Figure 17: Envelope-space diagrams for the linear 3D model: resonance modulation, annihilation

and generation of antiresonance. The (upper) envelope curves (solid blue) join the maximum points of the

limit cycle response trajectories as the input frequency f increases from f = 0 (blue dot on the w1-nullsurface) to

f → ∞ (at the origin). The red curves are the projection of the envelope-curves onto the v-w1 (horizontal) plane.

The lower envelope curves (not shown) are symmetric to the upper ones with respect to the origin (fixed-point of

the autonomous system). We used the following parameter values: α = 1, ǫ = 0.05 and κ = −1.2. The dynamics

become increasingly 2D as η decreases as indicated by the larger portions of the envelope-curves (blue) that are

almost superimposed to their projections (red) onto the v-w1 planes. (a) η = 1.5. Resonance is attenuated as η

decreases. (b) η = 1. Resonance annihilation. (c) η = 0.1 Antiresonance and resonance (d) η = 0.01 Antiresonance

and resonance.
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occur one needs a resonant gating variable (x1) with slow dynamics, so that the underlying 2D
model exhibits resonance, and an amplifying gating variable (x2) having both slower dynamics
(τ2 > τ1). The stronger the linearized conductance g2, the smaller the time constant τ2 needed
for these phenomena to occur (Fig. 11-a and -b). The occurrence of antiphasonance has similar
requirements. In fact, there is a complex interplay of the magnitudes and effective time scales
of the feedback processes that are responsible for either only modulating the voltage response
of the underlying 2D system or creating the more complex types of impedance and phase
profiles corresponding to antiresonance and antiphasonance.

Antiresonance has been experimentally reported in hippocampal interneurons [18] and,
more recently, in the pyloric network LP neurons (crab stomatogastric ganglion) [37], and it
has been shown to be present in the models discussed in [2]. To our knowledge, antiphasonance
has not been experimentally reported yet. Our results predict that antiphasonance should oc-
cur under similar, but not identical, conditions as antiresonance. Testing the predictions of this
study for the presence of both resonance and phasonance in biological neurons involves the ma-
nipulation of one or more ionic currents, including maximal conductances and time constants,
and can be experimentally performed using the dynamic clamp technique [53–56]. Of particular
relevance would be the determination of the differential roles played by different types of ampli-
fying currents such as INap (depolarization-activated) and IKir (hyperpolarization-activated)
with slow dynamics in biological neurons having different types of resonant currents.

The impedance and phase profiles for linear systems can be computed analytically (see
Appendix). These expressions are useful to generate graphs. However, because of their com-
plexity, they provide little information and almost no insight into the dynamic mechanisms
leading to the preferred response patterns in both amplitude and phase, including the roles
played by the different effective time scales and their complex interaction. To address these
issues we ave extended the envelope-space diagram approach introduced in [41,42] to include
the third variable, and we have constructed the envelope curves and their projections onto the
appropriate planes. In addition to aid in the mechanistic analysis of the 3D linear system,
this approach can be extended to the investigation of the preferred frequency responses to
oscillatory inputs of nonlinear 3D systems where the analytic calculations are not possible.

Following previous work [41, 42] we rescaled time by the input frequency f in such a way
that the sinusoidal input has frequency one for all values of f , which instead affect the speed of
the voltage response (trajectories in the phase-space), but not the direction of the underlying
vector field. By transforming f into a time constant factor we were able to capture the
different balances that arise between f and the cell’s intrinsic time constants as f changes.
This, in turn, was functional in identifying the mechanism of generation of antiresonance and
antiphasonance as an asymptotic boundary layer problem in the frequency domain. For large
enough values of f , away from f = 0, the dynamics are quasi-2D and the impedance profile
decreases as f decreases towards the boundary layer. In contrast, the resistance is controlled
by the 3D system and is higher than this limit in the quasi-2D regime. The trough in the
impedance profile is created because the continuity of the solution requires the impedance
profile to connect the portions belonging to the two regimes. If in doing so the phase profile
crosses the zero value, then antiphasonance is also generated.

For our simulations on the effects of g2 and τ2 on the cell’s response patterns we used a
baseline set of parameter values for the underlying 2D system (for v and x1) such that it exhibits
resonance in a regime where there are not intrinsic subthreshold oscillations. Our envelope-
plane diagram analysis demonstrates that the results of our simulations have a more general
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validity than the restricted considered scenarios. Additionally, as for the 2D models [41,42], this
analysis shows that the mechanism of generation of resonance / phasonance and antiresonance
/ antiphasonance does not qualitatively depend on whether the fixed-point is a (stable) node
or a focus. However, a detailed quantification of the dependence of the attributes of the
impedance and phase profiles for the 3D linear system on the model parameters requires more
research.

In [3, 42], for 2D conductance-based models we have shown through their linearization (or
“quadratization”) that changes in the levels of Ih (resonant, hyperpolarization-activated) and
IM (resonant, depolarization-activated) have opposite effects on the dependence of some of
the attributes of the impedance and phase profiles (e.g., fres and fphas) on their maximal
conductances when the levels of INap were high enough, while these effects are qualitatively
similar for the two resonant currents when the levels of INap were lower. We hypothesize
that these features of 2D models will also be present in 3D models and will extend to the
antiresonance / antiphasonance attributes. Additional research is needed to test this both
theoretically and experimentally and to determine whether additional differential properties
emerge between the different types of resonant and amplifying currents.

Antiresonance can be viewed as a neuron’s “anti-preferred” frequency response: a frequency
selected by the neuron at which the voltage response is depressed or minimized. Our results
indicate an alternative, but complementary view according to which the generation of antires-
onance (QZ > Q0) can operate as an additional mechanism of amplification of the voltage
response in the resonant frequency band where both Zmax and Z0 may remain unchanged as
certain control parameter changes.

Our results open several questions about the neuron’s response properties to oscillatory
input. Further research is needed to extend these results to include the effects of the model
nonlinearities, and the consequences of the presence of antiresonance and antiphasonance for
spiking dynamics and network oscillations.
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synaptic currents mediate network resonance driven by layer V pyramidal cells. Cereb.
Cortex, page DOI: 10.1093/cercor/bhw242, 2016.

[44] V. V. Moca, D. Nicolic, W. Singer, and R. Muresan. Membrane resonance enables stable
robust gamma oscillations. Cerebral Cortex, 24:119–142, 2014.

[45] R. A. Tikidji-Hamburyan, J. J. Mart́ınez, J. A. White, and C. Canavier. Resonant
interneurons can increase robustness of gamma oscillations. J. Neurosci. (in press),
35:15682–15695, 2015.

41

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2016. ; https://doi.org/10.1101/091207doi: bioRxiv preprint 

https://doi.org/10.1101/091207


[46] E. Ledoux and Brunel N. Dynamics of networks of excitatory and inhibitory neurons in
response to time-dependent inputs. Front. Comp. Neurosci., 5:1–17, 2011.

[47] E. Stark, R. Eichler, L. Roux, S. Fujisawa, H. G. Rotstein, and G. Buzsáki. Inhibition-
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A Impedance and phase profiles for 2D and 3D lin-

ear systems: Analytic expressions

In order to analytically compute he impedance and phase profiles for 3D linear generic systems
we use











x′ = a x+ b y + c z +Ain e
i ω t,

y′ = αx+ p y
z′ = β x+ q z,

(44)

where a, b, c, α, β, p and q are constant, ω > 0 and Ain ≥ 0.
The characteristic polynomial for the corresponding homogeneous system (Ain = 0) is given

by

r3 − (a+ p+ q) r2 + (a p+ a q + p q − c β − b α) r + b α q + c β p− a p q = 0. (45)

The particular solution to system (44) has the form
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xp(t) = Aout e
i ω t, yp(t) = Bout e

i ω t and zp(t) = Cout e
i ω t, (46)

Substituting (46) into system (44), rearranging terms, and solving the resulting algebraic
system one obtains

Z(ω) =
Aout

Ain
=

Pr(ω) + i Pi(ω)

Qr(ω) + iQi(ω)
(47)

where

Pr(ω) = p q − ω2, (48)

Pi(ω) = −(p+ q)ω, (49)

Qr(ω) = (a+ p+ q)ω2 − a p q + b α q + c β p, (50)

and

Qi(ω) = (a p+ a q + p q − b α− c β − ω2)ω. (51)

From (47)

|Z|2(ω) :=
A2

out

A2
in

=
P 2
r (ω) + P 2

i (ω)

Q2
r(ω) +Q2

i (ω)
(52)

and

φ = tan−1 Pr(ω)Qi(ω)− Pi(ω)Qr(ω)

Pr(ω)Qr(ω) + Pi(ω)Qi(ω)
. (53)

For a 2D linear system (c = q = 0), the characteristic polynomial for the corresponding
homogeneous system (Ain = 0) is given by

r2 − (a+ p) r + (a p− b α) = 0. (54)

The roots of the characteristic polynomial are given by

r1,2 =
(a+ p)±

√

(a− p)2 + 4 b α

2
. (55)

From eq. (55), the homogeneous (unforced) system displays oscillatory solutions with a natural
frequency fnat (Hz) given by

fnat = µ
1000

2π
, µ =

√

−4bα− (a− p)2, (56)

provided 4 b α+ (a− p)2 < 0.
The impedance amplitude and phase are given, respectively, by

|Z(ω)|2 :=
A2

out

A2
in

=
p2 + ω2

[ a p − b α− ω2 ]2 + (a+ p)2 ω2
, (57)
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and

φ(ω) = tan−1 (a p − b α− ω2) ω − (a+ p)ω p

(a p − b α− ω2) p+ (a+ p) ω2
. (58)
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