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Abstract: Phylogenetics can be used to elucidate the movement of
pathogens between different host populations when the location of samples
are considered alongside of pathogen sequence data. Pathogen phylogenies
therefore offer insights into the movement of pathogens not available from
classic epidemiological data alone. However, current phylogeographic meth-
ods to quantify migration patterns from phylogenies have several known
shortcomings. In particular, one of the most widely used method treats mi-
gration the same as mutation, and as such does not incorporate information
about population demography. This may lead to severe biases in estimated
migration rates for datasets where sampling is biased across populations. On
the other hand, the structured coalescent allows us to coherently model the
migration and transmission process, but current implementations struggle
with complex datasets due to the need to additionally infer ancestral mi-
gration histories. Thus, approximations to the structured coalescent which
integrate over all ancestral migration histories have been developed. How-
ever, the validity and robustness of these approximations remain unclear.
We here provide an exact numerical solution to the structured coalescent
that does not require the inference of migration histories. While this solution
is computationally unfeasible for large datasets, it clarifies the assumptions
of previously developed approximate methods and allows us to provide an
improved approximation to the structured coalescent. We have implemented
these methods in BEAST2, and we show how our newly described approach
outperforms previously described methods in accuracy at comparable com-
putational cost.
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1 Introduction

The quantification of pathogen spread in structured host populations using
phylogenies enables us to draw conclusions about the sources and origins of
infectious diseases. Methods accounting for population structure, also called
phylogeographic methods, have been used to analyze the global spread of
H3N2 (Bedford et al., 2010; Bahl et al., 2011; Lemey et al., 2014; Bedford
et al., 2015), the origins of HIV-1 (Faria et al., 2014) and various other
diseases (Bourhy et al., 2008; Raghwani et al., 2011).

A range of phylogeographic methods have been proposed. The mugration
method (Lemey et al., 2009) treats migration as a continuous time Markov
chain, such as used to model mutation, and assumes the migration process
to be independent of the tree generating process. This assumption can lead
to biases in estimates of migration rates when sampling is biased (De Maio
et al., 2015). Other methods, such as the structured coalescent (Takahata,
1988; Hudson, 1990; Notohara, 1990), do not make this independence as-
sumption. In contrast to the mugration-based methods, they require the
state (or location) of any ancestral lineage in the phylogeny at any time
to be inferred (Beerli and Felsenstein, 2001; Ewing et al., 2004; Vaughan
et al., 2014). In other words, they require the ancestral migration history
to be inferred. Inferring lineage states is computationally expensive, as it
normally requires Markov chain Monte Carlo (MCMC) based sampling, and
limits the complexity of scenarios that can be analyzed.

Another approach (Volz, 2012) seeks to marginalize over all possible mi-
gration histories by treating lineage states probabilistically instead of using
MCMC based sampling. Rather than assigning lineages to particular states,
the probability of each lineage being in each state is calculated at all times
using a set of previously described differential equations (Volz, 2012). Such a
marginalization approach (rather than explicit sampling of states) allows for
the analysis of larger datasets (De Maio et al., 2015). While this approach
appears to only make the assumption of lineage independence, i.e. that the
state or location of one lineage does not depend on any other lineage (De
Maio et al., 2015), it remains unclear if there are additional assumptions not
being accounted for.

We here derive an exact numerical solution of the structured coalescent,
based on the joint probabilities of lineages being in any possible configura-
tion. The derivation of this exact solution clarifies the assumptions required
to arrive at the previously described structured coalescent differential equa-
tions (Volz, 2012). Clarifying these assumptions allows us to develop a more
refined approximation to the structured coalescent. We then show how the
different approximations compare in terms of tree, parameter and root state
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inference under both biased and unbiased sampling conditions. Simulations
reveal that our new approximation outperforms previous approximations at
comparable computational cost. We then apply these different approxima-
tions to a previously described avian influenza virus dataset (Lu et al., 2014)
sampled from different regions of North America to show that the choice of
method influences the interpretation of data in practice.

2 Materials and Methods

2.1 Principle of the structured coalescent process

The structured coalescent (Takahata, 1988; Hudson, 1990; Notohara, 1990)
extends the standard coalescent by allowing lineages to occupy different
states. If we consider Li to be a random variable that denotes the state
of lineage i with state space {1, ...,m}, there are mn different possible con-
figurations K of how n lineages can be arranged (K = (L1 = l1, ..., Li =
li, ..., Ln = ln), li ∈ {1, ...,m}). These configurations can change over time by
adding and removing lineages or by lineages changing state. Throughout this
paper, we consider time going backwards from present to past, as typically
done under the coalescent.

A migration event along one lineage i from state a to state b changes the
configuration of lineages as follows:

(L1 = l1, ..., Li−1 = li−1, Li = a, Li+1 = li+1, ..., Ln = ln)

migration event from a to b7−→
(L1 = l1, ..., Li−1 = li−1, Li = b, Li+1 = li+1, ..., Ln = ln)

In figure 1, this corresponds to lineage 1 in blue changing to red.
Configurations can additionally change due to sampling. Sampling events

simply add lineages, such as L3 = red is added in figure 1. Typically, we con-
dition on the sampling events, but one can also introduce a rate for samples
being obtained.

Coalescent events remove lineages, changing the configuration as follows:

(L1 = l1, ..., Li−1 = li−1, Li = a, Li+1 = li+1, ...,

Lj−1 = lj−1, Lj = a, Lj+1 = lj+1, ..., Ln = ln)

coalescent event7−→
(L1 = l1, ..., Li−1 = li−1, Li = a, Li+1 = li+1, ...,

Lj−1 = lj−1, Lj = lj+1, ..., Ln−1 = ln)
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Figure 1: Events and configurations on an example tree. Here, we
illustrate the possible events and the configurations before and after each
event on a simple tree, with time going backwards from present to past.
The first two lineages are both in state blue, i.e. the configuration is (L1 =
blue, L2 = blue). After a lineage in state red is sampled, the configuration
changes, as given in the figure. A coalescent event in state blue then reduces
the number of lineages in state blue to 1. A migration event then causes
lineage L1 to change state from blue to red.
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The most recent coalescent event in figure 1 for example changes the config-
uration from (L1 = blue, L2 = blue, L3 = red) to (L1 = blue, L2 = red).

The rate at which coalescent events in state a happen can be calculated
from the pairwise coalescent rate λa in state a and the number of lineages
ka(K) in state a for a given configuration K. The pairwise coalescent rate
denotes the rate at which any two lineages in a state coalesce. For a given a
configuration K, the total rate C at which coalescent events between any two
lineages in the same state happen is:

C =
m∑
a=1

λa

(
ka(K)

2

)
, (1)

where
(
ka(K)

2

)
is the number of pairs of lineages in state a given configuration

K. Under the standard Wright-Fisher model, the pairwise coalescent rates,
λa, are the inverse of the effective population sizes Nea .

2.2 Calculating the likelihood for a tree under the
structured coalescent

Structured coalescent methods typically use MCMC to integrate over pos-
sible lineage state configurations along a tree (Beerli and Felsenstein, 2001;
Ewing et al., 2004; Vaughan et al., 2014). This is sometimes referred to as
sampling migration histories. Given a migration history, the likelihood for a
tree can be calculated under the structured coalescent with given migration
and coalescent rates. Here, we want to calculate the marginal likelihood for
a tree without sampling those migration histories, but by integrating over all
possible migration histories H. Formally, we seek to calculate the following
probability:

P (T |S,M,Λ) =

∫
H

P (T,H|S,M,Λ)dH,

with T being the tree, S the sampling states of the tips, M the set of migra-
tion rates and Λ the set of coalescent rates.

Let Pt(L1 = l1, ..., Li = li, ..., Ln = ln, T ) be the probability density that
the samples more recent than time t evolved according to the coalescent
history, i.e. the branching pattern, given by our tree T between the present
time 0 and time t and that the n lineages at time t, L1, . . . , Ln, are in states
l1, . . . , ln. In figure 1, this probability is the joint probability of a configuration
at time t with the lineages being either in red or blue, and the probability of
the branching pattern being as observed between time t and 0 (ignoring the
particular configurations in that time interval).
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We aim to calculate Pt for t = tmrca, with tmrca being the time of the
root of the tree T . At the root of the tree, summing over the probability of
the remaining lineage being in any state will yield the likelihood for the tree,
P (T |S,M,Λ) =

∑m
a=1 Ptmrca(L1 = a, T ).

In order to evaluate Pt at t = tmrca, we start at the time of the most recent
sample, at t = 0, and iteratively calculate Pt+∆t based on Pt. To calculate Pt,
we split the calculation into three parts: time intervals in the tree where no
coalescent or sampling events happen, sampling events, and coalescent events.
Below, we first consider the interval part of this calculation. Afterwards, we
calculate the contribution of coalescent and sampling events.

Interval contribution. For the interval part, we calculate Pt+∆t based on
Pt allowing for no event in time step ∆t (second line below), observing a
migration event leading to the configuration at t + ∆t (third line below),
or seeing more than one event (i.e. higher order terms which are of order
O((∆t)2) leading to the configuration at t+ ∆t (forth line below):

Pt+∆t(L1 = l1, ..., Li = li, ..., Ln = ln, T )

= Pt(L1 = l1, ..., Li = li, ..., Ln = ln, T )(1−M∆t− C∆t)

+
n∑
i=1

m∑
a=1

(
mali∆tPt(L1 = l1, ..., Li = a, ..., Ln = ln, T )

)
+O((∆t)2)

Here,M is the sum of migration rates and C the sum of coalescent rates for
configuration (L1 = l1, ..., Li = li, ..., Ln = ln). The rate mali denotes the rate
at which migration events from a to li happen. Now, when re-arranging and
letting ∆t→ 0, we obtain the differential equation,

dPt(L1 = l1, ..., Li = li, ..., Ln = ln, T )

dt
= −(M+ C)Pt(L1 = l1, ..., Li = li, ..., Ln = ln, T )

+
n∑
i=1

m∑
a=1

(
maliPt(L1 = l1, ..., Li = a, ..., Ln = ln, T )

)
.
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With explicitly writing M and C (using equation 1 for C), we obtain,

dPt(L1 = l1, ..., Li = li, ..., Ln = ln, T )

dt

=
n∑
i=1

m∑
a=1

(
maliPt(L1 = l1, ..., Li = a, ..., Ln = ln, T )

−mliaPt(L1 = l1, ..., Li = li, ..., Ln = ln, T )

)
−

m∑
a=1

λa

(
ka
2

)
Pt(L1 = l1, ..., Li = li, ..., Ln = ln, T )

(interval contribution) (2)

With the double summation on the right hand side considering the contribu-
tion of migration and the fourth line considering the contribution of coales-
cence. Further, ka =

∑n
i δLi,a where δ is the Kronecker delta with δLi,a = 1

for Li = a and 0 otherwise. Note that in the case of li = a, the two terms
in the migration part cancel each other out and the net migration is 0. This
interval contribution equation allows us to calculate Pt within intervals by
solving the differential equation.

It is important to note that this differential equation shows a direct link
between the coalescent process and the probability of a set of lineages being in
a configuration. For example, configurations that would favor high coalescent
rates among lineages would become less probable over intervals during which
no coalescent events occur in the tree.

Sampling event contribution. At every sampling event the state of the
sampled lineage is independent of all other lineages in the tree. We can there-
fore calculate the probability of any configuration at a samping event at time
t as follows:

Pt(L1 = l1, ..., Li = li, ..., Ln+1 = ln+1, T )

= Pt(L1 = l1, ..., Li = li, ..., Ln = ln, T )Pt(Ln+1 = ln+1, T )

(sampling event)

In scenarios where the sampling state is known to be say a, we have Pt(Ln+1 =
a, T ) = 1 and Pt(Ln+1 = b, T ) = 0 for b 6= a. In cases where the sampling
state is an inferable parameter or not exactly known, this probability can be
between 0 or 1.

Coalescent event contribution. Next, we have to calculate the probability
of the new configuration resulting from a coalescent event between lineages i
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and j in state a at time t. This probability can be expressed by the following
equation:

Pt(L1 = l1, ..., Li = a, ...., Ln−1 = ln, T )

= Pt(L1 = l1, ..., Li = a, ..., Lj = a, ...., Ln = ln, T )λa

(coalescent event)

Thus based on the three equations, (interval contribution), (sampling
event), (coalescent event), we can calculate the likelihood for a tree,
P (T |S,M,Λ). Below, we refer to this approach as the exact structured co-
alescent (ESCO). The above approach can also be deployed for coalescent
events between states rather than just within states (Volz, 2012). For sim-
plicity, only the case where coalescent events occur between lineages in the
same state is discussed here.

2.3 Approximations of the exact structured coalescent

The exact structured coalescent can be approximated by assuming that lin-
eages evolve independent of any configuration K, i.e.:

Pt(Lj = a|K, T )
LISCO

= Pt(Lj = a|T )

With this assumed independence, we show in the appendix that the in-
terval contribution differential equation can be written for each lineage i
independent of the other lineages:

dPt(Li = li, T )

dt
=

m∑
a=1

(
Pt(Li = a, T )mali − Pt(Li = li, T )mlia

)
− λili , (3)

with

λili = Pt(Li = li, T )
λli
2

n∑
j 6=i

Pt(Lj = li, T )∑m
a=1 Pt(Lj = a, T )

.

λili is the rate at which lineage i in state li coalesces with any other lineage
in the same state. In contrast to λli , λ

i
li

is a rate specific to lineage i, which
can be derived from equation 1 (see supplement for the derivation) Below,
we refer to this as the lineage independence approximation (LISCO).

Integrating the above differential equation over time is equivalent to cal-
culating the probability that the lineage i is in state li and did not coalesce,
assuming the lineage independence stated above.
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To calculate the probability of lineage i coalescing with lineage j in state
a, we proceed as for ESCO, and previously described in (Volz, 2012):

Pt(Li = a, T ) = Pt(Li = a, T )Pt(Lj = a, T )λa

At a sampling event, we simply add a lineage n+1 with associated probability
Pt(Ln+1 = ln+1, T ) analog to ESCO.

A further approximation can be obtained by ignoring the coalescence
term λili in equation 3, i.e. additionally assuming independence of the lineage
states from the coalescent process between events. Thus, we assume,

Pt(Lj = a|K, T )
SISCO

= Pt(Lj = a),

which directly leads,

dPt(Li = li)

dt
=

m∑
a=1

(
Pt(Li = a)mali − Pt(Li = li)mlia

)
. (4)

In order to obtain Pt(L, T ) at the root, we need to calculate Pt(T ) which
follows d

dt
Pt(T ) = −λ = −

∑m
a=1

∑n
i=1 λ

i
a where λ is the total coalescent

rate at time t. Using our eq. for λili together with the SISCO independence
assumption, we obtain ,

dPt(T )

dt
= −

m∑
a=1

λa
2

n∑
i=1

n∑
j 6=i

Pt(Li = a)Pt(Lj = a).

Now, the likelihood for the tree under the structured coalescent with the
SISCO approximation is, P (T |S,M,Λ) = Ptmrca(T )

∑m
a=1 Ptmrca(L1 = a) =

Ptmrca(T ).
We refer to this as the state independence approximation of the structured

coalescent (SISCO). The equations used by SISCO to calculate the state of
a lineage over time have been described previously in Volz (2012). While
these lineage state probabilities are independent of the coalescent history T
between events, they do depend on T at sampling and coalescent events.

To recap the assumptions that are needed to arrive at this equation, we
can write the following:

Pt(Lj = a|K, T )
LISCO

= Pt(Lj = a|T )
SISCO

= Pt(Lj = a)

The left hand side is the exact description of the structured coalescent with
the probability of lineage i depending on a configuration K and the coalescent
history described by the tree T . LISCO now assumes lineage states being
independent from configurations K and SISCO assumes lineage states being
independent of configurations K and the coalescent history T .
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2.4 Implementation

We implemented all three approximations in one common package for
BEAST2 (Bouckaert et al., 2014). ESCO and LISCO use a forth order Runge-
Kutta solver with fixed step size implemented in the Apache Commons Math
library (http://commons.apache.org) to solve equations 2 and 3. SISCO uses
matrix exponentiation to solve the lineage state probabilities over time (equa-
tion 4). All three structured coalescent methods use pairwise coalescent rates
and backwards in time migration rates as described above. In the Results sec-
tion, we present simulation analyses highlighting the quality of the different
structured coalescent approximations.

2.5 Software and Data availability

Simulations were performed using a backwards in time stochastic sim-
ulation algorithm of the structured coalescent process using MASTER
5.0.2 (Vaughan and Drummond, 2013) and BEAST 2.4.2 (Bouckaert et al.,
2014). Script generation and post-processing were performed in Matlab
R2015b. Plotting was done in R 3.2.3 using ggplot2 (Wickham, 2009). Tree
plotting and tree height analyses were done using ape 3.4 (Paradis et al.,
2004) and phytools 0.5-10 (Revell, 2012). Effective sample sizes for MCMC
runs were calculated using coda 0.18-1 (Plummer et al., 2006). All scripts for
performing the simulations and analyses presented in this paper as well as
the Java source code for the structured coalescent methods are available at
https://github.com/nicfel/The-Structured-Coalescent.git. Output files from
these analyses are available upon request from the authors.

2.6 Application to Avian Influenza Virus

We applied the different approximations of the structured coalescent to a
previously described data set of Avian Influenza Virus H7 hemaglutinen
(HA) sequences (Lu et al., 2014), sampled from the bird orders anseriformes,
charadriiformes, galliformes and passeriforms in Canada, Mexico and the
USA. We used previously aligned sequences from De Maio et al. (2015). The
sequences were analyzed in BEAST2 using an HKY+Γ4 site model. A strict
molecular clock model was assumed and the first two and third codon posi-
tions were allowed to have different mutation rates. LISCO and SISCO were
used as structured coalescent population priors. The dataset was split into 7
different states according to geographic regions in North America (see table
S1). Three parallel MCMC chains were run for 2∗107 iterations with different
initial migration and coalescent rates. After a burnin of 10%, the chains were
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combined and the probability of the root being in each state was assessed.
The combined chain had ESS values above 100 for any inferred probability
density or parameter.

3 Results

3.1 Tree height distributions under the structured co-
alescent and its approximations

The structured coalescent and its approximations describe different probabil-
ity distributions over trees. To see how these distributions compare, we per-
formed direct backwards-in-time simulations under the structured coalescent
using MASTER (Vaughan and Drummond, 2013), analogously to Vaughan
et al. (2014). These trees were compared to trees sampled under ESCO,
LISCO, SISCO, as well as BASTA (De Maio et al., 2015), a numerical approx-
imation of SISCO. Under these latter four models, trees were sampled from
their respective probability distributions using MCMC in BEAST2 (Bouck-
aert et al., 2014). Since it is difficult to directly compare distributions of
trees, we instead compared the distribution of tree heights.

For each of the five scenarios (direct, ESCO, LISCO, SISCO, BASTA), we
obtained 8000 trees. We used a model with three different states, sampling
one, two and three individuals from each state, respectively. Coalescent rates
were different in each state (λ1 = 1, λ2 = 2, λ3 = 4) and migration rates
were different between states (m1,2 = 0.01,m1,3 = 0.02,m2,1 = 0.001,m2,3 =
0.003,m3,1 = 0.01,m3,2 = 0.01).

Figure 2 shows the distribution of tree heights sampled using MCMC
and compares them to the distribution of tree heights obtained by directly
simulating trees under the structured coalescent. Of the different methods,
only the distribution of ESCO is consistent with direct simulation. Assuming
lineage independence (LISCO) leads to an underestimation of tree heights.
Further assuming lineage states to be independent of the coalescent process
(SISCO) results in a greater underestimation of tree heights. BASTA (De
Maio et al., 2015), being an approximation of SISCO, underestimates tree
heights less than SISCO. SISCO estimating shorter tree heights compared to
LISCO can be explained in the following way. Not taking into account how
the coalescent process influences lineage states leads to an overestimation of
the probability of two lineages being in the same state if no coalescent event
is observed by SISCO compared to LISCO. Overestimating the probability
of two lineages being in the same state then also leads to an overestimation
of the probability of them coalescing. This in turn results in shorter trees
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Figure 2: Comparison of MCMC sampled to simulated tree heights
using the different structured coalescent methods. The trees were
sampled using MCMC for 106 iterations, storing every 1000th step, after a
burnin of 20%.

since lineages are expected to coalesce at a faster rate.

3.2 Root state probabilities

The ancestral state or location of lineages back in time is often of interest for
biological questions. For example, in a pathogen phylogeny the root location
is informative of the geographic origin of an epidemic. Here we show on one
fixed tree how the exact structured coalescent compares in the inference of
the root state to its approximations. We additionally inferred the root state
using MultiTypeTree (Vaughan et al., 2014), which uses MCMC to sample
lineage states and does not rely on approximations, to obtain a reference root
state probability (Vaughan et al., 2014). We inferred the probability of the
root being in either state for different migration rates in one direction and
holding the rate in the other direction constant.
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Figure 3: Inferred location of the root for different migration rates
and structured coalescent approaches. The plot shows the probability
of the root being in the blue state (y-axis) depending on the migration rate
from blue to brown (x-axis), for the given tree and sampling states. The
migration rate from brown to blue was held constant at 0.01.
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The exact structured coalescent and the one assuming independence of
the lineage states (LISCO) agree well with the inferred posterior mean us-
ing MultiTypeTree(Figure 3). The inferred state probabilities using SISCO
on the other hand do not, showing that the assumption of independence be-
tween the lineage states and the coalescent process not only biases parameter
inference but state inference as well.

3.3 Estimation of migration rates

Often, the approximate methods are used to infer population and migration
parameters from trees. To show how the inference of the migration rates com-
pares to the true rate, we simulated 1000 trees under the structured coalescent
with symmetric migration rates from 10−5 to 1 and pairwise coalescent rates
of 2 using MASTER. Each tree consisted of 4 contemporaneously sampled
leafs from each of the two states. We fixed the coalescent rates to the truth
and assumed symmetric migration rates and then inferred the maximum like-
lihood estimate of the migration rate using the exact structured coalescent
(ESCO) and its approximations LISCO and SISCO.

The results are summarized in figure 4. When assuming dependence of
the lineage states on the coalescent process (LISCO), the migration rates
are slightly underestimated compared to ESCO. The dependence between
estimated and simulated migration rates is however linear. Assuming lineage
independence and independence of the lineage states and the coalescent pro-
cess (SISCO) leads to strong biases in estimates of the migration rates. The
lower the migration rates are compared to the coalescent rates, the greater
the underestimation of the migration rates becomes.

3.4 Estimation of rate asymmetries

In the previous section, we inferred the rate of migration giving the methods
the true coalescent rate and the information that the migration rates were
the same in both directions. In reality, these rates can greatly vary across
states or locations. Coalescent rates for example depend on transmission
rates, population sizes, etc. It is therefore important for methods to be able
to perform well in situations where rates are asymmetric. Previous work
showed that the ability to infer migration rate asymmetries greatly depends
on the method used (De Maio et al., 2015). Here we compare inferences of rate
asymmetries under LISCO and SISCO. Applying ESCO to the same trees
would not be feasible, since the computation time grows with the number
of states to the power of the number of lineages. We simulated a total of
2000 trees using MASTER with 100 tips from each of the two different states
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Figure 4: Maximum likelihood estimates of migration rates using
the exact structured coalescent and its approximations. Here we
compare simulated migration rates (x-axis) to the maximum likelihood
estimates of the migration rate (y-axis), estimated using the exact
structured coalescent ESCO and its approximations LISCO and SISCO.
The coalescent rates are fixed to the truth, and the migration rates are
assumed to be symmetric. The red line indicates where the true values
should lie.
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Figure 5: Inferred asymmetry of migration and coalescent rates.
Here we show the inferred mean coalescent (upper row) and migration
(lower row) rate ratios under different conditions. In the first column, the
coalescent rate ratios (x-axis) are varied while the migration rates ratios are
kept constant. In the second column, the migration rate ratios (x-axis) are
varied, while the coalescent rate ratios are kept constant. Both coalescent
rates and both migration rates are estimated. The red line indicates where
the estimates should lie.

sampled uniformly between times t=0 and t=10. Of these trees, 1000 were
simulated with pairwise coalescent rate ratios λ1

λ2
from 0.01 to 1, λ1+λ2=4

and migration rates in both direction equal to 1. The other 1000 trees were
simulated with migration rate ratios from m12

m21
from 0.01 to 1, m12+m21 =

2 and pairwise coalescent rates in both states equal to 2. We then inferred
the coalescent and migration rates under all scenarios (i.e. 4 parameters in
total), using exponential priors with the mean 2 for the coalescent rates and
mean 1 for the migration rates. We then ran three independent MCMC runs
with different initial values for each scenario. The 3 runs were then combined
to ensure convergence to the same optima.

Figure 5 shows the ratios of mean inferred coalescent and migration rates
using LISCO and SISCO. The coalescent rate ratios are accurate using either
structured coalescent approximation. When the coalescent rates are sym-
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metric, the migration rate asymmetries are underestimated for increasing
asymmetry. However, when taking into account the highest posterior density
(HPD) intervals of the estimates, most estimates contain the true rate ra-
tio (see figures S1 and S2). When the coalescent rate ratios are varied while
the migration rates are symmetric, both methods are biased. They overesti-
mate migration into the state with the smaller coalescent rate relative to the
migration rate in the other direction. SISCO however shows stronger biases
then LISCO under any coalescent rate ratio.

3.5 Sampling bias

Previous work showed that the approximate structured coalescent is able
to accurately infer migration rates even when sampling fractions are biased,
given samples are taken contemporaneously (De Maio et al., 2015). Here
we explore the effect of biased sampling fractions in the presence of serial
sampling. We compare the exact structured coalescent ESCO to its approx-
imations LISCO and SISCO. We simulated trees under the structured coa-
lescent with 10, 30 or 50 samples from one state and 90, 70 or 50 samples
from the other state, sampled uniformly between t=0 and t=25. We then
inferred all the migration and coalescent rates using the different structured
coalescent methods, using exponential priors with the means being the true
rates. Each migration and coalescent rates was inferred seperately between
states respectively within states, i.e. we inferred 4 parameters in total.

Figure 6 reveals that ESCO is able to unbiasedly infer the migration rates
in both directions, independent of sampling biases or migration rates. The
same applies to LISCO, except under very biased sampling and intermediate
migration rates. For SISCO however, biased sampling leads to an underesti-
mation of the backwards migration rate into the oversampled state and an
overestimation of the rates into the undersampled state for intermediate and
high migration rates. At low migration rates, both rates are underestimated.

3.6 Application to Avian Influenza Virus

To show how the inference of the origin of an epidemic varies with the method
used, we applied the two approximations of the structured coalescent (LISCO
and SISCO) to a previously described avian influenza dataset (Lu et al., 2014;
De Maio et al., 2015) to infer the geographic location of the root.

In figure 7 we show the inferred region of the root using LISCO and
SISCO. Despite the fact that almost all samples from the central US were
collected after 2009 and that samples from the East Coast and the North
West fall closer to the root, both methods place a high probability of the
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Figure 6: Inferred migration rates under different sampling
conditions. The plot shows the distribution of mean inferred migration
rates using ESCO, LISCO and SISCO. From the left, the first distribution
of a color (indicating the different methods) always shows the distribution
of mean inferred migration rates from state 1 to state 2. The second
distribution from the same color shows the rates from state 2 to 1. From
left to right the number of samples from state 1 and state 2 are changed,
while from top to bottom the true symmetric migration rates are going
from 1 to 0.01. The pairwise coalescent rates were 2 under all conditions.
The lines within the violin plots indicate the 25%, 50% and 75% quantiles.
The coalescent rates were 2 in both states and the migration rates ranged
from 0.01 to 1. The migration rates were always symmetric, i.e. the same in
both directions. Each simulation was repeated 100 times and each inference
was run with 3 parallel MCMC chains, each with different initial values. An
exponential distribution with the mean being the true rate was used on the
migration and coalescent rates.
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Figure 7: Inference of the root regions of AIV sampled from
different places in North America. A Maximum clade credebility tree
inferred from AIV sequences sampled in different regions of the USA,
Canada and Mexico using LISCO as a population prior. The node heights
represent the mean node heights. The tip color indicate the different
sampling regions shown in the legend. B Inferred root regions using LISCO
(top) and SISCO (bottom). The pie charts show the inferred probability of
the root being in either of the different states/regions by LISCO and
SISCO. C Violin plots of the inferred coalescent rates for the different
regions. The black plot distribution is the exponential prior with mean 1.
We used this prior for both coalescent and migration rates.
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root being in the central US, with over 80% probability under SISCO and
50% probability under LISCO. However, the East Coast and North West
are given more probability of being the root location under LISCO than
SISCO. We provide a possible explanation to why we observe differences in
the inferred root state in the Discussion below.

4 Discussion

The structured coalescent approach described here provides the first exact
numerical solution of the structured coalescent process (Takahata, 1988; Hud-
son, 1990; Notohara, 1990) without the need to sample migration histories,
as in previously described approaches (Beerli and Felsenstein, 2001; Ewing
et al., 2004; Vaughan et al., 2014). Additionally, we introduce a new approxi-
mation that outperforms a previously described approximation (Volz, 2012).
This new approximation facilitates a trade-off between speed and accuracy.
The increased speed compared to the exact solution originates from the as-
sumption of lineage independence. This assumption leads to better scaling
of the computational complexity with the number of states and lineages. We
show that the lineage independence assumption allows us to infer migration,
coalescent rates and root states well in most scenarios. Additionally assuming
independence of the lineages states from the coalescent process as introduced
in (Volz, 2012) however leads to major biases in parameter and root state
inference. These biases are especially pronounced in our simulations when
migration is slow compared to the coalescent rate. This observation can be
explained in the following way: The lower migration rates are compared to
coalescent rates, the stronger the influence of the coalescent process on the
configuration of lineages across states. The assumption of independence of
the lineage states from the coalescent process does not allow for the incorpo-
ration of this information into the calculation of lineage state probabilities
though.

Next, we showed how the approximations of the structured coalescent
perform in inferring asymmetric coalescent and migration rates. While coa-
lescent rates are inferred accurately, inference of migration rate ratios is bi-
ased when coalescent rates are asymmetric. These biased estimates are more
pronounced under SISCO than LISCO. We also showed that under biased
sampling, inferences of migration rates are strongly biased under SISCO, but
not LISCO.

Both biases can be understood in the following way. A lineage may have
a higher probability of coalescing in one state than another either because
the pairwise coalescent rate in one state is higher (e.g. due to a smaller ef-
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fective population size) or because more lineages reside in one state than
another (e.g. because of biased sampling). Taking the influence of the coa-
lescent process on lineage states into account, as done under LISCO, reduces
the probability of a lineage occupying a state with a high coalescent rate if no
coalescent events occur. This reduction is proportional to the probability of
that lineage in that state coalescing. In other words, LISCO redistributes via
equation 3 the probability mass assigned to each state to reflect a lineage’s
coalescent history, including the observation that a lineage may have not yet
coalesced. As the differential equation for SISCO is missing the coalescent
rate (equation 4), SISCO does not redistribute probability mass to reflect
the probability that a lineage has not yet coalesced. In order to reduce the
probability of lineages coalescing in a state with high rates of coalescence, it
overestimates the migration rate out of such states. This overestimation of
migration rates out of a state is observable when having asymmetric coales-
cent rates due to either a higher pairwise coalescent rate within a state or
having more lineages in a given state due to biased sampling. Either way, the
migration rate out of the state with higher coalescent rate is overestimated
and underestimated in the other direction.

Lastly, we applied the different approximations of the structured coales-
cent to avian influenza virus HA sequences sampled from different orders of
birds in North America. We found that the inferred region of the root varies
with the method used. SISCO places high confidence in the center of the
USA being the root state. LISCO also infers the center to be the most likely
root state, however it additionally infers the East Coast, the North West and
East to be possible root states.

Asymmetric coalescent rates may offer one explanation why SISCO places
more probability on the center being the root location than LISCO and why
it excludes all other states from being possible root states. We have shown
that asymmetric coalescent rates can bias the inference of migration rates.
Asymmetric coalescent rates lead to an overestimation of the migration rate
from a state with fast coalescence into a state with slow coalescence and an
underestimation of the migration rates in the other direction (recall that we
consider backwards in time rates). Our simulations revealed that such biases
are much more pronounced in SISCO than in LISCO. Because the coalescent
rate in the center is inferred to be low, SISCO puts much more weight on
it being the source than LISCO. The opposite appears to occur for the East
Coast, which is inferred to have a very high rate of coalescence. LISCO infers
the East Coast to be the second most likely source region while it is almost
excluded using SISCO.

Although we used the AIV analysis to illustrate how inferences obtained
from LISCO and SISCO can differ, the results presented here should be
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interpreted with caution with regards to any biological implications as we
ignored population structure arising between different avian host species.
We additionally assumed coalescent and migration rates to be constant over
time, potentially further biasing the inference of the root state.

While population dynamics such as changing transmission (i.e. coales-
cent) and migration rates through time can greatly influence the shape of
a phylogeny, we ignored such dynamics in this study. However, compared
to mugration type methods (Lemey et al., 2009), the structured coalescent
approximation introduced here can be extended in a conceptually straightfor-
ward way to allow for dynamic populations (Volz et al., 2009; Volz, 2012). The
improved approximation to the structured coalescent introduced here should
therefore allow for more accurate quantification of pathogen movement in
structured populations with complex population dynamics while still being
computationally efficient enough to be applied to large datasets.
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