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Non-linear tradeoffs allow the cooperation game to evolve from 
Prisoner’s Dilemma to Snow Drift 
 

Lin Chao1,*, Santiago F. Elena2,3,4 

The existence of cooperation, or the production of 
public goods, is an evolutionary problem.  
Cooperation is not favored because the Prisoner’s 
Dilemma (PD) game drives cooperators to 
extinction.  We have re-analyzed this problem by 
using RNA viruses to motivate a model for the 
evolution of cooperation.  Gene products are the 
public goods and group size is the number of 
virions co-infecting the same host cell.  Our results 
show that if the tradeoff between replication and 
production of gene products is linear, PD is 
observed.  However, if the tradeoff is nonlinear, the 
viruses evolve into separate lineages of ultra-
defectors and ultra-cooperators as group size is 
increased.  The nonlinearity was justified by the 
existence of real viral ultra-defectors, known as 
defective interfering (DI) particles, which gain a 
nonlinear advantage by being smaller.  The 
evolution of ultra-defectors and ultra-cooperators 
creates the Snow Drift game, which promotes high-
level production of public goods. 
 
Keywords: Cooperation; Defective interfering 
particles; Game theory; Prisoner’s Dilemma; Snow 
Drift; RNA viruses 
 
1. Introduction 
RNA viruses are ideal organisms for modeling the 
evolution of cooperation.  Besides providing some of 
the more accurate information on the dynamics of the 
process, the molecular mechanisms that drive it have 
been elucidated to great detail.  They are as simple as 
possible, but not simpler of a general case.  All viruses 
are parasites that need to infect a host cell to 
reproduce.  If a single virion infects a cell, kin 
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selection is the agent of evolution because the progeny 
viruses are clonal.  Kin selection may be uniquely 
important, if not actively enforced, in many RNA 
viruses because the first one or few viruses to infect a 
cell may exclude the entry of others, a phenomenon 
known as superinfection exclusion [1-3].  However, if 
a larger number of viruses are able to co-infect the 
same cell, groups of genetically unrelated viruses are 
created and opportunities for the evolution of 
cooperation and defection arise.  The interaction 
between unrelated viruses in a mixed co-infection 
group creates payoff matrices at the fitness level that 
correspond to many standard game theory outcomes 
such as Prisoner’s dilemma (PD) and Snow Drift (SD; 
also known as the Hawk-Dove or the Chicken games) 
[4-9].  By increasing the group size of viruses co-
infecting the same host cell, it has been possible to 
experimentally demonstrate that RNA viruses can 
evolve to be trapped by PD [10], yet escaping from this 
game is still possible if kin selection is restored [11]. 

A particularly appealing example of the interaction 
between cooperators and defectors in the Virosphere 
are replicator-defective mutants known as defective 
interfering (DI) particles and the wildtype viruses from 
which they evolve and depend for their replication and 
transmission [12-14].  Almost all viruses produce DIs, 
deleted forms of the genome of the wildtype virus, 
during replication.  DIs are encapsidated into virus 
particles produced by a wildtype coinfecting virus and 
can be transmitted in a manner identical to the 
wildtype virus.  Obviously, since DIs need the 
assistance of the wildtype virus to replicate and 
encapsidate, they can only persist in the long term at 
high multiplicity of infections, when more than one 
particle enters into susceptible cells [14,15].  Within 
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coinfected cells, DI and wildtype virus genomes 
compete for resources, including binding to the viral 
replicase and packaging proteins.  This competition 
results in a reduced accumulation of the wildtype 
virus, a process known as interference [13,16-25].  The 
interest on DIs has been revitalized in recent years 
mainly for three reasons: (i) they may be involved in 
triggering antiviral immunity during acute viral 
replication [26], (ii) they negatively impact the 
biotechnological production of vaccines and viral 
vectors [27] and (iii) their possible application as 
transmissible antivirals to control viral infections at 
the host-population level [28], the so-called 
therapeutic interfering particles. 

One of the best studied DI-virus systems was the 
molecular control of replication and transcription in 
Vesicular stomatitis virus (VSV; genus Rhabdovirus, 
family Rhabdoviridae) (figure 1A), which we have 
taken as our idealized virus to model.  This system 
offers a near perfect mechanism for modeling the 
tradeoff between defection and producing public 
goods [13].  The molecular control in VSV DI particles 
was also key for evaluating the non-linearity of the 
tradeoff in ultra-defectors (figure 1B). 
 
2. Results and Discussion 
Our model accommodates a viral population of size N 
that is randomly divided into N/m groups of size m ≥ 
1, where each group represents viruses that co-infect 
the same host cell.  For virologists, m would 
correspond to multiplicity of infection (MOI) [29-31].  
Once inside a cell, a virus must tradeoff between 
replicating its own genome and producing gene 
products.  This aspect of the tradeoff was assumed to 
be linear because replication and transcription in VSV 
compete for the same initiation site (figure 1A).  Thus, 
let i and 1  - i represent the effort an individual virus 
allocates to replicating its own genome and making 
public goods (e.g., proteins), respectively (with i Î [0, 
1]).  We assumed additionally that an individual virus 
n in a group of size m has access to 1/m of the host’s 
resources and therefore is able to make only in/m 
public goods and (1 - in)/m genomes, where the 
subscript n is here and hereafter used to denote the 
effort by of the nth virus and n = 1, 2, 3, …, m.  This 
assumption is justified because many viral DIs, as per 
their name, interfere by reducing the total yield of 
wildtype and defective genomes produced by a co-
infection group [16-25].  The reduction has also been 
shown to be linear, e.g. it is i = ½ when co-infections 
groups are 50% wildtype and 50% DI viruses [17].  
After genomes and gene products are assembled into 
virions, a progeny of b number of viruses is released 
and the model determines the final fitness of an 
individual virus as 

𝑊" = 𝑏
𝑖" 𝑚
𝑔 𝑚

 

(1) 
where 𝑔 𝑚 = 	𝑖" 𝑚)

"*+  is the total number of 
genomes produced by the group of size m.  To 
determine the value of b, we note that while its value 
could be equal to the total amount of public goods 
produced by the group, namely ℎ 𝑚 =

	 1 − 𝑖" 	 𝑚)
"*+ , it could be less than h(m) if 

insufficient genomes are made.  If both g(m) and h(m) 
are scaled in molar units required to assemble a viable 
virus, then b = min[g(m), h(m)].  If g(m) > h(m), the 
excess genomes are wasted and h(m) caps the number 
of viruses produced.  Vice versa if g(m) < h(m) and 
then genomes are the limiting factor and public goods 
are produced in excess.  Equation (1) is formally 
equivalent to the fitness equations developed by Frank 
[7,8] to study the evolution of parasites and protocells. 

We modeled evolution by Monte Carlo simulations 
(see section 4a below) of a parent population of size N 
with known or assigned values of i and assembling 
N/m random groups.  By using equation (1), the fitness 
of each virus was determined.  A progeny population 
was then created by sampling N viruses from the 
parent population.  Selection was imposed because the 
fitness values were used to weight the sampling 
process.  The progeny was then re-assembled into N/m 
groups to create the parent population for the next 
generation.  By using equation (1) and the weighted 
sampling, the process can be repeated to create new 
progeny and parent populations for as many 
generations as needed.  If desired, the values of i were 
mutated before selection, in which case changes in the 
values of i over time in a population could be 
monitored to track the evolutionary dynamics of 
cooperation and to search for steady state outcomes. 
 
(a) Evolution is trapped by PD with a linear 
tradeoff 
Used as presented above, equation (1) represents a 
linear tradeoff between replication i and transcription 
1 – i.  In a later section, non-linear tradeoffs are 
introduced by changing relationship of replication and 
transcription.  A first test was to model evolution with 
m = 1, for which an evolved optimum ik = ½ was 
anticipated, and observed, because each group is 
clonal and kin selection between groups favors viruses 
that make equi-molar amounts of genomes and gene 
products (figure 2A).  Thus, we used ik = ½ as the 
evolutionary starting point and examined the effect of 
increasing m.  In all cases i evolved dynamically to 
higher steady state values as m was increased (figure 
2B).  Because all of the populations remained 
monomorphic, we were able to determine analytically 
the steady state values by solving for the i that 
maximized individual fitness in a group of mi identical 
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viruses (see section 4b below for the analytical 
derivation).  The solution 

𝑖/ = 1 −
1
𝑚

 
(2) 

matched closely all of the steady state values evolved 
with the model (figure 2C).  It is also an evolutionarily 
stable strategy (ESS) because mutants with either 
higher or lower values of i have a lower fitness and 
cannot invade.  Indeed, noticing that 1/m is equivalent 
to a coefficient of relatedness between viruses within 
a host, this result is formally identical to the ESS 
condition previously derived by Frank [7,8].  Note that 
if m = 2, ia = ik = ½ and selection for cooperation is as 
optimal as kin selection.  However, evolution was 
trapped by PD for m ≥ 3.  By constructing the 
individual fitness of ik and ia viruses in pure and mixed 
groups of size m ≥ 3, we found that the resulting fitness 
values conformed to a PD payoff matrix (figures 2D-
F).  Thus, our first model with linear tradeoffs 
remained trapped by the PD domain.  Replication 
effort i evolved to high values, while the production of 
public goods 1 – i evolved to low levels.  Only clonal 
or kin selection (m = 1) was able to select for high 
levels of cooperation with 1 – i = ½. 
 
(b) A non-linear fitness tradeoff allows for an 
evolutionary transition from PD to SD 
Our examination of a non-linear tradeoff was 
motivated by the molecular biology of VSV DI 
particles described above [13].  Although a linear 
tradeoff was justified for replication and transcription 
(figure 1A), DI particles are more than just defectors 
with i = 1 and producing no public goods (1 – i = 0).  
Once a defector evolves to produce zero public goods, 
it can delete the coding sequences and replace its 
replication and transcription site with a replication-
only site (figure 1B).  These changes introduce a non-
linear tradeoff because such an ultra-defector is able to 
make i = 1 + e copies of its genome, where e is the 
amount gained by having to replicate a smaller 
genome and not having to spend time on transcription 
(figure 1C).  The value of e is a constant representing 
a cap to the non-linear gain.  Thus, i is now able to 
evolve in the interval i Î [0, 1 + e] through mutations.  
Because it is now also possible that i > 1, the new 
constraint 1 – i ≥ 0 was added to the model to prevent 
public goods from being produced at a negative rate.  
By incorporating this non-linearity in the fitness 
tradeoff, we have expanded the scope of models 
previously proposed by Frank [7,8]. 

Equation (1) can still be used with the non-linear 
modifications, although fitness Wn is now determined 
by two discrete and discontinuous functions.  We 
considered modeling the non-linearity with a single 
continuous concave up function (e.g., exponential or 

parabolic), but chose to our formulation because we 
deemed it to be more accurate.  When a virus tradeoffs 
by allocating more effort to either transcription or 
replication, a linear tradeoff is realistic.  However, 
once tradeoff evolves to allocate i = 1 into replication, 
the virus is free to delete coding regions.  As more and 
more regions are deleted, the replication fitness of the 
virus increases but its transcription effort remains 
unchanged because it is already equal to zero.  Thus, 
the fitness tradeoff of a real virus is actually 
determined by two discrete molecular mechanisms, 
initially one that affects transcription and later one that 
does not.  A single continuous function would force a 
tradeoff when there is none, or assume none when 
there is one. 

The addition of a non-linear tradeoff and i > 1, 
altered qualitatively the evolutionary dynamics of our 
model (figure 3A).  As an illustrative example, letting 
m = 8 and e = ½, we started with a monomorphic 
population with i = ½ and allowed evolution to 
proceed with mutations.  The population quickly 
evolved to a steady state of ia (equation (2)) as we had 
reported for a linear model and PD (cf. figure 2B; m = 
8).  However, as mutations accumulated, the 
population bifurcated into a lineage of ultra-defectors 
and one of ultra-cooperators.  In the ultra-defectors, i 
evolved upwards until it equaled the cap of 1 + e, while 
in the ultra-cooperators it evolved downwards to the 
clonal selected optimum of ik = ½.  Note that the 
evolution of ultra-cooperators occurs only after the 
ultra-defectors begin to increase in frequency.  Thus, a 
mutant ultra-defector must have a minimum value of i 
in order to invade the steady state ia population.  By 
using equation (1) to estimate the fitness of the DI 
mutant in the ia population, and assuming that the 
mutant is at a low frequency, the minimum i valued 
needed by the ultra-defector was found to be 

𝑖0 ≡ 1 + 𝑒 = 1 +
1

𝑚 𝑚 − 2
. 

(3) 
(see section 4c below for the analytical derivation).  
The bifurcation and the evolution of the ultra-defector 
also allow the population finally to escape PD and 
transition into SD.  By determining the individual 
fitness of ik and id viruses in pure and mixed groups of 
size m ≥ 3, there are again only two competitors and 
the resulting fitness values can be represented by a 2´2 
fitness payoff matrix.  The results conformed to the SD 
payoff matrix (figure 3B-C). 

Equations (2) and (3) can be used to partition 
parameter space and constructing a landscape for the 
evolution of cooperation.  As the model has only two 
parameters, let 1 + e and m be the y and x axes, in 
which case equation (3) delineates the boundary 
between PD and SD (figure 4A).  Thus, for all values 
of m ≥ 3, PD evolves if 1 + e < id, and SD evolves if 1 
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+ e > id.  For m values as low as 1 or 2, clonal selection 
is sufficiently strong and the optimum ik = ½ evolves.  
Note that when e = 0, the model reverts to the linear 
form and the outcome is PD as described by equation 
(2).  By plotting the amount of public goods produced 
as the response variable on the z axis, a landscape for 
the evolved level of cooperation as a function of 1 + e 
and m is generated (figure 4B).  Public goods are 
produced maximally by clonal selection, but nearly 
equivalent amounts are produced by SD.  Moreover, 
as 1 + e and m are increased in SD, ultra-cooperators 
are selected to make even more public goods to make 
up for consumption of the progressively stronger and 
more numerous ultra-defectors.  Indeed, it can be 
shown mathematically that as 1 + e increases, ia tends 
to ik = ½ (see section 4e below).  However, because the 
frequency of individuals producing public goods is not 
equal (figure 4C), we also examined the landscape for 
the mean production of public goods as a response 
variable (figure 4D).  Because the frequency is low for 
high values of 1 + e and m, the highest mean 
production, outside of clonal selection regime, is 
situated centrally, in the SD region, and just beyond 
the id boundary. 
 
3. Concluding remarks 
The evolution of cooperation remains a problem partly 
because it has been easier to identify the barriers to the 
process rather than solutions.  PD presents an obstacle, 
but it is not clear that escaping PD promotes 
cooperation.  The cooperator could evolve to resist 
better the defector, but that only makes the goods less 
public, as did reciprocation and kin selection.  SD was 
recognized as promoting more cooperation [9], but we 
know little about its evolutionary maintenance, origin, 
and link to PD and kin or clonal selection.  Our model 
resolves many of these issues by mapping the 
evolution of cooperation onto two parameters, group 
size and the magnitude of the non-linear gain to an 
ultra-defector.  On this parametric space, increasing 
group size alone is sufficient for driving the evolution 
of cooperation from clonal (kin) selection to PD and to 
SD.  We show that the transition to SD results from the 
splitting of the population into lineages of ultra-
defectors and ultra-cooperators.  However, the split is 
triggered by the initial evolution of more defection, 
rather than more cooperation.  If the tradeoff between 
defection and cooperation is linear, PD traps the 
population because the evolution of more defection, 
and the split, is prevented.  With a non-linear tradeoff, 
more defection and the ultra-defector are able to 
evolve.  Once the ultra-defector increases in 
frequency, the cooperator is selected to make even 
more public goods and to evolve into the ultra-
cooperator of SD.  The best ultra-cooperators make 
nearly as much public goods as clonally-selected 

individuals.  The numerical analysis of equation (10) 
supports this latter conclusion: for any given value of 
m one can explore which values should take i to hold 
the equilibrium frequency of wildtypes, 𝑝, constant if 
the DIs take increasingly large values of 1 + e.  It turns 
out that at the limit when 1 + e ® ¥, then i ® ½.  This 
means that the optimal solution for a wildtype virus in 
presence of an ultra-defector DI would be to become 
itself and ultra-cooperator and invest 50% of its 
resources in the production of common goods. 

The effect of increasing group size on the evolution 
of cooperation has been observed in laboratory studies 
with RNA viruses.  The first transition from clonal 
selection to PD was seen in the bacteriophage j6, 
where cheaters spontaneously arose when group size 
was increased to m = 5 [10,11,32].  This was a 
reversible process, as cheaters were outcompeted 
when a regime of clonal selection (m << 1) was 
imposed [11].  The second transition, from PD to SD, 
has been documented in many RNA viruses by the 
evolution of DIs in dense cultures when large viral 
groups are able to co-infect the same host cell [33-37].  
Subsequent evolution in some of these dense cultures 
often result in population cycles during which 
wildtype viruses become resistant to the effects of the 
DIs [18,19,38-41] and the DIs evolve in turn the ability 
to overcome the resistance [15,16,39-41].  Such cycles 
are driven by the evolution of new wildtype RNA 
replicases that no longer recognize the replication 
signals of the DIs, followed by the co-evolution of DIs 
with altered signals that are recognized [39].  Because 
the aim of our model was to analyze the evolutionary 
dynamics of cooperation between a given pair of 
wildtype and DI, such co-evolutionary races for novel 
replicases were not considered.  In other words, our 
model focuses on the period of stasis between cycles.  
Periods of stasis can be long, and evolutionarily 
important, because the start of a new cycle requires a 
double mutation in the wildtype virus.  One mutation 
must change the replicase to provide resistance, but a 
second one is needed to change the wildtype 
replication signal so that it recognizes the mutated 
replicase.  Double mutants will be rare and less likely 
to appear if population size is small.  While laboratory 
populations can be large, wild populations may be 
much smaller because of bottlenecks or other 
ecological stresses. 

Although our model was motivated by viral 
biology, there are clear overlaps between our approach 
and previous studies.  At the mathematical and the 
theoretical level, viruses, prebiotic replicons, and 
humans can sometimes be modeled equivalently 
[4,5,7-9].  SD was recognized as favoring the 
evolution of higher cooperation levels [8], but because 
the games had been studied as separate games played 
in isolation, there was no evolutionary connection 
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between them.  For a population to evolve more 
cooperation by transitioning from PD to SD, the 
payoff matrix had to be changed.  However, the rules 
controlling the matrices and their changes were not 
apparent, or at least assumed to be too complex to be 
derived from known ecological and evolutionary 
processes.  Our finding that varying group size alone, 
so long as the tradeoffs between replication and the 
production of public goods is non-linear, controls the 
transition between PD and SD, and greatly simplifies 
the conditions required for the evolution of 
cooperation.  Our payoff matrices were able to evolve 
freely, and the ones emerging as ESS conformed to PD 
and SD as group size changed.  Because all organisms 
experience a group size, the results of our model show 
that the evolution of cooperation may not need much 
more than changing one ecological parameter.  We 
hope that our work will stimulate additional work on 
RNA viruses or other organisms that produce public 
goods as model systems to explore social evolution. 
 
4. Materials and methods 
 
(a) Monte Carlo model for simulating of evolution 
in viral populations 
A population of size N viruses was constructed by 
assigning a starting value of i to each virus.  The 
assigned value could be randomly or deliberately 
chosen to explore different starting scenarios.  The 
population was then divided into N/m groups of size m 
and the fitness of individual viruses was determined 
with equation (1).  To create the population for the 
next generation, the current population was sampled N 
times with replacement to ensure a constant population 
size.  The sampling was biased by using the 
normalized fitness values of each virus as their 
probability of being chosen.  Fitness was determined 
using equation (1) with the appropriate linear and non-
linear values of i and 1 – i.  This sampling bias 
introduces natural selection and evolution could thus 
be modeled and followed over generations.  Whenever 
desired, mutations were introduced by changing 
individual values of i with a probability of 0 < u < 1.  
If mutations were not desired, a value of u = 0 was 
used instead.  If a virus was to be mutated, its i value 
was changed by an amount randomly drawn from a 
Gaussian distribution with a mean zero and a specified 
standard deviation, s.  All simulations were coded in 
R version 3.2.4 computer language. 
 
(b) Analytical solution of equation (2) 
Let j and i be the replication effort of a mutant and 
wildtype virus, and j > i.  The fitness of a wildtype 
virus in a population all formed by wildtype viruses 
can be computed using equation (1).  In such case the 
burst size would be 𝑏89 = (1 − 𝑖) 𝑚 =)

"*+ (1 − 𝑖) 

and the total replication effort 𝑔89 = 𝑖 𝑚 =)
"*+ 𝑖 

because the coinfection group has a uniform 
composition.  Thus, 

𝑊89 =
1 − 𝑖
𝑚

. 
(4) 

Now let’s imagine that a defector mutant that invests j 
> i into replication appears in a population of m - 1 
wildtype viruses.  The fitness of this mutant can be 
calculated using equation (1) but now considering that 
𝑏0<= = 𝑚 − 1 1 − 𝑖 + 1 − 𝑗 𝑚 and 𝑔0<= =
𝑚 − 1 𝑖 + 𝑗 𝑚: 

𝑊0<= =
𝑗 𝑚 − 1 1 − 𝑖 + 1 − 𝑗

𝑚 𝑚 − 1 𝑖 + 𝑗
. 

(5) 
Coexistence of both genotypes would occur if, and 

only if, Wwt = Wdef.  If Wwt < Wdef, the defector mutant 
will invade, whereas the opposite condition means that 
invasion is not possible.  Combining equations (4) and 
(5) and simplifying, we found that there are two 
different values of j that satisfy the coexistence 
condition: 𝑗 = 𝑖 and 𝑗 = 1 − 𝑖 𝑚 − 1 .  These two 
lines correspond to pairs of values (i, j) in which 
defector mutant and wildtype have equal fitness.  The 
intersection of these two fitness isoclines results in the 
equilibrium condition shown in equation (2): 

𝑖/ ≡ 𝚤 = 1 −
1
𝑚

 
The linear stability of this fixed point was evaluated 
by constructing the Jacobian matrix of the system 
formed by equations (4) and (5), which is given by 

𝐽 𝑖, 𝑗 =

𝜕𝑊89

𝜕𝑖
𝜕𝑊89

𝜕𝑗
𝜕𝑊0<=

𝜕𝑖
𝜕𝑊0<=

𝜕𝑗

=
−
1
𝑚

𝑗 1 − 𝑚
𝑗 + 𝑖 𝑚 − 1 B

0
𝑖 𝑚 − 1

𝑗 + 𝑖 𝑚 − 1 B −
1
𝑚

. 

The two eigenvalues for the fix point (𝚤, 𝚥) are 𝜆+ =
1 𝑚F and 𝜆B = −1 𝑚.  Since 𝜆+ > 0 and 𝜆B < 0 " 
m > 0, the fix point takes the form of a saddle and is 
thus instable. 
 
(c) Analytical solution of equation (3) 
The solution is obtained by exploring the conditions in 
which a DI mutant will invade a population at the 
equilibrium specified by equation (2).  Substituting i 
by the equilibrium condition given by equation (2) into 
equations (4) and (5) and recalling that DIs do not 
contribute to the production of common goods and 
have an investment in reproductive effort 1 + e > i, we 
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obtain after some algebraic work the following fitness 
equations for wildtype and DI, respectively: 

𝑊89 =
1
𝑚B 

(6) 
and 

𝑊IJ =
1 + 𝑒 𝑚 − 1

𝑚 𝑚 − 1 B + 𝑚 1 + 𝑒
. 

(7) 
By making Wwt = WDI and solving for 1 + e, we found 
the 1 + e value at which wildtype and DI viruses will 
coexist (equation (3)): 

𝑖0 ≡ 1 + 𝑒 = 1 +
1

𝑚 𝑚 − 2
. 

 
(d) Constructing payoff matrixes for PD and SD 
Payoff values in a game theory matrix traditionally 
represent interactions between two individuals rather 
than between many in a large group.  Because our 
models consider groups of size m that can be much 
larger than two, we adapted the payoff matrix 𝑅 𝑇

𝑆 𝑃  
to represent individual fitness values in populations 
with only cooperators, only defectors, one cooperator 
invading a large population of defectors, and one 
defector invading a large population of cooperators.  
The fitness of the invading cooperator, which equals 
the value the virus has when it is alone in a group with 
m – 1 defectors, represents S.  The fitness of the 
invading defector represents T, or the value when it is 
alone in a group of m – 1 cooperators.  The fitness of 
a cooperator in a population with only cooperators 
represents R, or the value when it is in a group with m 
cooperators.  The fitness of a defector in a population 
with only defectors represents P, or the value when it 
is in a group with m defectors.  A payoff matrix 
adapted to larger groups retains the predictive 
properties for an ESS analysis.  If T > R, a defector is 
able to invade a population of cooperators.  If S > P, a 
cooperator is able to invade a population of defectors, 
which is one of the requirements for SD.  All fitness 
values were based on equation (1) and using the 
appropriate linear and non-linear values of i and 1 – i. 

Although we can have potentially have m players 
in a group, the interaction can be reduced to a two-
player game for the construction of a 2´2 playoff 
matrix.  In an ESS analysis, the resident population 
(even if it is polymorphic) is always held constant, in 
which case the two players are the resident(s) and the 
invader. 
 
(e) Equilibrium frequencies of DI and wildtype 
viruses in SD 
With SD, the tradeoff is necessarily non-linear and 
both DIs and wildtype viruses are present in the 
population.  We calculate here the equilibrium 

frequencies of DI and wildtype viruses in the 
population for a given set of values for group size m, 
DI replication fitness 1 + e, and wildtype replication 
fitness i. 

Let p and 1 – p represent, respectively, the 
frequency of wildtype and DI viruses in the 
population.  Assuming that the viruses are distributed 
by a binomial process into groups of size m, the 
probability of getting x wildtypes is 𝑃 𝑥 =
𝑚
𝑥 𝑝P 1 − 𝑝 )QP.  The mean individual fitness of 

the viruses in the population is then given by 

𝑊89 = 𝑃 𝑥 𝑏 𝑥 𝑔 𝑥
)

P*R

𝑥𝑃 𝑥
)

P*R

 

(8) 
and 

𝑊IJ = 𝑃 𝑥 𝑏 𝑥 1 − 𝑔 𝑥
)

P*R

𝑚 − 𝑥 𝑃 𝑥
)

P*R

, 

(9) 
where 𝑏 𝑥 = 𝑥 1 − 𝑖 𝑚 is the total production of 
common goods by a group of size m that contains x 
wildtypes, and 𝑔 𝑥 = 𝑥𝑖 𝑥𝑖 + 𝑚 − 𝑥 1 + 𝑒  is 
the relative individual replication effort by the 
wildtype virus in the same group.  Because DIs do not 
make public goods, they do not contribute but have 
access to b(x).  On the other hand, because DIs 
replicate, their relative individual replication rate is 1 
– g(x). 

Noting that the denominators of equations (8) and 
(9) are the expectations of the binomial distribution mp 
and m(1 – p), the frequency of DIs and wildtypes will 
be unchanging and at their equilibria 𝑝 and 1 − 𝑝 
when Wwt = WDI, or 

1
𝑚𝑝

𝑃 𝑥 𝑏 𝑥 𝑔 𝑥
)

P*R

=
1

𝑚 1 − 𝑝
𝑃 𝑥 𝑏 𝑥 1 − 𝑔 𝑥

)

P*R

. 

After replacing P(x), b(x) and g(x) by their actual 
values, we obtain the following expression: 

𝑝
1 − 𝑝

= 

𝑖
1 + 𝑒

𝑚
𝑥 𝑝P 1 − 𝑝 )QP𝑥B

𝑥𝑖 + 𝑚 − 𝑥 1 + 𝑒

)

P*R

𝑚
𝑥 𝑝P 1 − 𝑝 )QP 𝑚 − 𝑥 𝑥
𝑥𝑖 + 𝑚 − 𝑥 1 + 𝑒

)

P*R

. 

(10) 
Equation (10) can be solved analytically for any 

value of m ³ 2 to obtain the equilibrium frequency of 
the cooperator virus as a function of i and e, namely 
𝑝 𝑖, 𝑒 𝑚 .  For instance, in the case m = 3, the 
equilibrium frequency for the cooperator virus is given 
by 𝑝 𝑖, 𝑒 3 = 𝑖 1 + 𝑒 + 2𝑖 2 1 + 𝑒 1 + 𝑒 − 𝑖 , 
which takes positive values for any i < 1 + e value.  
Linear stability analysis shows that the two 
eigenvalues of the Jacobian matrix 𝐽 𝑖, 𝑒 =
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𝜕𝑊89 𝜕𝑖 𝜕𝑊89 𝜕𝑒
𝜕𝑊IJ 𝜕𝑖 𝜕𝑊IJ 𝜕𝑒

 evaluated at the fix point 

𝑝 𝑖, 𝑒 3  are 𝜆+ < 0 and 𝜆B > 0, as corresponds to a 
unstable saddle fix point.  For m ³ 4, 𝑝 𝑖, 𝑒 𝑚  is a 
complex polynomic function of i and e, with at least 
one root in the interval [0, 1] that in every case 
corresponds to an unstable saddle point.  Equation (10) 
can also be solved numerically for every value of m to 
find the frequency p of wildtypes in the population as 
a function of values of i and e. 
 
(f) Numerical solutions for the evolved values of 
replication fitness i and of the frequency of ultra-
cooperators in an SD parameter space 
From equation (10), we first obtained the equilibrium 
frequency of wildtype and DI viruses in a population, 
𝑝 and 1 − 𝑝, for a given group size of m, a DI 
replication fitness of 1 + e, and a wildtype replication 
fitness of i.  These equilibrium values are not 
necessarily the ones that will evolve by natural 
selection in a population.  To determine if they could 
be the evolved values, we evaluated whether a 
population with these frequencies of 𝑝 and 1 − 𝑝 
could be invaded by a mutant wildtype virus.  Invasion 
by mutant DI was not examined because we had found 
in our Monte Carlo simulations that 1 + e would 
evolve to be infinitely large and thus had to be capped 
at its chosen value (figure 3a).  The capping is justified 
on the basis of physiological limit to replication speed 
in the host cell.  The evolution of the wildtype 
replication fitness was frequency dependent, which is 
why we need to evaluate by an invasion criterion and 
searching for an ESS value. 

To assess the invasion, we first estimated the 
individual fitness of DI and wildtype viruses 
distributed by a binomial process in groups of size m.  
By knowing the binomial composition of each group, 
the individual fitness of DI and wildtype viruses in the 
group could be determined with equation (1).  To test 
invasiveness, we then introduced one mutant wildtype 
with a replication fitness of i ± d.  The individual 
fitness of the mutant was estimated by adding it to all 
binomially distributed groups of size m – 1.  The 
mutant was judged to be able to invade if it had an 
individual fitness, again estimated by equation (1), 
greater than the wildtype virus.  A value of d = 0.001 
was used for all evaluations.  The evolved value of i 
was found by searching over a range of [0, 1] a value 
that was not invasible.  The 𝑝 and 1 − 𝑝 values 
corresponding to the evolved i were then used as the 
evolved frequencies of the DI and wildtype viruses.  
These evolved values are depicted in the SD parameter 
space of figures 4B-D.  Estimates of these evolved 
values were also obtained from our Monte Carlo 
simulations.  Our numerical and Monte Carlo 
estimates were highly correlated (see figure S1, 

Supplementary material).  The search code was 
written in R version 3.2.4 computer language. 
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Figure 1.  Tradeoff between replication and transcription in VSV viruses and DIs.  (A) Complete single stranded RNA 
genome of VSV with all required genes.  After the (–) strand enters a host cell, the segment z serves as the initiation 
site for the synthesis of the (+) strand, which acts as both the messenger RNA and the replication template for the (–) 
strand.  The segment a’ acts as the initiation site for both transcription and replication and the (+) strand is therefore 
constrained to tradeoff between providing public goods and reproduction.  (B) Single stranded genomes of DI 
particles.  This shortened DI genome is the most abundant type and it lacks the coding regions for genes needed for 
replication and infection.  Additionally, the (+) and (–) strands become functionally equivalent and only capable of 
replication because their a’ and a segments are replaced with z and z’ segments, respectively.  (C) Linear and non-
linear tradeoffs between replication and transcription in VSV.  Following the model, a virus can allocate an amount 
of available resources i to replication and 1 – i to transcription.  In the absence of DIs, a linear tradeoff (----) is assumed 
between i and 1 – i because a virus can only tradeoff by modulating the initiation site a’ to favor either replication or 
transcription, 0 ≤ i ≤ 1.  If i = 1 and 1 – i = 0, a’ has been modulated to promote only replication.  With the evolution 
of DIs the tradeoff becomes nonlinear because DIs acquire an even higher replication by both foregoing transcription 
and being smaller and replication rate i > 1.  To prevent i from becoming infinity large, a replication cap of 1 + e was 
set (■), where i ≥ 0 and e = 0 reverts to a linear tradeoff.  Because i > 1 makes the transcription rate 1 – i negative, the 
tradeoff was bounded 1 – i ≥ 0.  DIs with i = 1 + e > 1 were termed ultra-defectors. 
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Figure 2.  Linear tradeoff and the evolution of PD.  All populations evolved with a linear tradeoff and a Monte Carlo 
simulation with population size of N = 1000, genomic mutation rate of u = 0.2 and a Gaussian distribution of 
mutational effects with mean zero and standard deviation s = 0.005 (see Materials and Methods for additional details).  
(A) Evolutionary changes with m = 1.  Grey areas represent all individual i values over time in three independent 
populations started with i = 0.8, 0.5 and 0.2.  Black trace (–––) represents mean i values for population started with i 
= ½.  A value of m = 1 serves as a control for the consequences of clonal selection because all individuals in a group 
descend from one individual.  The consequence of clonal selection is that replication and the production of public 
goods evolves to the optimum of equaling each other, or ik = 1 – ik = ½.  (B) Traces of mean i values for independent 
populations evolved with increasing values of m.  (C) Match of i values predicted by analytical solution ia = 1 – 1/m 
and mean values evolved by Monte Carlo simulations.  (D) General payoff matrix representing PD.  The payoffs are 
the fitness values reward R when both players cooperate, temptation T for one player to defect, sucker’s payoff S for 
the cooperator facing defection, and penalty P for both players defecting.  PD requires the rank order T > R > P > S.  
(E) Fitness payoff matrix for m = 2 (see Materials and methods for matrix estimation).  The population avoids PD 
because R is the highest value.  Cooperation is favored because group size is sufficiently small to allow clonal 
selection.  (F) Fitness payoff matrix with m = 3.  The required PD rank order is satisfied.  Optimal cooperation of i = 
½ is not possible with PD, and defection leads to the evolution of PD and the evolved value of ia = 1 – 1/m (equation 
(2)).  (G) Relationship between payoffs T, R, P, and S with increasing m.  Required rank order for PD is satisfied for 
all m > 2. 
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Figure 3.  Nonlinear tradeoff and the transition to SD.  All populations evolved with a nonlinear tradeoff (e > 0) via 
a Monte Carlo simulation using the same parameters as in figure 2, unless otherwise specified.  (A) Evolutionary 
changes with m = 8 and a replication cap of 1 + e = 1.5.  Grey areas represent all individual i values over time in a 
population started with i = 0.5.  Population evolves steadily higher i values to 1 – 1/m = 7/8 (equation (2)) and 
mutations increasing i > 1 surface at 1200 generations.  At 1800 generations a mutant evolves into an ultra-defector 
with i = 1.5.  In response to the evolution of the ultra-defector, the population splits into a second lineage of ultra-
cooperators that evolves a lower replication rate i, or a higher rate of public good production of 1 – i.  (B) General 
fitness payoff matrix representing SD with rank T > R > S > P (see figure 2 for additional details).  (C) Payoff matrix 
for population and conditions in figure 2A (see Materials and methods for matrix estimation).  Rank matches 
requirement for SD.  The population is polymorphic and ultra-cooperators and ultra-defectors coexist because ultra-
defectors can invade a population of ultra-cooperators (T > R) and vice versa (S > P).  (D) Relationship between fitness 
payoffs T, R, S, and P with non-linear tradeoffs 1 + e = 1.15 and increasing m.  The threshold for evolving SD is given 
by equation (3) or 1 + e > 1 + 1/[m(m – 2)], which is satisfied for m ≥ 4.  For m = 3, the threshold is not satisfied and 
the rank is PD because 1.15 < 1.33.  (E) Relationship between fitness payoffs T, R, S, and P with m = 3 and increasing 
replication cap 1 + e.  With m = 3, the threshold for evolving SD is 1.33 (▲) as in figure 2D.  The rank is PD for 1 + 
e < 1.33 and SD for 1 + e > 1.33. 

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2017. ; https://doi.org/10.1101/091041doi: bioRxiv preprint 

https://doi.org/10.1101/091041
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

Figure 4.  Parameter landscapes for the evolution of cooperation.  Plots are topographic representations of 
evolutionary outcomes projected onto the parameter space of group size m and replication cap 1 + e.  All graphed 
outcomes were obtained as either analytical or numeric solutions and were also verified through comparisons to Monte 
Carlo simulations (see Materials and methods).  (A) Parameter space leading to the evolution of clonal selection, PD, 
and SD.  Boundary for clonal selection and PD is given by equation (2) and for PD and SD by equation (3).  (B) 
Evolved maximal level of individual cooperation represented as the production of public goods 1 – i.  Values in the 
PD region are from equation (2).  Values in SD region are numerical solutions (see Materials and methods) 
representing the production by ultra-cooperators.  (C) Frequency of individuals producing the maximal individual 
values in figure 2B.  Clonally-selected and PD populations are monomorphic and all individuals produce maximally.  
SD populations are polymorphic and frequencies represent ultra-cooperators.  (D) Evolved mean level of individual 
cooperation 1 – i in populations.  Because PD populations are monomorphic and ultra-defectors in SD populations do 
not produce public goods, the mean is the product of individual values and frequencies from figure 2B-C.  A maximum 
value of 0.33 (+) was observed at m = 3 and 1 + e = 1.34. 
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Figure S1.  Comparing Monte Carlo and numerical solutions for evolved values of i.  Solutions obtained as described 
in Materials and Methods.  Individual points represent i values obtained by the Monte Carlo (MC) and numerical 
solutions.  MC simulations were run for 10,000 generations with population size of N = 500m, where m is group size, 
and a mutation rate of u = 0.2 and a Gaussian distribution of mutational effects with mean zero and standard deviation 
s = 0.005.  Populations generally reach equilibrium values after 1000 generations (figure 2A).  Reported values of i 
are the mean value at the last generation.  The parameter space represented in figures 4A-D was explored by letting m 
range from 2, 3, 4, …, 10 and 1 + e from 1, 1.1, 1.2, …, 3.0.  Values of i corresponding to PD (+) and SD (●).  The 
match between MC and numerical solutions yielded a value of r2 = 0.96. 
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