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ABSTRACT 22 

 23 

Species of the Mycobacterium tuberculosis complex (MTBC) kill more people every year 24 

than any other infectious disease. As a consequence of its global distribution and parallel 25 

evolution with the human host the bacteria is not genetically homogeneous. The observed 26 

genetic heterogeneity has relevance at different phenotypic levels, from gene expression 27 

to epidemiological dynamics. However current systems biology datasets have focused in 28 

the laboratory reference strain H37Rv. By using large expression datasets testing the role 29 

of almost two hundred transcription factors, we have constructed computational models to 30 

grab the expression dynamics of Mycobacterium tuberculosis H37Rv genes. However, we 31 

have found that many of those transcription factors are deleted or likely dysfunctional 32 

across strains of the MTBC. In accordance, we failed to predict expression changes in 33 

strains with a different genetic background when compared with experimental data. The 34 

results highlight the importance of designing systems biology approaches that take into 35 

account the tubercle bacilli, or any other pathogen, genetic diversity if we want to identify 36 

universal targets for vaccines, diagnostics and treatments. 37 

KEYWORDS: transcription factors / regulatory network / prediction models / evolutionary 38 

lineages /  genetic background 39 
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INTRODUCTION 42 

Tuberculosis (TB) has killed more persons in the last two hundred years than any other infectious 43 

disease. Today, TB is still the main infectious disease agent in the world, accounting for about 1,4 44 

million deaths plus 390,000 associated to HIV co-infection (WHO | Global tuberculosis report 45 

2016, 2016). In humans, the disease is caused by Mycobacterium tuberculosis and Mycobacterium 46 

africanum, which belong to the Mycobacterium tuberculosis complex (MTBC) along with other 47 

species that cause the disease in animals. The bacterium infects the host through the respiratory 48 

track. Once in the lungs, it is phagocyted by macrophages which typically are encapsulated in a 49 

granuloma (Orme & Basaraba, 2014). The bacteria can be dormant and survive inside the 50 

granuloma during months, years or even decades, in an asymptomatic disease state called latency 51 

(Getahun et al, 2015). The transition from latency to an active disease state depends on biological 52 

features of the bacteria, the host, environmental factors and the interactions among all of them 53 

(Comas & Gagneux, 2009). These interactions are not completely understood yet (Kondratieva et 54 

al, 2014). Moreover, animal models are widely used but they do not reproduce perfectly the human-55 

pathogen interaction (Vilaplana & Cardona, 2014; Orme & Basaraba, 2014).  56 

 57 

One way to approach the complexity of the host-pathogen-environment triangle is through systems 58 

biology. In the case of TB, systems biology approaches have produced encouraging results in the 59 

identification of persistence genes (Dutta et al, 2014), the pharmacokinetics and pharmacodynamics 60 

of TB drugs inside the granuloma (Pienaar et al, 2015; Lalande et al, 2016) and the identification of 61 

drug resistance mechanisms (Peterson et al, 2016). Overexpression experiments as well as 62 

chromatin-immune-precipitation sequencing (ChIP-Seq) data has been used to produce a detailed 63 

map of the interactions and regulatory logics of more than 200 transcription fators (TFs) in H37Rv, 64 

the laboratory reference strain (Rustad et al, 2014; Minch et al, 2015). The enormous quantity of 65 

data generated is publicly available and can be used to study the regulatory interactions of the 66 

bacteria in several ways (Turkarslan et al, 2015). 67 
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 68 

However, little attention has been paid to the fact that H37Rv is a clinical strain used in laboratories 69 

for decades and that for many aspects does not represent the whole species. Therefore, it is expected 70 

that natural perturbations in the inferred H37Rv biological networks introduced by naturally 71 

occurring mutations in clinical strains will change the gene model architecture and predictions and 72 

the underlying regulatory network. In fact, along their evolutionary story M. tuberculosis complex 73 

strains found in humans have diverged in 7 different lineages (Comas et al, 2013). The 74 

aforementioned H37Rv strain belongs to lineage 4. Most of the genetic variation among lineages in 75 

M. tuberculosis results from wide genomic deletions and point mutations (Gagneux et al, 2006). It 76 

is also known that the maximum genetic distance between strains of different lineages is 2,188 77 

SNPs (Coscolla & Gagneux, 2014). The phenotypic role of mutations defining lineages has been 78 

extensively studied and some of them are clearly linked to transcriptional differences between the 79 

MTBC lineages (Rose et al, 2013; Dinan et al, 2014; Homolka et al, 2010). It is also clear that one 80 

single mutation affecting regulatory processes can impact dramatically on the virulence of the 81 

pathogen (Gonzalo-Asensio et al, 2014; Pérez et al, 2001). In fact, a novel live vaccine attenuated 82 

carrying a deletion in the key regulator PhoP is currently on phase 1B of clinical trials (Spertini et 83 

al, 2015). In addition, several studies have shown that bacterial genetic diversity has 84 

epidemiological implications and genetic differences among lineages lead to differences in the 85 

immune response and disease progression in the host (Portevin et al, 2011; de Jong et al, 2008; 86 

Coscolla & Gagneux, 2014; Gagneux et al, 2006; Reiling et al, 2013). As a result, novel 87 

diagnostics, vaccines and treatments maybe compromised by failing to account for the circulating 88 

diversity as has recently been described for several diagnostics tests based on the detection of the 89 

protein of mpt64 (Ofori-Anyinam et al, 2016). 90 

 91 

Thus, we are completely blind as of whether the topology of the regulatory networks available and 92 

the gene expression mathematical models derived from H37Rv can be extrapolated or not to other 93 
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strains of the MTBC and how the regulatory modulations are affected by the existing bacterial 94 

diversity. In this work we derive new gene expression models by pooling existing H37Rv data and 95 

explore their predictive power on genome wide expression patterns when natural variations 96 

(mutations) seen in clinical strains are introduced. We show how different experimental set-ups can 97 

affect the inferred models of gene expression and regulatory influence and how far we are from 98 

predicting only from transcriptomic data the impact of genetic polymorphisms at a genome-wide 99 

expression level.  100 

 101 

 102 
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RESULTS 103 

Building and validation of gene expression models based on lineage 4 H37Rv strain 104 

Taking advantage of recently published experimental datasets testing the regulatory influences of 105 

known TFs, we defined gene expression models for the laboratory reference strain H37Rv. The 106 

datasets included transcription factors overexpression experiments (TFOE) for ~200 TFs (~700 107 

microarray experimental tests) (Rustad et al, 2014). In addition, for each TF we have also used 108 

information about the binding sites of transcription factors along the M. tuberculosis H37Rv 109 

genome (Minch et al, 2015). Firstly, we used the data to model the expression behavior of each 110 

gene in H37Rv by determining the number of TFs (regressors) influencing the expression and 111 

secondly, we established the dynamics of this impact by assigning a coefficient that modulates gene 112 

expression changes. Finally, we test whether the observed influence is exerted directly or not by 113 

overlapping transcription and transcription factors binding sites information. 114 

 115 

Gene expression models were built using a backward step-wise algorithm (Figure 1, see Material 116 

and Methods for details). The approach generated 3,960 putative gene expression models. When, in 117 

addition, we required evidence of physical interaction the number of initial putative models was 118 

reduced to 755. Therefore, our putative gene models accounted for 98.3% of the coding capacity of 119 

the genome when physical interaction was not required, and 19.24% of the coding capacity of the 120 

H37Rv genome when we used the ChIP-Seq data. Secondly, we cross-validated all models in the 121 

two datasets and then compared them with random models to discard spurious results. Following 122 

this approach, we discarded 2,744 models for the TFOE and retained 1,216 (30.8%). For the case of 123 

ChIP-Seq data, only 29 models were retained (3.74% of the initial models) (Figure 2A). The models 124 

derived from TFOEs alone included a larger number of TFs per model, as expected due to the larger 125 

number of regulatory events incorporated. On the contrary, the models derived from the 126 

combination of TFOEs and ChIP-Seq data had fewer TFs influencing the expression as they only 127 

include those TF physically bound to the gene (Figure 2B). In summary, our approach shows the 128 
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relevance of performing serial statistical validations of expression models derived from 129 

experimental data. The structure of the final models is included in the expanded view (File EV1). 130 

 131 

During the building of predictive models, we assigned coefficients to each regressor (TF) impacting 132 

gene expression by using TFOE data as a training set (Rustad et al, 2014). To evaluate how robust 133 

the prediction was to noise, we compared the predictions with the expression values obtained in a 134 

previous, analogous TFOE experiment (Galagan et al, 2013). In the case of the TFOE-derived 135 

models, we were able to predict the expression values of the corresponding gene in Galagan et al. 136 

(2013) only for 128 genes (10.52% of gene models, pFDR ≤ 0.01). In the models incorporating 137 

physical interactions, only 10 genes (34.48% of gene models) were observed with no significant 138 

differences between measured and predicted expression values, with a pFDR ≤ 0.01. In fact, a mere 139 

comparison of average expression values for each gene across the two datasets (Galagan et al. vs 140 

Rustad et al.) already shows that experimental noise has a great influence. Mean expression values 141 

for the same gene were not statistically significant in only 18 cases (pFDR < 0.01, Figure EV1). 142 

This result already suggests the presence of substantial experimental noise in otherwise analogous 143 

experiments.  144 

 145 

Regulatory network based on statistically validated interactions 146 

 147 

The 1,216 expression models obtained from the TFOE dataset include 11,253 regulatory 148 

relationships. These relationships are the ones selected after applying the backward step-wise 149 

method in the models building process (see Material and Methods for details). Although all of them 150 

lead to a lower Bayesian Information Criterion in their respective models, most of these 151 

relationships are based on a weak regulatory signal. To select for the strongest links between TFs 152 

and gene regulation influence we kept those leading to significant gene expression (two-fold 153 

change) according to the TFOE data (Rustad et al, 2014). With these subsets of regulatory 154 
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relationships, we built a new regulatory network. The new network (Figure 3A) comprises 3,396 155 

regulatory events across 1,102 genes (37.15% of the events and 38.76% of the genes from the 156 

network proposed by Rustad et al.). The main centrality statistics comparing the initial and the 157 

inferred network are shown in Table EV1. The distribution of the in-degree parameter of the 158 

network (Figure 3B) reveals that most genes are regulated by an intermediate number of factors 159 

whereas a minority is regulated by a large or small number of them. On the other hand, the 160 

distribution of the out-degree parameter follows the expected power-law distribution (Junker & 161 

Schreiber, 2008) with most TFs regulating a small amount of genes and a few genes affecting the 162 

regulation of many.  163 

 164 

In agreement with the original networks of Rustad et al. and Galagan et al., in this new regulatory 165 

network Rv0023 and Rv0081 are the TFs that regulate the largest number of genes (672 and 627, 166 

respectively). Thus, they are regulatory hubs of M. tuberculosis. On the other hand, the gene 167 

Rv3202c is the one with the largest number of TFs influencing its expression, as it is indirectly 168 

regulated by 26 TFs. This gene has ATPase and helicase activities (Lew et al, 2011). The regulatory 169 

subnetwork of Rv3202c is related to regulatory DNA and RNA processes, as well as response to 170 

external stimuli, transport and secretion. The network containing the regulatory links statistically 171 

validated in this analysis can be found in File EV2 and can be downloaded from 172 

https://tbgenomics.wordpress.com/resources/. 173 

 174 

Transcription factors are not universally conserved in the MTBC 175 

 176 

Once we had available gene expression models and a regulatory network for H37Rv we tried to 177 

predict the phenotypic effect of natural genetic variation observed in circulating clinical strains. To 178 

do so, we first examined the degree of conservation of the studied TFs across the Mycobacterium 179 

tuberculosis complex. Previous studies have identified mutations in the genes that code for the 180 
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PhoPR system in MTBC strains that had important effects on pathogen's virulence (Gonzalo-181 

Asensio et al, 2014), so that not only SNPs in the regulatory regions of the TF but also those located 182 

in the coding region could lead to differences in the TF activity. Thus, we focused our analyses on 183 

mutations falling in regulatory regions but also on those coding mutations that might impair the 184 

normal function of the TF. 185 

 186 

Using a collection of genome-wide SNPs and indels from a large number of clinical strains (Comas 187 

et al, 2013), we have identified a total of 28 transcription factors (TFs), among those present in the 188 

TFOE data (Rustad et al, 2014), that are missing or likely dysfunctional (as defined in Material and 189 

Methods) in one or more clinical strains including four affecting complete lineages of the M. 190 

tuberculosis complex (Table EV2 and Table EV3) (Figure 4). Some of these transcription factors 191 

are deleted in complete lineages and sublineages as they are in known regions of difference (RD) 192 

used as phylogenetic markers (Gagneux et al, 2006). For example, Rv1994c and Rv2478c are in 193 

RD743 and RD715 and they affect the entire lineage 5 (Mostowy et al, 2004). Those lineages 194 

represent up to 50% of tuberculosis cases in West Africa (Gehre et al, 2016). We have also 195 

identified single point mutations disrupting the normal functioning of some TFs. This is the case for 196 

sirR (Rv2788). An early stop codon mutation was found in all the strains of lineage 1. In the 197 

proposed regulatory network, Rv2788 regulates 22 genes (Figure 5B), in accordance 16 of those 198 

genes are differentially expressed in lineage 1 strains with respect H37Rv using available RNAseq 199 

data (Rose et al, 2013). In our estimates (Figure 5A), lineage 1 accounts for roughly 18% of the 200 

strains causing active tuberculosis cases each year (almost 1.9 million cases/year), hence the 201 

relevance of taking into account the circulating genetic diversity when building comprehensive 202 

regulatory networks.  203 

 204 

Next, in order to check the main biological processes involved we analyzed the relative abundance 205 

of Gene Ontology (GO) terms in the regulatory subnetworks for each affected TF (Table EV2 and 206 
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Table EV3, expanded view File EV3). Most of the TFs identified as missing in clinical strains have 207 

an important role, with a direct or indirect regulatory influence in up to 210 genes. The GO analysis 208 

showed that the affected TFs are involved in a wide range of processes, related with metabolism, 209 

regulation, pathogenicity and response to external stimuli. Some deletions affecting TFs appear in 210 

single strains, such as one affecting Rv1994c in a strain of lineage 2 or Rv1776c in a strain of 211 

lineage 3. A deletion of gene Rv1985c, a known antigen, was also found in a group of strains 212 

belonging to lineage 1. It is also remarkable that a stop-codon gain mutation was found in Rv0465c 213 

(also known as ramB) in one strain of lineage 4. RamB is related to the glyoxilate cycle in the 214 

pathogen and it has been proposed to play an important role in the adaptive response of the bacteria 215 

to different host environments during infection (Micklinghoff et al, 2009). Moreover, the regulatory 216 

subnetwork of ramB is involved in several processes such as regulation of RNA biosynthesis, 217 

response to hypoxia or interaction with the host. 218 

 219 

We have also identified 117 SNPs located in the regulatory regions of 44 TFs (Table EV4, Figure 220 

4). Most of these SNPs affect primary or alternative transcription start sites (TSS) as defined in a 221 

previously published work (Cortes et al, 2013); two of them correspond to antisense TSS and two 222 

more were internal TSS. Seventy-four of these SNPs affect one single strain, with the remaining 43 223 

affecting more than one. Interestingly, only a few of them impact complete lineages, such as 224 

T89200G, which impacts the master regulator Rv0081 in modern lineages 2, 3, 4 and 7 (76% of the 225 

circulating strains), or C422745T, which impacts Rv0353 in all lineages except 5 and 6. Rv0081 226 

regulates 188 genes (including tcrR, which also regulates 26 genes) (Figure 5B) so a SNP 227 

potentially affecting its regulation could have an important effect on the regulatory network of the 228 

bacteria (Gonzalo-Asensio et al, 2014). Besides, we have found one homoplasic SNP (C2965900T, 229 

which affects Rv2642) that have emerged independently in strains of 3 different lineages. It has 230 

been shown previously that some of the SNPs screened are already known as affecting the 231 

expression of their corresponding TF (Table EV4). For example, SNP G3500149A has been 232 
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reported to be involved in the regulation of TF Rv3133c in Beijing strains (lineage 2), as it creates a 233 

-10-box leading to the overexpression of the DosR regulon (Rose et al, 2013; Domenech et al, 234 

2016). 235 

 236 

In-silico expression prediction of genetic backgrounds observed in a clinical and in a vaccine 237 

strain 238 

 239 

To explore how well the H37Rv-based expression models and the validated network predict the 240 

impact of the genetic background in the transcriptional landscape of the bacteria we have selected a 241 

lineage 1 strain (T83) from the comparative genomics analysis. For T83 there is publicly available 242 

expression data set (Rose et al, 2013) and we have identified a deletion in TF Rv1985c (Table EV2) 243 

and an early stop-codon in Rv2788 (Table EV3). By reducing the expression of Rv1985c and 244 

Rv2788 to its minimum level, we created gene models mimicking the T83 genetic background. 245 

With these modifications, we were able to identify significant differences in the predicted 246 

expression values in 148 of the 169 genes that have Rv1985c or Rv2788 as regressors (pFDR < 247 

0.05). We compared the predictions with available experimental data from a RNA-seq dataset. To 248 

explore how well models perform qualitatively we tested if we could predict the direction of the 249 

gene expression change (induction or repression). The predictions agree with the experimental data 250 

for 71 genes but failed for 77. A Cohen's kappa test was performed and no agreement was found 251 

between the predicted and the real values (kappa = -0.06) (Table EV5). We performed also a 252 

quantitative test so we compared the expression values of the 148 predictive models showing 253 

significant differential expression with those genes in which we observed an adj-pvalue < 0.05 in 254 

the differential expression analysis between T83 and H37Rv. Sixty-four coincidences were found. 255 

There was no correlation between the predicted vs the real fold-change in the expression of the 64 256 

genes identified (Pearson correlation coefficient = 0.08, p-value = 0.48). Although conclusions from 257 

a single strain are necessarily provisional, it is also true that the mutations in T83 are present in 258 
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several strains of lineage 1 (Table EV2 and Table EV3, Figure 4). Thus, from the limited data 259 

available we speculate that gene expression models based on H37Rv and derived from TFOE are 260 

not likely to predict accurately enough the transcriptional landscape of M. tuberculosis complex 261 

lineages.  262 

 263 

Once was not possible to predict expression changes in strains other than H37Rv, we tested the 264 

impact of knocking out a single TF in the H37Rv genetic background. As an example, we selected 265 

PhoP for several reasons: (i) it is one of the main regulators in MTBC (Pérez et al, 2001; Galagan et 266 

al, 2013); (ii) it is the main gene deleted in a vaccine candidate that is already in clinical trial phase 267 

1B (Spertini et al, 2015); (iii) there are large datasets published of the expression changes in knock-268 

out strains using two different approaches, microarray (Gonzalo-Asensio et al, 2008) and RNAseq 269 

(Solans et al, 2014); and (iv) there is strong evidence that mutations in the PhoPR regulatory 270 

regions impact fitness of clinical strains on the human host (Gonzalo-Asensio et al, 2014).  271 

 272 

From the TFOE, we identified 218 models in which phoP (Rv0757) is present as a regressor. When 273 

the expression value of phoP was lowered to the minimum level allowed by the model, thus 274 

simulating that the gene has been knocked-out, there were 188 genes in which statistical significant 275 

differences between mutant and normal expression values were observed (pFDR < 0.05). To 276 

contrast these predictions with experimental data we used the expression differences between 277 

isogenic clinical strains with or without the phoP knock-out mutation. Among the 188 gene models 278 

influenced by PhoP, 10 of them are in a list of 78 genes influenced by PhoP according to (Gonzalo-279 

Asensio et al, 2008). The regulatory influence in these 10 cases, derived from predictions and 280 

compared with the experimental values of Gonzalo-Asensio et al. is shown in Table EV6.  281 

 282 

We also contrasted our predictions with an RNA-seq dataset of a phoP knockout H37Rv strain 283 

(Solans et al, 2014). Again, we first compared if the predicted expression follows the same direction 284 
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as the ones from the RNA-seq dataset. In 96 cases the predictions agree with the experimental 285 

values but in 92 cases the predictions failed (Table EV6). The Cohen's kappa test shows a slight 286 

agreement between the real and the predicted values (kappa = 0.05). After that, we compared the 287 

188 predictive models showing differential expression with the genes showing differential 288 

expression in the dataset (adjusted p-value < 0.05) and we found only 9 coincidences. For these 9 289 

genes in common, we obtained almost no correlation (Pearson correlation coefficient = 0.59, p-290 

value = 0.09) between the predicted and measured gene expression fold-change in the mutant 291 

(Figure 6). To test whether the regulatory influence is exerted through direct interaction or indirect 292 

influence, we used the ChIP-Seq data from the physical binding network. Only one model included 293 

phoP as a regressor, Rv2590. This result suggests that PhoP acts indirectly over many genes, as 294 

shown previously (Solans et al, 2014; Galagan et al, 2013). 295 

 296 

Next, we tested whether the lack of correspondence between our predictions and the experimental 297 

data might be due to the former being obtained from TFOE whereas the later were defined after 298 

analyzing a knock-out strain. Figure 7A shows a graphical comparison between the ChIP-Seq 299 

coverage of the over-expressed, the knock-out mutant, and the wild-type strains. Using the wild-300 

type coverage vs the phoP mutant coverage as a negative control, we are able to infer the binding 301 

sites of PhoP in the H37Rv strain (Solans et al, 2014). By comparing these results with the binding 302 

sites inferred from the TFOE strains, we observed differences in several genes (Figure 7B). For 303 

example, in the Rv1101 gene there is no evidence of PhoP regulation when the mutant and the wild-304 

type are compared. However, a peak appears in the overexpressed strain and strong regulatory 305 

evidence has been reported (Rustad et al, 2014). In total, from 139 genes predicted to be regulated 306 

by PhoP from the TFOE data and 51 from the mutant data, only 16 genes overlap. Thus, different 307 

methodologies to test the function of a gene (overexpression versus deletion) partially account for 308 

the limited predictive power of the H37Rv gene expression models even when the mutant is derived 309 

from a H37Rv background. 310 
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DISCUSSION 311 

 312 

Systems biology approaches rarely accommodate information about natural polymorphisms in the 313 

systems studied. However, these polymorphisms can contribute to new genetic backgrounds with 314 

important consequences at the phenotypic level. Evolutionary systems biology has developed as a 315 

discipline that aims at generating quantitative insight on complex systems to model their evolution. 316 

One of its main focus is to predict the effect of mutations on phenotypes. However, this kind of 317 

approach has been rarely applied to non-model organisms and even within model systems rarely to 318 

more than one genetic lineage (Gasch et al, 2016). Thus, the actual power of systems biology 319 

models in predicting the effect of new mutations on non-model system still has to be evaluated 320 

(Tagu et al, 2014). This is the case for tuberculosis, in which both the pathogen and the host are not 321 

genetically homogeneous and genetic variation in any of them may impact disease progression and 322 

outcome (Comas & Gagneux, 2011). Therefore, systems biology-derived models must 323 

accommodate the potential impact of host and bacterial genetic heterogeneity in order to make 324 

universal predictions in a pathogen of global distribution.  325 

 326 

We have tested the predictive power of state-of-the-art M. tuberculosis regulatory networks and 327 

expression models when the system is disturbed by (i) several mutations associated to a clinical 328 

strain with a genetic background different to the training dataset, and (ii) a knock-out mutation in 329 

the key regulator PhoP in the reference strain used for the training dataset. Both for the genetic 330 

background and single mutations predictions our results show very little overlap between the genes 331 

predicted to be significantly impacted and those experimentally determined. Overall, these results 332 

suggest that our predictive models only grab a minor part of the true phenotypic variation. 333 

 334 

Experimental noise impacts gene expression models prediction 335 

 336 
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One striking result is that our gene expression models in most cases are not statistically different 337 

than randomly generated models and that they do not correctly predict the expression level even in 338 

analogous TFOEs experiments (Galagan et al, 2013). Several biological factors might explain the 339 

discrepancies between predicted and observed expression values. First of all, our results show that 340 

the statistical validation of gene expression models is essential to tease out methodology-dependent 341 

effects that may or may not correspond to actual biological differences and contrasted biological 342 

effects. Only 1,216 gene models derived from the TFOE dataset and 29 from the ChIP-Seq were 343 

significantly different from randomly-generated gene expression models. It is well known that in 344 

some cases noise is introduced by subtle expression differences between cells and can have a 345 

biological role (Macneil & Walhout, 2011; Chalancon et al, 2012). In fact, a recent study with 346 

Bacillus subtillis has demonstrated that gene expression noise contributes to phenotypic 347 

heterogeneity, providing some advantage in certain environments (Mugler et al, 2016). However, in 348 

most cases it just represents perturbations introduced by differences in the experimental setting 349 

(Parekh et al, 2016; Grün et al, 2014). This suggests that in the future when trying to understand the 350 

impact of different perturbations in the system, such as genetic mutations, the noise introduced by 351 

the experimental setting must be taken into account, especially in genes with a low expression level 352 

(Malone & Oliver, 2011). 353 

 354 

Secondly, the regulatory network analyzed is highly dependent on the experimental methodology 355 

used. Overexpression of transcription factors is a common, widely used technique to identify 356 

regulatory influences but it can fail to make accurate predictions when an increase in gene 357 

expression has no physiological effect or, on the contrary, overestimate the regulatory effect due to 358 

a loss of specificity (Blais & Dynlacht, 2005). A recent work with Mycoplasma pneumoniae 359 

demonstrated that the overexpression of regulatory molecules (asRNAs in this case) leads to an 360 

overestimation of the regulatory effect of these molecules (Lloréns-Rico et al, 2016). Also, the 361 

ChIP-Seq technique could introduce false positives when overexpressing the TF (Park et al, 2013). 362 
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Furthermore, knock-out mutant approaches are universally used to understand the role of a gene but 363 

the comparison with overexpression approaches may not be accurate. There are several examples in 364 

our data in which genes whose expression is clearly impacted in phoP knock-out experiments show 365 

no impact in TFs overexpression datasets. On the other hand, these regulatory networks take into 366 

count only the relationships inferred from transcription factors. It is known that regulatory 367 

mechanisms of M. tuberculosis are more complex. In some cases, increasing the expression of a TF 368 

does not lead to an increase of its activity, as some TFs need to be phosphorilated or undergo 369 

conformational changes in different conditions to be activated. Increasing the amount of the TF but 370 

not changing the conditions could make its activity undetectable. Besides, other studies (Arnvig et 371 

al, 2011) have shown that there is a large number of sRNAs in bacteria that regulate genic 372 

expression. Their effect is not reflected in this type of networks and analyses, as we only look for 373 

the amount of mRNA produced by a gene. Finally, the amount of mRNA does not always agree 374 

with the amount of translated protein (Maier et al, 2009; Vogel & Marcotte, 2012). However, new 375 

experimental techniques such as CRISPRi are being tested in M. tuberculosis and several other 376 

organisms to characterize and modify gene expression (Singh et al, 2016). The introduction of 377 

CRISPR-based techniques in this research field could allow overcoming some of the disadvantages 378 

of current techniques and to define regulatory influences more accurately. 379 

 380 

Current models are bad predictors of MTBC transcriptional diversity 381 

 382 

Given the low concordance between predictions and expression datasets generated with the same 383 

methodology, we also expected low predictability when we tried to mimic the impact of a different 384 

genetic background. Given the well-known impact of mutations on transcriptional activities, we 385 

first carried out a comparative genomics analysis of the conservation of known TFs in the MTBC. 386 

Our analyses show how the different TFs tested in H37Rv are not universally conserved. Some of 387 

those mutations (either deletions or single point mutations) impact complete lineages and up to 76% 388 
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of the circulating strains. 389 

 390 

In our case we have predicted the transcriptional landscape of a lineage 1 strain. We have found 64 391 

coincidences between the genes predicted to be impacted and those found in an RNA-seq 392 

experiments (Rose et al, 2013). Strain T83 belongs to lineage 1 and its genetic distance to H37Rv, 393 

the strain used to build the models, is more than 1,800 SNPs (Comas et al, 2013). Thus, other 394 

genetic differences besides those found in TFs between this strain and the one used to infer the 395 

regulatory influences will certainly impact the genome-wide transcriptional landscape of T83. For 396 

example, we have mapped 2 SNPs in the regulatory region of TF Rv0353 (Table EV4) in T83. The 397 

potential influence of these SNPs is not covered by the current models as well as those of other 398 

regulatory layers that possibly differ between lineages. In addition, we have shown before that 399 

specific SNPs of lineage 1 alter the expression levels of sense and antisense transcripts by means of 400 

the appearance of new TSSs (Rose et al, 2013). Accordingly, we found a better agreement between 401 

predicted and observed expression changes when we introduced the effect of deleting a single TF 402 

(PhoP) in a H37Rv background. 403 

  404 

In summary, current models of regulatory networks cannot be used to accurately predict the impact 405 

of genetic variation on expression levels of the regulated genes. Noise as well as missing regulatory 406 

layers also represent a major obstacle for modelling expression changes. This might be the main 407 

reason explaining why, of the initially calculated models, only 30.8% from the TFOE derived 408 

models and 3.74% in the ChIP-Seq models showed a better performance than random generated 409 

models. To overcome these limitations, systems biology approaches including protein-protein 410 

interaction networks, in-silico modeling, metabolic flux analyses, or transposon-based functional 411 

characterizations are being carried out (Peterson et al, 2014; Ma et al, 2015; Garay et al, 2015; 412 

Crouser, 2016; Padiadpu et al, 2016).  413 

 414 
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From this work it is also clear that there is a need for experimental data from representative samples 415 

comprising the natural diversity of the Mycobacterium tuberculosis complex. This is a major effort 416 

if we take into account that the data used for this work and coming from H37Rv alone was derived 417 

from almost 200 TFs genetic constructs and 700 microarray experiments. Generating 418 

comprehensive models for all major human and animal lineages of the M. tuberculosis complex will 419 

represent a challenge in the years to come. In addition, multiomics data is also desirable in order to 420 

capture the major regulatory layers (Monk et al, 2016). The challenge will be to integrate all of 421 

them in a manner that can inform each other (Ma et al, 2015) and to accommodate and predict the 422 

role of existing human and bacterial genetic diversity (Comas & Gagneux, 2011). This a major 423 

obstacle for using systems biology approaches in M. tuberculosis complex to prioritize targets for 424 

biomedical research. 425 

 426 

MATERIALS AND METHODS 427 

 428 

Datasets and techniques used 429 

 430 

The main microarray expression datasets were obtained from Rustad et al. (2014) (available at GEO 431 

with accession numbers GSE59086). Also, the ChIP-Seq data was obtained from Minsch et al. 432 

(2015). The TFOE derived network used to compare with the TFOE network generated in this work 433 

was obtained from Rustad et al. (2014) (available at http://networks.systemsbiology.net/mtb/). The 434 

phoP mutant data was obtained from Solans et al. (2014) (available at GEO under accession 435 

number GSE54241). The RNA-seq data from lineage 1 (including the T83 strain) was obtained 436 

from Rose et al. (2013) (available at EBI ENA under accession number ERP002122). The H37Rv 437 

RNA-seq data was obtained from Arnvig et al. (2011). 438 

The R statistical language was used to perform all the analyses (Team, 2015), mainly the 439 

Bioconductor set of packages (Huber et al, 2015). All the methodology is summarized in Figure 1. 440 
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 441 

Model construction 442 

 443 

The regulatory relations used for model construction were obtained from the Rustad et al. (2014) 444 

dataset downloaded from the MTB network portal (http://networks.systemsbiology.net/mtb/). We 445 

selected all the regulatory interactions with adjusted p-value <= 0.01 regardless the fold-change in 446 

the expression values. In consequence, all the statistically significant regulatory influences (even the 447 

weak ones) were taken into account. From Minsch et al. (2015) we selected the physical bindings 448 

which demonstrated regulatory effect over the gene expression of the target.  449 

 450 

We used a backward step-wise methodology for constructing the computational models. The 451 

following process was performed for each target gene in the TFOE and the ChIP-Seq derived 452 

models.  453 

 454 

1. All the TFs affecting the gene were selected as regressors for the model. Besides, the RNA 455 

polymerase alpha chain gene, rpoA (Rv3457c), and the sigma factor gene, sigA (Rv2703), were 456 

included as normalization factors. Also, the interactions between TFs were taken into account. The 457 

model structure (Galagan et al, 2013) was: 458 

 459 

𝑦𝑦 = 𝑎𝑎 + ∑ 𝑏𝑏𝑖𝑖𝑇𝑇
𝑖𝑖=1 𝑥𝑥𝑖𝑖 + ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑇𝑇

𝑗𝑗=𝑖𝑖+1
𝑇𝑇
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑑𝑑𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜀𝜀, 460 

 461 

where y is the target gene expression, xi the expression values of the selected TFs (from i=1 to T), a, 462 

b,d and e the linear coefficients in the regression model, c are the interaction coefficients, and ε is 463 

the error term. 464 

 465 

2. A linear regression model with all the TFs selected as regressors and based on the previous 466 
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structure was constructed. Later, the model was parameterized using microarray data from Rustad et 467 

al. (2014). 468 

 469 

3. The Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) associated 470 

to the model were calculated. To limit the overfitting error we used the BIC in the TFOE derived 471 

models because it penalizes models with a large number of regressors (Faraway, 2009). In turn, the 472 

AIC was used when calculating models from the ChIP-Seq dataset given the low number of 473 

regressors involved. 474 

 475 

4. We sequentially eliminated the regressor whose removal from the model led to the highest 476 

decrease of the BIC/AIC. The remaining TFs were selected and we returned to step 2. In case we 477 

did not observe a decrease in the BIC/AIC after the removal of any regressor, we considered that 478 

model as optimal for the corresponding gene. 479 

 480 

5. A Fisher’s F-test was performed to check the null hypothesis that the retained regressors do not 481 

have predictive power (Faraway, 2009). P-values were adjusted to multiple testing by Benjamini 482 

and Hochberg false discovery rate (FDR)(Benjamini & Hochberg, 1995) and all models with 483 

adjusted p-value >= 0.05 were rejected. 484 

 485 

Cross-validation of models 486 

 487 

We checked the initial models obtained above in a 10-fold cross-validation.  488 

 489 

For each gene: 490 

1.- The optimal model selected was parameterized using a random subset of the 90% TFOE dataset 491 

as a training-set. 492 
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2.- After that, the remaining 10% of the dataset was used as a test-set to make predictions. A Fisher 493 

F-test was performed to check differences between residuals of the training-set and the test-set. 494 

Also, the Root Mean Squared Error (RMSE) (Chai & Draxler, 2014) when predicting over the test-495 

set was obtained. 496 

3.- Steps 1 and 2 were repeated 10 times (10-fold cross-validation)  497 

 498 

 In this case, we retained the models that showed no differences between predictions over the 499 

training-set and the test-set, by comparing the average adjusted p-value of the F-test over the 10 500 

iterations (α >= 0.05). In some cases, we could not find differences between residuals but the 501 

squared error was high. In consequence, we also rejected the models with RMSE > Q3 + 1.5 * IQR, 502 

as they will be considered as outliers of the RMSE distribution (Tukey, 1977).  503 

 504 

Comparisons to random models  505 

 506 

 We considered each TF of the datasets as a potential regulator. For each gene, we listed all 507 

the TFs that do not have a regulatory influence over it. From this list we created 100 random subsets 508 

of TFs. The number of elements in each subset was equal to the number of real factors with 509 

regulatory influence over the corresponding gene. With this random subset of TFs, we followed the 510 

steps described above to create the random models. Also the 10-fold cross-validation was 511 

performed for each random model.  512 

 513 

 For each model, a Welch's t-test to compare the distribution of p-values from the 10-fold 514 

cross-validation of the real model versus the random ones was performed. P-values from Welch 515 

tests were adjusted by Storey’s method (Storey, 2003). Tests showing a pFDR <= 0.01 were 516 

accepted as having a better fit than random models. Also, the RMSE distributions of random 517 

models versus the real ones were tested by means of a Welch's t-test, correcting the p-values with 518 
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Storey's method. Tests showing a pFDR <= 0.05 were accepted. 519 

 520 

Evolutionary conservation of TFs within the MTBC 521 

 522 

To determine whether TFs have been conserved along the evolutionary history of the MTBC we 523 

analyzed an available dataset of natural polymorphisms in 219 representative strains of the 524 

complex, encompassing all known lineages and geographic distribution of the species (Comas et al, 525 

2013). A custom script was used to search for TFs that have at least 25% of their gene length 526 

deleted. A manual inspection was performed over every TF deletion found to filter false positives 527 

and mapping errors. Also, single nucleotide polymorphisms (SNPs) leading to stop-codon gains or 528 

losses, and point mutations affecting any TF regulatory regions (Cortes et al, 2013) were extracted 529 

from this dataset. The terminology used to classify the TSSs follows Cortes et al. (2013). 530 

 531 

We defined the regulatory sub-network associated to each TF as that defined by the one-step 532 

distance nodes to the TFOE network. To understand the potential role in major physiological 533 

functions, for each sub-network we studied the enrichment in certain functional categories as 534 

defined by the GO classification (The Gene Ontology Consortium, 2014). The Gene Set Enrichment 535 

(GSE) analysis was carried out using a combination of the BINGO tool (Maere et al, 2005) and the 536 

Cytoscape software for visualization (Shannon et al, 2003). The enrichment test identifies the most 537 

abundant GO terms in the sub-network compared to all the possible terms present in the complete 538 

annotation, using a hypergeometric test (sampling without replacement).   539 

 540 

RNA-seq analysis 541 

 542 

Expression data from H37Rv and lineage 1 strains was obtained from Rose et al. (2013). The 543 

differential expression analysis was performed using DESeq2 package (Love et al, 2014). 544 
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Differentially expressed genes were those with an adjusted p-value of 0.05. Differential expression 545 

analysis was performed over H37Rv versus all lineage 1 strains to check the differences in those 546 

genes regulated by Rv2788 (sirR). In addition, we specifically analyzed differentially expressed 547 

genes between between T83 (lineage 1) and H37Rv (lineage 4). 548 

 549 

Predicting the impact of genetic polymorphisms 550 

 551 

To predict the impact of the genetic background on the transcriptional landscape of the M. 552 

tuberculosis complex we chose a lineage 1 strain, namely T83. As a result of the analyses of 553 

conservation degree of the TFs described above, we have identified two genetic mutations in 554 

lineage 1 which likely have a major impact on the functionality of TFs. One of the mutations 555 

corresponds to a deletion affecting TF Rv1985c while the other is in an early stop codon in TF 556 

Rv2788 (Table EV2 and Table EV3). To simulate a transcriptional landscape for lineage 1, the 557 

expression values of both TFs were set to the minimum value found in the training dataset as 558 

standard regression models approaches requires to make predictions in the same data range to that 559 

used to parameterize the model (Faraway, 2009). The T83 gene expression predicted values were 560 

compared to those obtained from H37Rv expression models. To evaluate the differences between 561 

predicted and real values we performed a Welch's t-test over the expression values. P-values were 562 

adjusted by Storey's method. A pFDR < 0.05 was considered for accepting the difference between 563 

models as significant. For the genes that showed differential expression, we calculated the log2 564 

fold-change between H37Rv and T83. We compared these values with those obtained from the 565 

RNA-seq analysis shown above. For a qualitative approach, we checked if the changes in the 566 

expression values follow the same direction (positive for induction and negative for repression). We 567 

constructed a 2x2 matrix with the predicted effect vs the measured effect and a Cohen's kappa test 568 

was performed over this matrix to check the agreement between prediction and real data. After that, 569 

we wanted to check the quantitative accuracy of the models so we selected the genes that showed 570 
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differential expression in both, the RNA-seq dataset (adjusted p-value < 0.05) and in the predicted 571 

expression to calculate the Pearson correlation. 572 

 573 

Similarly, to make predictions on a phoP mutant in a H37Rv background we set its expression 574 

value  to the minimum value found in the training dataset for this TF. The analysis was performed 575 

following the steps described above. To analyze how accurate, the models reflect fold-changes in 576 

experimental data we used an RNA-seq data from a phoP mutant and H37Rv (Solans et al, 2014) as 577 

explained in the previous section. We compared the log2-based fold-changes between the predictive 578 

models and experimental data comparisons. 579 

 580 

To compare the ChIP-Seq coverages in the different cases, we obtained raw data from the wild-type 581 

strain and the phoP mutant from Solans et al. (2014). We also downloaded ChIP-Seq data from the 582 

overexpression experiment of phoP (Rv0757_B167) from the MTB network portal 583 

(http://networks.systemsbiology.net/mtb). The circular diagram was constructed with the Circos 584 

tool (Krzywinski et al, 2009) and the values from the regulatory influence were extracted from the 585 

TFOE dataset. 586 

 587 

 588 

 589 
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FIGURE LEGENDS 607 

 608 

Figure 1. Workflow to build and validate gene expression computational models. 609 

Initial models were derived from the regulatory relationships derived from the TFOE and ChIP-Seq 610 

data. They were trained with dataset from Rudstadt et al. 2014 (for more details about the different 611 

datasets used, check Materials and Methods). These initial models went through a 10-fold cross-612 

validation process, to discard low accuracy models. The remaining ones were compared with 613 

random models. Those showing better performance than the random models were selected as the 614 

final models. These selected models were used to (i) check the robustness of the models (ii) derive a 615 
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new regulatory network (iii) in-silico predict the impact of a TF deletion. 616 

 617 

Figure 2. Gene expression computational models 618 

  619 

A Overview of the results obtained during the building process and refining steps of the 620 

computational models derived from the TFOE data (left) and the ChIP-Seq data (right).   621 

B Distribution of the number of TFs affecting the target gene on each network derived model. 622 

 623 

Figure 3. Validated gene expression network 624 

 625 

A New regulatory network proposed. Yellow nodes represent genes that code for transcription 626 

factors while blue nodes represent target genes for the corresponding TF. Sizes of the nodes are 627 

proportional to the number of genes regulated by them. Green edges indicate positive regulations 628 

while red edges indicate negative regulation. The transparency of the edges is related with the TF 629 

→ gen influence (the darker the edge, the higher the regulatory effect). 630 

B Comparison of the out- and in-degree distributions between the network derived from TFOE 631 

data and the new proposed network.  632 

 633 

Figure 4. MTBC phylogeny comprising the seven major lineages.  634 

The figure represents the number of TFs missing in one or more clinical strains of the MTBC from 635 

Comas et al. (2013). Each panel shows the same phylogeny and the mutations affecting a TF are 636 

mapped to the corresponding branch in the tree and highlighted in red. Label numbers correspond to 637 

entries in Table EV2, Table EV3 and Table EV4. The mutations considered are either partial or 638 

complete deletions of the TF (A), single point mutations leading to gain or loss of stop codons (B) 639 

and single point mutations affecting the regulatory region of a TF (C). 640 

 641 
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 642 

 643 

 644 

Figure 5. Global incidence of the different lineages and representative examples of mutations 645 

affecting complete lineages.  646 

A Pie chart showing the estimated number of annual tuberculosis cases attributed to each 647 

lineage  and barplot showing the incidence of the different lineages by region. Lineage 7 is not 648 

shown due to its low incidence in global terms (Comas et al, 2015). The data related to the disease 649 

incidence by region come from the WHO (WHO | Global tuberculosis report 2016, 2016) and the 650 

lineage abundance for each region from a previous work (Gagneux et al, 2006). 651 

B  Examples of regulatory subnetworks of transcription factors affected by mutations in one or 652 

more lineages. From upper-left to lower-right: regulatory subnetwork of Rv2788 (early stop-codon 653 

in all lineage 1 strains); regulatory subnetwork of Rv1994c (deleted in all lineage 5 strains); 654 

regulatory sub-network of Rv0081 (SNP in regulatory region found in all the strains screened from 655 

lineage 2,3,4 and 7) and regulatory sub-network of Rv3676 (SNP in regulatory region in all the 656 

strains from lineage 3). 657 

 658 

Figure 6. Comparison between experimental and predicted fold-changes. 659 

 660 

The y-axis corresponds to the measured log2 fold-change in gene expression between the WT strain 661 

and the Δphop strain in Solans et al.(2014) The x-axis corresponds to the predicted fold-changes 662 

calculated with the predictive models developed in this work. 663 

 664 

Figure 7. ChIP-Seq coverage comparison and regulatory influences between the phoP knock-665 

out, wild-type and phoP overexpressed strains.   666 

 667 
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A The outer circle represents genomic positions. From outside to inside: ChIP-Seq coverage of 668 

phoP mutant, wild-type and TFOE. The inner links represent the regulatory influence of phoP 669 

derived from TFOE (blue), mutant strain (purple) and the overlap between them (black). 670 

 671 

B Detail of genes with regulatory influences derived from TFOE that do not match with the 672 

evidence from WT and the mutant strain. 673 

 674 

Figure EV1. Evaluation of accuracy and comparison of model's behavior between different 675 

datasets. 676 

 677 

To evaluate the robustness of the complete models to changing experimental conditions we  678 

compared the models built with the expression values observed in an analogous experiment 679 

(Galagan et al, 2013). The main goal of the models is to make predictions under different conditions 680 

and with several data sources. Therefore, apart from training the models with the same dataset used 681 

to calculate the models and the regulatory networks (Rustad et al, 2014) we trained them with the 682 

other analogous dataset. In this figure, dataset A is the one obtained from Rustad et al, (2014) and 683 

dataset B from Galagan et al, (2013). 684 

(A) Root mean squared error comparison (RMSE) for the models obtained from TFOE data. 685 

Values when training and testing with dataset B (green), training and testing with dataset A (blue), 686 

training with dataset A and testing with dataset B (red) and training with dataset B and testing with 687 

dataset A (yellow).  688 

 689 

(B) Plot showing RMSE values for TFOE derived models. Index refers to the list of models 690 

sorted by RMSE. The green arrows mark those models having no differences between predicted and 691 

measured mean expression. The left plot shows the case of training with dataset A and testing with 692 

dataset B while the right plot shows the reverse case. In the left plot, 128 genes show no differences 693 
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between real and predicted values in terms of equaliy of means while in the right plot 33 genes 694 

show no statistical differences (pFDR ≤ 0.01). 695 

 696 

(C) RMSE comparison for the models obtained from ChIP-Seq data. Values when training and 697 

testing with dataset B (green), training and testing with dataset A (blue), training with dataset A and 698 

testing with dataset B (red) and training with dataset B and testing with dataset A (yellow).  699 

 700 

(D) Plot showing RMSE values for ChIP-Seq derived models. Index refers to the list of models 701 

sorted by RMSE. The green arrows mark those models having no differences between predicted and 702 

measured mean expression. The left plot shows the case of training with dataset B and testing with 703 

dataset A while the right plot shows the reverse case. In the left plot, 10 genes show no differences 704 

between real and predicted values in terms of equality of means while in the right plot only 3 genes 705 

show no statistical differences (pFDR ≤ 0.01). 706 

 707 
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