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Abstract21

Understanding how the natural world will be impacted by environmental change over the coming22

decades is one of the most pressing challenges facing humanity. Addressing this challenge is dif-23

ficult because environmental change can generate both population level plastic and evolutionary24

responses, with plastic responses being either adaptive or non-adaptive. We develop an approach25

that links mechanistic quantitative genetic theory with data-driven structured models to allow26

prediction of population responses to environmental change via plasticity and adaptive evolution.27

After introducing general new theory, we construct a number of example models to demonstrate28

that evolutionary responses to environmental change over the short-term will be considerably slower29

than plastic responses, that adaptive plasticity can accelerate population recovery to environmental30

change but that it slows the rate of adaptation to the new environment. Parameterization of the31

models we develop requires information on genetic and phenotypic variation and demography which32

will not always be available. We consequently develop a method based on the statistical analysis of33

temporal trends in model parameter values of examining whether the full machinery of the evolu-34

tionarily explicit models we develop will be needed to predict responses to environmental change,35

or whether simpler non-evolutionary models that are now widely constructed may be sufficient.36
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Introduction37

Ecosystems from the deep ocean to the high arctic, from deserts to tropical forests are responding38

to environmental change. Understanding and predicting these responses is one of the most pressing39

issues currently facing humanity. For this reason, in the last quarter of a century, there has been40

considerable interest in developing ways to understand how the natural world will be affected by41

environmental change (Bossdorf et al., 2008; Dawson et al., 2011; Gilbert and Epel, 2009; Hoffmann42

and Sgrò, 2011; Ives, 1995; Lavergne et al., 2010; Wiens et al., 2009). We introduce a new, general43

approach combining insights from structured population modeling and evolutionary genetics that44

allows us to examine how adaptive evolution and plasticity contribute to the way that populations,45

and consequently the ecosystems in which they are embedded, respond to environmental change.46

The models we use to illustrate our approach do not incorporate mutation as we focus on responses47

to environmental change over only a few tens to hundreds of generations. Over longer time periods48

mutations could play a more important role. We discuss how our approach can be used to capture49

the generation of new genetic variation via mutation and can be used to study evolutionary change50

over longer time frames.51

Environment change alters the expected demographic rates of individuals within a population52

(Chevin et al., 2010). For example, if environmental change reduced the probability of survival53

of all individuals within a population without impacting recruitment, then population size would54

decline (Caswell, 2001). Predicting the way populations will respond to environmental change55

consequently requires understanding how such change impacts demographic rates (Coulson et al.,56

2001). Individual differences in expected demographic rates within a population are ubiquitous,57

with some individuals having a greater propensity to survive or reproduce than others (Link et al.,58

2002). This heterogeneity across individuals is determined by phenotypic variation (Wilson and59

Nussey, 2010). For example, large individuals often have higher survival and recruitment rates60

compared to their smaller counterparts (e.g. Festa-Bianchet et al., 1998; Sedinger et al., 1995). To61

understand how environmental change influences demographic rates at the population level it is62
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consequently necessary to know (i) the distribution of phenotypes within the population and (ii)63

their expected demographic rates in different environments (Ozgul et al., 2010).64

Dynamic models of population responses to environmental change need to incorporate informa-65

tion not only on the associations between phenotypic traits and expected survival and reproduction66

in different environments, but also on the way that environmental variation influences phenotypic67

development within individuals as they age, and the distribution of phenotypes among new born68

individuals recruiting to the population (Rees et al., 2014). In other words we need to understand69

the processes that determine individual phenotypic trajectories and resulting life histories. As well70

as environmental variation, genes also influence the way that phenotypes develop within individu-71

als (Cheverud et al., 1983), as can an individual’s current phenotypic state (Badyaev and Martin,72

2000; Easterling et al., 2000). Parental phenotypes, parental genotypes and environmental variation73

can all influence the distribution of offspring phenotypes as can mating patterns (Baldwin, 1896;74

Charlesworth, 1994; Gavrilets and Scheiner, 1993; Lynch and Walsh, 1998; Monaghan, 2008). This75

complexity makes predicting population responses to environmental change challenging.76

Adaptive evolution in response to environmental change occurs when selection – the association77

between phenotypes and expected survival and reproduction – results in a change in allele frequen-78

cies. Such genetic change can lead to change in the distribution of the phenotypes that influence79

survival and reproduction. However, phenotype distributions can respond to environmental change80

in the absence of adaptive evolution via plasticity. The ability for phenotype distributions to change81

in the absence of adaptive evolution is often genetically determined. Individuals can modify their82

own phenotypes, or those of their offspring, by altering their physiology, metabolism or behavior83

(Aubin-Horth and Renn, 2009; Richards, 2006). This is achieved by altering gene expression pat-84

terns by up and down regulating expression of particular genes, or even turning some genes off85

and others on (Snell-Rood et al., 2010). These effects that are not encoded in DNA are termed86

epigenetic effects.87

Epigenetic responses to environmental change occur at the level of the individual. For them88

to leave a signature at the population level in the distribution of phenotypes, multiple individuals89
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need to exhibit similar epigenetic responses to environmental change (Lande, 2009). When this hap-90

pens, populations are said to exhibit plastic responses. We distinguish between two types of plastic91

response – phenotypic plasticity (Scheiner, 1993) and epigenetic inheritance (Richards, 2006). Phe-92

notypic plasticity occurs when phenotype distributions change within surviving individuals due to93

epigenetic responses to a changing environment. In contrast, epigenetic inheritance occurs when a94

change in the environment impacts the phenotype of offspring recruiting to the population (Blake95

and Watson, 2016). Epigenetic inheritance can be influenced by the environment the offspring find96

themselves when they become independent, or by their parents. For example, parents may provi-97

sion developing offspring (seeds or foetuses) with different resources or hormone levels as a function98

of their own phenotypes (Love et al., 2005). We refer to this environment as the developmental99

environment. Alternatively, once independent from their parents, offspring development may be100

determined by the ecological environment they experience (Solberg et al., 2004). In germinating101

seeds, the ecological environment could be determined by light, water and nutrient availability.102

Any general framework that can be used to predict how environmental change will impact popu-103

lations consequently needs to incorporate how plasticity and genetic variation generates phenotypic104

variation, and how phenotypic variation impacts expected demography. We show how evolution-105

arily explicit integral projection models (IPMs) (Barfield et al., 2011; Childs et al., 2016; Coulson106

et al., 2011) provide a powerful framework within which to do this.107

IPMs are a very flexible structured modeling tool. They project the dynamics of phenotype108

distributions as a function of expected survival and reproduction, the way the phenotype develops109

and the distribution of offspring phenotypes (Coulson, 2012; Easterling et al., 2000; Merow et al.,110

2014). Because IPMs track the dynamics of the entire distribution of phenotypic traits, numerous111

quantities of interest to ecologists and evolutionary biologists describing life history, population112

dynamic and phenotypic traits can be calculated from them (Childs et al., 2003; Coulson et al.,113

2011, 2010; Ellner and Rees, 2006; Rees et al., 2014; Steiner et al., 2014, 2012; Vindenes and114

Langangen, 2015). They consequently offer great potential to study eco-evolutionary feedbacks and115

dynamics (Coulson et al., 2011). However, most IPMs to date have been restricted to phenotypic116
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variation in that they do not include genotype-phenotype maps (Merow et al., 2014). A small117

number of evolutionarily explicit IPMs have been developed. Coulson et al. (2011) used IPMs118

to track the distribution of body size and coat color in wolves, where coat color was determined119

by genotype at a single bi-allelic locus. They showed how environmental change would impact120

genotype frequencies at this locus. Barfield et al. (2011) and Childs et al. (2016) developed IPMs121

of quantitative characters determined by a large number of unlinked loci of small effect. However,122

none of these models incorporates plasticity, nor different genetic influences on the phenotype at123

different ages, and these omissions limit their utility in predicting how populations will be influenced124

by environmental change (Chevin, 2015).125

The aim of this paper is to introduce the general framework. We do this by (i) introducing126

two sex IPMs of phenotypic traits (Schindler et al., 2015, 2013; Traill et al., 2014a) that are not127

evolutionarily explicit, (ii) extending these models to include flexible genotype-phenotype maps that128

allow the role of adaptive evolution and plastic responses to environmental change to be examined,129

(iii) develop simple models to illustrate the framework. These models provide new results on the role130

of plasticity on evolutionary trajectories yet also allow us to retrieve key insights from evolutionary131

genetics.132

Methods and Results133

We start this section by introducing our general modelling approach. Our models consist of com-134

binations of functions, so we start by focusing on the biological processes these functions capture,135

and the way they combine to project the dynamics of phenotypic trait distributions. Our start-136

ing point is a model of the entire phenotype that we then extend to capture the dynamics of a137

phenotype consisting of genetic and environmentally determined components (Falconer, 1960). In138

order to construct models within our approach it is necessary to select forms for each function so139

we next turn our attention to this challenge. In the next sections we consider appropriate forms for140

functions that describe the dynamics of first the genetic component of the phenotype and second141
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its environmental component. Next, we combine insights from these two sections to consider the142

dynamics of phenotypes consisting of both a genetic and environmental component. Finally, we143

consider how to identify circumstances when the full machinery of evolutionarily explicit IPMs are144

required, and when purely phenotypic ones will likely suffice.145

Modeling approach146

We use the term mechanistic to refer to functional forms that are derived from a mechanistic un-147

derstanding of a process. For example, Mendelian inheritance rules that are central to quantitative148

and population genetics are mechanistic in that the distribution of offspring genotypes or breeding149

values is known a priori from the parental genotypes or breeding values and the mating system150

(Barfield et al., 2011; Charlesworth, 1994). The term phenomenological is used to refer to func-151

tional forms that are identified from the statistical analysis of data (Crawley, 2007). We refer to152

functions, be they mechanistic or phenomenological, as f(. . . ) where the dots inside parentheses153

define the variables the function f operates on. Parameters of a function are referenced by the154

same letter as the function, with subscripts defining the variable they influence. For example, a155

parameter fZ represents a parameter of function f that operates on variable Z. We reserve I for156

the intercept of functions and a for age. Age is only included in models for species with overlapping157

generations. We use primes (′) to represent a possible change in trait value from one time step to158

the next, either among surviving individuals, or between parents and their offspring. The notation159

we use (Table 1) is the standard notation used for IPMs (Coulson, 2012; Merow et al., 2014; Rees160

et al., 2014). We now turn to our approach.161

Selection is the underpinning of adaptive evolution. It operates on the phenotype, and de-162

pending upon the genotype-phenotype map, can result in some genotypes having greater fitness163

than others. Under some circumstances such variation in genotype fitness can result in evolution164

defined as a change in allele frequencies. However, in other circumstances, for example when phe-165

notypes determined by heterozygote genotypes have greater fitness than phenotypes determined by166

homozygote genotypes, variation in genotype fitness does not necessarily result in allele frequency167
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change (Charlesworth, 1994; Fisher, 1930).168

In order to predict evolution and population dynamics it is necessary to understand: (i) the169

genotype-phenotype map at birth, (ii) how the phenotype develops, (iii) how the phenotype influ-170

ences survival at each developmental stage, (iv) the population’s mating system and (v) patterns171

of mate choice based on the phenotype, as well as how these mate choice patterns influence (vi)172

reproductive success, (vii) the distribution of genotypes among offspring and (viii) how all these173

processes result in change in allele frequency from one generation to the next. Processes (i) to (vi)174

(and consequently also (viii)) can be influenced by environmental variation. Dispersal can also be175

an important driver of evolution. It can be added into the models we develop relatively easily, but176

is not considered further here.177

Our starting point is a phenotypic modeling approach that captures all demographic processes178

that can contribute to the dynamics of phenotypes – survival, recruitment, development, inher-179

itance, and mating patterns. Two sex phenotypic IPMs (Coulson et al., 2011; Schindler et al.,180

2015, 2013; Traill et al., 2014a) capture processes (ii) to (vi) listed above but they do not include181

genotypes, or consequently a genotype-phenotype map. Instead they include a function that maps182

parental phenotype at time t to the phenotypes of recruiting offspring at time t+1 (Easterling et al.,183

2000). These functions are phenomenological in that no genetic mechanisms of inheritance are in-184

cluded (Coulson et al., 2010; Smallegange and Coulson, 2013). Having introduced these models we185

then extend them to include genotype-phenotype maps.186

The model consists of two equations – one for females and one for males – with each equation187

consisting of two additive components (Schindler et al., 2013). The first component deals with188

survival and development of individuals already within the population, the second component deals189

with reproduction and the generation of phenotypes among newborns entering the population. We190

assume a pre-breeding census such that survival occurs before development and recruitment before191

inheritance,192
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Nf (Z ′, t+ 1) =

∫
[Df (Z ′|Z, θ, t)Sf (Z, θ, t)Nf (Z, t)]dZ +

+ sCNfNm

∫∫
[Hf (Z ′|Zm,Zf , θ, t)M(Zm,Zf , t) . . .

. . . Nf (Zf , t)Nm(Zm, t)R(Zf ,Zm, θ, t)]dZmdZf

Nm(Z ′, t+ 1) =

∫
[Dm(Z ′|Z, θ, t)Sm(Z, θ, t)Nm(Z, t)]dZ +

+ (1− s)CNfNm
∫∫

[Hm(Z ′|Zm,Zf , θ, t)M(Zm,Zf , t) . . .

. . . Nf (Zf , t)Nm(Zm, t)R(Zf ,Zm, θ, t)]dZmdZf (1)

Nf (Z ′, t+1) and Nm(Z ′, t+1) are distributions of phenotypes Z ′ in respectively females and males193

at time t+1; Df (Z ′|Z, θ, t) and Dm(Z ′|Z, θ, t) are the probability of the phenotype developing from194

Z to Z ′ in respectively females and males between t and t+1 as a function of environmental drivers195

θ; Sf (Z, θ, t) and Sm(Z, θ, t) are survival functions for females and males from t to t+ 1 including196

effects of phenotype and environmental drivers θ; s is the birth sex ratio measured as the proportion197

of female offspring produced; and CNfNm is a normalisation constant; Hf (Z ′|Zm,Zf , θ, t) and198

Hm(Z ′|Zm,Zf , θ, t) describe the probabilities of parents with phenotypes Zm and Zf respectively199

producing male and female offspring with phenotype Z ′ as a function of environmental drivers θ at200

time t; M(Zm,Zf , t) captures the rate of mating between a male with phenotype Zm and a female201

with phenotype Zf ; R(Zf ,Zm, θ, t) describes the expected litter size given a mating between a202

male and a female with phenotypes Zm and Zf in environment θ at time t. The survival, mating203

and litter size functions determine the strength of selection on Z (Schindler et al., 2015).204

CNfNm can be used to capture a range of mating systems. For example, if we follow Schindler

et al. (2013) and write,

CNfNm =

∫∞
Zf(min)

Nf (Zf , t)dZf∫∞
0 M(Zm,Zf , t)Nm(Zm, t)Nf (Zf , t)dZmdZf

(2)

this adds a minimum size at which females can reproduce Zf(min). Depending on the mating be-205

havior of the species, CNfNm can be modified in various ways. For example, it can easily be altered206
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such that the number of birth events is determined by the number of the rarer sex, as in monog-207

amous species. Mate choice can be influenced by specifying different functions for M(Zm,Zf , t).208

Schindler et al. (2013) demonstrate how it can be specified for random mating, assortative mating,209

disassortative mating and size-selective mating.210

In phenotypic IPMs, the phenotypic development functions are usually Gaussian probability

functions (Easterling et al., 2000), e.g.:

D(Z ′|Z, θ, t) =
1

V D(Z, θ, t)
√

2π
e
− (Z′−µD(Z,θ,t))2

2VD(Z,θ,t)2 . (3)

The functions µD(Z, θ, t) and V D(Z, θ, t) respectively describe the expected value of Z ′ given Z211

and θ at time t and the variance around µD(Z, θ, t). The Gaussian form can also be used for212

development functions H(Z ′|Z, θ, t) with functions µH(. . . ) and V H(. . . ).213

We extend the two sex phenotypic IPM in equation (1) to include genotypes by writing the214

phenotype as a function Z = z(G, E). We assume that Z is a quantitative phenotype (i.e. measured215

in integer or real values). The genotypic value G and environmental value E describe the numerical216

contributions of the genetic and environmental components of the phenotype to an individual’s217

phenotypic trait value. A simple map can consequently be written Z = G + E (Falconer, 1960).218

G is determined by genotype, g. When the map between g and G is additive, the dynamics of219

g and G are identical. In contrast, when alleles interact, either at a locus (dominance) or across220

loci (epistasis) the map between g and G is not additive, and the dynamics of G are not identical221

to the dynamics of g (Fisher, 1930). In classical quantitative genetics it is assumed that the map222

between g and G is additive (Falconer, 1960). Under these assumptions, it is not necessary to track223

the dynamics of g but evolution can be investigated by modeling the dynamics of just G. When224

the map is additive we refer to the genetic component of the phenotype as a breeding value and225

denote it A.226

In classical population genetics, when the contribution of dominance and epistasis to evolution227

are often a key focus, it is necessary to track the dynamics of g and calculate G from each g. The228

map between G and the phenotype Z is often assumed to be one-to-one (Hartl et al., 1997). In other229
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words, the dynamics of G and Z are identical. In contrast, in quantitative genetics, the environment230

can influence the map between A and Z by influencing the value of the environmental component231

of the phenotype, E (Falconer, 1960). E can take different values in different individuals and can232

vary within individuals throughout life. The dynamics of the phenotype may not consequently233

represent the dynamics of the genotypic value A. Statistical quantitative genetics is concerned234

with estimating moments of A from Z by correcting for environmental and individual variables235

that determine E (Kruuk et al., 2008).236

The genotype-phenotype map for phenotypic traits measured by biologists in free living pop-237

ulations is rarely known, and quantitative genetic assumptions are widely adopted (Kruuk et al.,238

2008). In particular, the infinitesimal model is assumed in which A is determined by a large number239

of unlinked loci of small, additive, effect (Fisher, 1930). Until we have a better understanding of the240

genetic architecture of complex traits, this approach is the most powerful available to investigate241

evolution in the wild (Kruuk et al., 2008). We consequently adopt it here.242

We track the joint distribution of the two components N(A, E , t). The utility of this is we243

can write expressions to describe the dynamics of each of the components separately, if necessary,244

before easily combining them to retrieve the dynamics of the phenotype. For Z = A + E we can245

use a convolution (represented by the mathematical operator ∗) between the two components of246

the phenotype to construct the phenotype (Barfield et al., 2011).247

Phenotypic plasticity and epigenetic inheritance are captured in the dynamics of E . In previous248

quantitative genetic IPMs E is a randomly distributed variable that captures developmental noise249

(Barfield et al., 2011; Childs et al., 2016). A key contribution of this paper is to show how E can be250

extended to also capture the biotic or abiotic environment as well as signatures of parental As and251

Es. E is consequently defined as function of these drivers. There are various notations we could use252

to capture this. To be consistent with previous IPMs formulations (Coulson, 2012; Merow et al.,253

2014; Rees et al., 2014) we write E ′|E ,A, θ, t to capture the effects of E , A and the environment θ254

at time t on E ′.255

We now expand terms in our two-sex phenotypic IPM to include the genotype-phenotype map256
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Z = z(A, E). We start with the bivariate distribution of A and E at time t among females that257

are already within the population at time t: Nf (A, E , t). Viability selection now operates on this258

distribution. Viability selection is a simple multiplicative process describing the expected survival259

from t to t+ 1 as a function of the phenotype. We can consequently write,260

N s
f (A, E , t) = Sf (z(A, E), θ, t)Nf (A, E , t). (4)

When it comes to development, the genotype does not develop but remains fixed for life. However,

A can vary with age if different genes contribute to the phenotype at different ages (Wilson et al.,

2005). In the section §Adaptive Evolution we consider the dynamics of age-structured breeding

values. We focus here on the case where A remains fixed for life but the environmental component

may vary,

N s
f (A, E ′, t+ 1) =

∫
Df (E ′|(E ,A, θ), t)N s

f (A, E , t)dE . (5)

Recruitment is dealt with in a similar way to survival in that it is a multiplicative process,261

N r((Am, Em), (Af , Ef ), t) = M((Am, Em), (Af , Ef ), t)N(Am, Em, t) . . .

. . . N(Af , Ef , t)R(z(Am, Em), (zAf , Ef ), θ, t).

Note this is a recruitment related term of both male and female offspring that is not yet scaled by262

the normalization factor CNfNm .263

As with development, inheritance of the genetic and environmental components of the phenotype264

operates in different ways. For example, once mating pairs have formed and the number of offspring265

from each mating has been determined, the distribution of offspring genotypes is predictable. We266

can write the inheritance function for the genetic and environmental components of the phenotype267

as,268

N r
f (A′, E ′, t+ 1) = sCNfNm

∫∫∫∫
Hf (A′|(Am,Af ), E ′|(Em, Ef , θ, t)) . . .

. . . N r((Am, Em), (Af , Ef ), t)dAmdEmdAfdEf (6)
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then,

Nf (A′, E ′, t+ 1) = N r
f (A′, E ′, t+ 1) +N s

f (A, E ′, t+ 1). (7)

The same logic applies to the production of male offspring.269

We can construct the phenotype from the two components A′ and E ′, e.g.

Nf (Z ′, t+ 1) =

∫
ΩZ′

N r
f (A′, E ′, t+ 1)dE ′dA′ +

∫
ΩZ′

N s
f (A, E ′, t+ 1)dE ′ (8)

where ΩZ′ is the set of (A′, E ′) values satisfying z(A′, E ′) = Z ′. For the second integral in equation270

(8) we have z(A, E ′) = Z ′ as the A does not change within individuals and consequently has no271

prime.272

The additivity assumption means that models of clonal inheritance can generate very similar273

predictions to models of two sexes, particularly if both males and females have similar demography.274

However, clonal models are simpler than two sex models (Lande, 1982). We utilize this consequence275

of the additivity assumption and initially work with clonal reproduction to examine how the dy-276

namics of A and E influence population and phenotypic trait dynamics and adaptive evolution. We277

can write a clonal model,278

N(A, E ′, t+ 1) =

∫
[D(E ′|E ,A, θ, t)S(z(A, E), θ, t) +H(E ′|E ,A, θ, t) . . .

. . . R(z(A, E), θ, t)]N(A, E , t)dE (9)

and

N(Z ′, t+ 1) =

∫
ω′Z

N(A, E ′, t+ 1)dE ′. (10)

Functional Forms279

In order to construct models it is necessary to identify forms for each of the functions described in280

the section above. These forms can differ for development and inheritance of A and E . To illustrate281

this we construct models for two limits. At one limit, all phenotypic variation is attributable to282

individual differences in A. At the other limit, all individuals are genetically identical: they have283
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the same A and all individual variation is attributable to E . This captures plasticity defined as284

the same genotype expressing different phenotypes in different environments. Having considered285

functional forms for these two limits we combine insights to construct models for phenotypes that286

are determined by A and E .287

We primarily focus on linear functions for three reasons. First, they are easier to interpret and288

analyze than non-linear or non-additive forms. Second, when the environment changes impacting289

populations, responses, at least in the short term, can be well described with linear or linearized290

additive models (Cooch et al., 2001). Third, selection, the underpinning of evolution, is often291

directional and well described with linear or linearized associations between phenotypic traits and292

components of fitness (Kingsolver et al., 2001). Parameters used for all models are provided in the293

Supplementary Information (SI §1.1), as are expressions to calculate key statistics used to show294

ecological and evolutionary change from model outputs (SI §1.2). Code to produce each figure is295

available on GitHub – https://github.com/tncoulson/QG-meets-IPM-figure-code/tree/master.296

The environmental drivers θ, t can be both abiotic and biotic. We focus primarily on a biotic297

driver, population density.298

Adaptive Evolution299

In this section we start with a simple clonal model of a univariate distribution of A. We go on to300

show how genetic constraints can be imposed to slow, or stop, evolution. We then extend this clonal301

model in two ways: first, to include a multivariate, age-structured, distribution of A, and second302

we relax the clonality assumption and compare the dynamics of clonal and sexual models. Finally,303

we introduce a new approximation to describe sexual reproduction and compare its performance304

with our initial approach.305

Genotypes (and hence A) are determined at birth and remain fixed throughout life; neither306

are influenced by the environment. A consequence of this is the development function simplifies307

to a one-to-one map and can be removed from equation (5). We also start by considering clonal308

reproduction, which means that the inheritance function can also be removed as offspring genotype309
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is identical to parental genotype. The dynamics of A are consequently determined by the survival310

and reproduction functions – selection. In these models, as long as there is genetic variation within311

a population, and fitness is a monotonic function of genotype, evolution, defined as E(N(A, t+1)) =312

E(N r(A, t)) 6= E(N(A, t)) (where E represents expectations) will occur.313

In our first models we assume non-overlapping generations,

N(A, t+ 1) = N r(A, t) = R(A, t)N(A, t).

and a linear reproduction function R(A, t) = RI + RAA with expected fitness increasing with the314

value of A. Over the course of a simulation of 30 generations (SI §1.1 Model A), the population315

never achieves an equilibrium structure or growth rate; it grows hyper-exponentially (Figure 1(a),316

black line) and the shape of the breeding value distribution continually changes location (Figure317

3(b), black line) and shape (Figure 1(b,d, black lines)). Linear selection only slowly erodes the318

genetic variance and skew (Figure 1(c,d)) and these changes lead to a slight slowing of the rate of319

change in the mean breeding value (Figure 1(b)) and the population growth rate (Figure 1(a)) each320

generation (the black lines are not linear).321

In this model there are two ways to prevent the fitness function from generating change in the322

location of the distribution. First, the fitness function can take unimodal non-linear forms such as323

R(A, t) = RI +RAA+RA2A2 with RA2 < 0 and R(A, t) constrained to non-negative values. This324

generates stabilizing selection, with the mean breeding value being maintained at the value that325

maximizes fitness. Eventually, in this model, the breeding value distribution will achieve a trivial326

equilibrium – a Dirac delta function at this value. Second, continual change in the location of the327

distribution can be prevented by defining a maximum possible value for A that cannot be exceeded.328

This captures a genetic constraint in the maximum possible character value – i.e. evolution has329

not evolved a genetic solution to creating a larger breeding value. In our models, this process can330

be captured by setting the abundance of N(A > x, 1) = 0 where x is the maximum possible trait331

value that evolution can achieve. Selection now pushes the breeding value distribution up to x,332

again eventually achieving a trivial equilibrium captured by a Dirac delta function where all mass333
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of the distribution is at A = x.334

Genetic constraints can also impact the transient dynamics of the breeding value distribution335

(Figure 1(a-d, red lines)). When we impose a genetic constraint (SI §1.1 model A with x = 11.5),336

the genetic variance and skew evolve faster than when no genetic constraint is in place (Figure 1(c)337

and (d)). These more rapid changes result in a slowing in the evolution of the mean breeding value338

(Figure 1(b)), and of the population growth rate (Figure 1(a)).339

Genetic covariances between traits can also capture genetic constraints and can also influence the340

outcome of evolution. We demonstrate this by developing an age-structured model. A now becomes341

age-structured but is still inherited at birth. We construct a multivariate character A describing the342

breeding values that influence a character at each age (e.g. A1,A2, . . . ,An for breeding values at343

ages a = 1, 2, . . . , n). If some of the same loci contribute to the genetic components of the character344

at different ages there is a genetic covariation across ages. The genetic variances within each age,345

and the covariances between ages, can be used to construct a G matrix (Lande, 1979). Such age-346

structured G matrices underpin the character-state approach of quantitative genetics (Lynch and347

Walsh, 1998). In the age-structured model that follows, we define a bivariate normal distribution348

with a known variance-covariance structure as our starting point and iterate this forwards (SI §1.1349

models B-D). We consider a simple case: a monocarpic biennial life cycle where individuals in their350

first year of life do not reproduce and all age 2 individuals die after reproduction. As with our351

model for a species with non-overlapping generations we assume clonal inheritance,352

N(A1, 1, t+ 1) = R(A2, 2, t)N(A2, 2, t)

N(A2, 2, t+ 1) = S(A1, 1, t)N(A1, 1, t), (11)

where survival from age 1 to age 2 is specified as

S(A1, 1, t) =
1

1 + e−(SI,1+SA1,1A1)
(12)

with expected survival to age 2 being highest for larger values of A1. Although A2 is not under353

direct selection, its distribution is modified by its covariance with A1.354
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A2, the genotype at age 2, determines expected reproduction,

R(A2, 2, t) = e(RI,2+RA2A2). (13)

Although A1 does not directly influence reproduction, there is an association between it and repro-355

duction via its covariance with A2. All age 2 individuals die following reproduction in this model,356

although it is possible to extend our approach to any arbitrary number of ages.357

The evolutionary dynamics that particular parameterizations of the fitness functions S(A1, 1, t)358

and R(A2, 2, t) generate are dependent upon (i) the initial covariance between the characters and359

(ii) the fitness functions (SI §1.1 models B-D). Many parameterizations and initial covariances are360

likely to generate evolutionary dynamics that may be biologically unrealistic. We demonstrate this361

with three contrasting parameterizations, considering size as our trait (Figure 1(e)-(g)). In the first362

example, (Figure 1(e) SI §1.1 model B), the two characters positively covary and experience selection363

in the same direction. Over the course of the simulation the average developmental trajectory has364

evolved with A1 evolving to be 1.76 times larger and A2 evolving to be 1.52 times larger. For a365

trait like body size, such a proportional change at different ages may be appropriate. In examples366

(Figure 1(f and g), SI §1.1 models C and D) the bivariate character evolves in contrasting ways. In367

(F), A2 evolves much faster than A1 while in (G) A1 evolves to be larger, while A2 evolves to be368

smaller. These simulations demonstrate that only a constrained set of fitness functions and genetic369

covariances will give biologically realistic evolutionary trajectories for the size-related traits that370

biologists often study.371

We now return to a univariate model and examine the clonality assumption. How can the372

clonality assumption be relaxed, and what are the consequences? In sexually reproducing species,373

offspring inherit a mix of their parent’s genomes. However, genetic segregation means that full374

siblings do not have the same genotype. When additivity is assumed, the breeding value of offspring375

is expected to be midway between parental breeding values. However, to obtain the distribution376

of offspring genotypes, the contribution of genetic segregation to variation among offspring needs377

to be taken into account. In two sex models, three steps are required to generate the distribution378
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of offspring genotypes or breeding values given parental values. First, a distribution of mating379

pairs needs to be constructed. Second, the distribution of midpoint parental genotypes or breeding380

values given the distribution of mating pairs needs to be constructed. Third, segregation variance381

needs to be added to the distribution (Feldman and Cavalli-Sforza, 1979; Felsenstein, 1981; Turelli382

and Barton, 1994). The mating system and the segregation variance are related: when mating is383

assortative with respect to genotype, the segregation variance is small and siblings closely resemble384

one another and their parents. In contrast, when mating is disassortative with respect to genotype,385

siblings can differ markedly from one another, and the segregation variance is large.386

Expressions have been derived for the segregation variance for the infinitesimal model where

it is assumed that traits are determined by a very large number of unlinked loci of small additive

effects and mating is random (Fisher, 1930). The infinitesimal model is assumed in most empirical

quantitative genetic analyses (Kruuk et al., 2008) and in our initial model. For random mating

where both sexes have identical demographies, the distribution of offspring breeding values given

parental breeding values is (Barfield et al., 2011):

N(A, t+ 1) =

(
N r(·, t)

2
∗ N

r(·, t)
2

∗ φ
(
·, σ

2
r (A, t)

2

))
(A) , (14)

where ∗ represents convolution and φ(A, σ2) = 1√
2πσ2

exp
[
−A2

σ2

]
is a Gaussian function with mean387

zero and variance σ2 representing the segregation variance.388

If males and females have different demographies then they will have different distributions of

genetic values after selection; we represent these as N r
M (A, t) and N r

F (A, t), respectively. In this

case, eq. (14) is replaced by

N(A, t+ 1) =

(
N r
M (·, t)

2
∗
N r
F (·, t)

2
∗ φ

(
·,
σ2
r(M)(A, t) + σ2

r(F )(A, t)
2

))
(A) , (15)

where σ2
r(M)(A, t) and σ2

r(F )(A, t) are variances of the post-recruitment-selection genetic value of389

males and females. respectively. We do not superscript the rs with σ2 to avoid a notation making390

it appear σ is raised to some quantity 2r.391

The first two terms on the right hand side of equation (15) generates the distribution of ex-392

pected parental midpoint values; it ensures that the mean breeding value among offspring is midway393
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between the two parental breeding values. However, because the parental distributions are halved,394

the variance of this distribution is half that of the parental distributions. The third term on the395

right hand side of equation (15) adds the segregation variance. For random mating, the variance396

is assumed to be normally distributed with a mean of 0 and a variance of half the additive genetic397

variance among the entire population when the population is at linkage equilibrium (Felsenstein,398

1981). We approximate this variance as half the additive genetic variance in the parental distribu-399

tion (Feldman and Cavalli-Sforza, 1979). This approach has already been incorporated into IPMs400

(Barfield et al., 2011; Childs et al., 2016).401

We now run two simulations (Figure 2(a)-(d)) to examine differences in the predictions of clonal402

and sexual models. The first model assumes clonal inheritance and the second the convolution in403

Equation (15), with both models assuming a linear function R(Z, t) (SI §1.1 model E). The two404

models predict slightly divergent dynamics. The reason for this is that equation (15) results in the405

skew and kurtosis in NR(A, t) is reduced at each time step in the sexual model compared to in the406

clonal model. If selection is exponential (and the starting distribution proportional to a Gaussian407

distribution) then there will be no difference between the two approaches. This is because a normal408

distribution multiplied by an exponential fitness function results in a normal distribution with an409

unchanged variance (Diaconis et al., 1979). These results suggest that insights from clonal models410

will approximate those from sexual models reasonably well, at least when males and females have411

similar demography.412

Some authors have queried the use of Equation (3) as an approximation in IPMs to the inheri-413

tance convolution in Equation (15) used in models of sexually reproducing species (Chevin et al.,414

2010; Janeiro et al., in press). However, being able to construct inheritance functions for A that415

are of the form of equation (3) would be useful as it would permit methods developed for two sex416

phenotypic IPMs to be applied to evolutionarily explicit IPMs (e.g. Schindler et al., 2015). Given417

Gaussian approximations frequently perform well in models of evolution (Turelli and Barton, 1994)418

we hypothesize that Gaussian inheritance functions may perform well in evolutionarily explicit419

IPMs. We consequently constructed a Gaussian inheritance function and compared results with420
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those obtained from the convolution.421

Equation (15) results in the mean and variance of the parental and offspring breeding value422

being the same. We can approximate this by ensuring that the function µH(A, t) passes through423

the coordinate x = E(NR(A, t)), y = E(NR(A, t)) and that the variance V H(A, t) = σ2(NR(A, t)).424

When both sexes have the same demography, we can write,425

µH(A, t) = (1− η)ER(NR(A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t)) (16)

where E and σ2 represent expectations and variances respectively and η represents the degree of426

assortative mating. When η = 1 mating is entirely assortative, when θ = 0.5 mating is random427

and when η = 0 mating is completely disassortative. An equation for the case when males and428

females have different demographies is provided in the SI §1.3. The approximation in Equation429

(16) will increase in accuracy as the distribution of mid-point parental breeding values becomes430

more Gaussian.431

When we compared predictions from equations (15) and (16) with η = 0.5 using the same model432

used to compare clonal and sexual life histories, results were indistinguishable (Figure 2(a)-(d). This433

reveals that, for linear selection, Gaussian inheritance functions for A perform remarkably well.434

None of our models to date include any form of mutation. We have not incorporated mutation435

into our models as we are simulating responses to environmental change over a few tens to hundreds436

of generations (Figures 1-3), and over that time period mutation is unlikely to play a major role in437

adaptation. However, for simulations over longer time periods, we can incorporate mutation into438

our models by slightly increasing the size of the segregation variance (e.g Lynch and Walsh, 1998).439

This will have the effect of increasing the additive genetic variance, partly countering any loss of440

genetic variance due to selection.441

Our approximation can be used to examine the dynamical contributions of non-additive genetic442

processes to population responses to environmental change in a phenomenological manner. Fisher443

(1930) demonstrated that dominance variance can be treated as an offset, and in our models this444
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would lower the intercept of the function µH(G, t) in equation (16). A consequence of this is that445

the mean of the offspring genotype is no longer equal to the mean of parental genotype and the446

dynamics of genotypes no longer exactly match the dynamics of alleles. We demonstrate this447

with a single locus-two allele model. When the effects of alleles are additive, the dynamics of the448

genotype captures the dynamics of alleles (Figure 2(e)). In contrast, when the heterozygote has449

higher fitness, allele frequencies do not change once the equilibrium is achieved. However, selection450

and inheritance alter genotype frequencies (Figure 2(f)). This effect of dominance variance can be451

phenomenologically capturing within an IPM by setting the intercept of the inheritance function452

for the genetic component of the phenotype to be less than ER(NRA,t)
2 – this imposes an offset that453

can reverse gains made by selection (Figure 2(g)). Because this offset is negative when dominance454

variance is operating, dominance variance will slow, or prevent, rates of evolutionary change. We455

could easily phenomenologically explore how a particular value of this offset impacts predicted456

dynamics, however, further work is required to relate different levels of dominance variance to457

specific values of the offset in our models.458

Having shown how IPMs can be formulated to project forwards the dynamics of the genetic459

component of the phenotype under a wide range of circumstances, we now turn our attention to460

the dynamics of the environmental component of the phenotype.461

Plasticity462

Plasticity is determined by the dynamics of E and in particular in how E is influenced by the463

ecological environment θ. For this, we require a probability density function. We show in this464

section how different forms of plasticity can be incorporated into evolutionarily explicit IPMs, and465

explore the dynamics of some simple cases.466

To capture plasticity in IPMs we need to model the probability of transition from E at time467

t to E ′ at time t + 1 as a function of the environment θ. For most plastic traits we have a poor468

mechanistic understanding of development and inheritance patterns, and for that reason we use469

the Gaussian probability density function in Equation (3).470
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In quantitative genetics it is often assumed that the mean of E(E , t) = 0 and any individual471

departures are purely random (Falconer, 1960). In equation 3 this requires the intercepts and slopes472

of the functions µD(. . . ) and µH(. . . ) to take the following values: µHI = 0, µDI = 0, µHE = 1 and473

µDE = 1. We relax this assumption and allow the mean (and variance) of E to vary with time as θ474

varies by specifying particular forms for development and inheritance functions of E .475

Gaussian transition functions (equation 3) can be formulated to predictably modify moments476

of the distribution of E from time t to time t + 1. For example, careful choice of intercepts and477

slopes of µDE , t, µHE , t, V DE , t and V HE , t can be used to predictable grow, or shrink, the variance478

of E via either development or inheritance (SI §1.4). In addition, specific biological processes can479

be easily incorporated into the dynamics of E : if the slopes µDE 6= 0 or µHE 6= 0 then there will480

be temporal autocorrelation in the value of E among individuals, and between parents and their481

offspring. For example, if µDE > 0 then individuals with a relatively large value of E at time t482

will be expected to have a relatively large value of E ′ at time t+ 1. This property of development483

functions is useful as it allows some memory of E across ages: if an individual has benefited from a484

particularly good set of circumstances at one age, any phenotypic consequences can persist to older485

ages. In a similar vein, if µHE > 0 then a parent with a relatively large E at time t will produce486

offspring with relatively large E ′s at time t + 1, a form of parental environmental effect (Nussey487

et al., 2007).488

Deterministic IPMs incorporate probabilistic transitions when V H(E ′|E ,A, t) = 0 and V D(E ′|E ,A, t) =489

0. These probabilities do not vary from one time step to the next. In stochastic models these func-490

tions can include terms for an environmental driver θ, such that the variation in trajectories changes491

with the environment. In evolutionarily explicit models, the variance in transition rates among dif-492

ferent values of E can be made to depend upon θ, A and their interaction (if desired). This means493

that individuals with specific values of A can produce offspring with more variable values of E (and494

consequently Z) in particular environments than individuals with other values of A. This is an495

example of bet-hedging (Childs et al., 2010). We do not provide examples of bet-hedging in this496

paper, but instead focus on the incorporation of θ into µH(E ′|E ,A, θ, t) and µD(E ′|E ,A, θ, t).497
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Different formulations of µH(. . . ) and µD(. . . ) can be used to capture a variety of different498

forms of plasticity (Table 2). When θ is incorporated as an additive effect, it acts to shift the499

intercept of these functions as t changes. This means that the environment influences all values500

of A in the same manner. If Z = A + E then Z changes as a function of how θ influences E if A501

remains constant. A remains constant when it does not vary within individuals as they age, or if502

A′ in offspring is the same as A in parents.503

Interactions between E , A and θ are listed in Table 2. Each form describes a different type of504

reaction norm (Gavrilets and Scheiner, 1993). These forms allow E to develop among individuals505

(phenotypic plasticity) or be inherited (epigenetic inheritance) as a function of an individual’s506

breeding value A and the environment θ as well as the value of E at time t.507

Plasticity can be either adaptive or non-adaptive (Ghalambor et al., 2015), and both forms508

can be captured into our models. Adaptive plasticity enables populations to rapidly respond to an509

environmental change. For example, if environmental change reduces population size, then adaptive510

plasticity would result in a change to the mean of the phenotype via either phenotypic plasticity511

(the development function) or epigenetic inheritance (the inheritance function) that leads to an512

increase in survival or recruitment rates. In contrast, non-adaptive plasticity does the opposite,513

potentially exacerbating the detrimental effects of environmental change.514

We demonstrate this with an example of a simple IPM of a species with non-overlapping gen-515

erations: N(E ′, t + 1) =
∫
H(E ′|E , θ, t)R(E , t)N(E , t)dE . Because plasticity is defined as different516

breeding values A or genotypes expressing a different phenotype Z in different environments, our517

models assume all individuals have the same A but that E , and consequently Z, is a function of the518

environment θ. This means we can remove A from the model. We assume a linear fitness function519

and a Gaussian inheritance function,520

R(E , t) = RI +REE +Rθθ

µH(E , t) = µHI + µHE E + µHθ θ

V H(E , t) = V H
I
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Next, we assume that the phenotypic trait is positively associated with expected recruitment such521

that RE > 0. We also assume that the environmental driver is positively associated with expected522

recruitment such that as θ increases in value, fitness increases (Rθ > 0). This means that the523

population growth rate (in a density-independent model) or population size (in a density-dependent524

model) also increases with θ. Now assume that a negative environmental perturbation decreases525

θ such that fitness decreases. For adaptive plasticity to counter this, the effect of the decrease in526

θ on epigenetic inheritance must increase the expected value of E . In our simple model, this can527

only occur if µHθ < 0. Then, as θ declines, µHθ θ becomes less, and the value of µHI + µHθ θ becomes528

larger, increasing the mean of E and fitness. In general, in additive linear models like this, if RE529

and µHθ take opposing signs then plasticity will be adaptive.530

We develop three density-dependent models of a phenotype in a species with non-overlapping531

generations. In all models we define the fitness function to be R(E , t) = RI +REE+Rn(t)n(t) where532

n(t) =
∫
N(E , t)dE and where Rn(t) < 0. In each model we define µH(E , t) = µHI +µHE E +µHn(t)n(t).533

We set in model (F) µHn(t) = 0; in model (G) µHn(t) < 0; and in model (H) µHn(t) > 0 (SI §1.1).534

The first model (F) does not include plasticity (µHn(t) = 0), the second (G) captures adaptive535

plasticity (µHn(t) < 0 and RE > 0), and the third (H) captures non-adaptive plasticity (µHn(t) >536

0 and RE > 0). Because the models are not age-structured and do not include development,537

plasticity operates via epigenetic inheritance (e.g. maternal environmental effects). The same538

logic can be extended to the development function in age-structured populations. In our examples,539

parameterizations are chosen so all models converge to the same value of carrying capacity, K. Once540

all three models have converged, we initially impose a one off perturbation. Model (G) regains the541

equilibrium first, followed by model (F), and then model (H) (Figure 3(a)) showing that adaptive542

plasticity allows the population to recover from a one off environmental perturbation much faster543

than when there is no plasticity, or plasticity is non-adaptive. Non-adaptivity plasticity significantly544

slows the rate at which the population can recover from a perturbation, with the initial population545

size pre-perturbation only re-attained after 80 generations.546

Adaptive and non-adaptive plasticity also impact the way populations respond to permanent547
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environmental change. We demonstrate this by running the same models (F), (G) and (H), except548

now we impose a constant change in fitness by permanently changing the intercept of the fitness549

function RI . When we do this, the three models attain different equilibria population sizes (Figure550

3(b)) and different mean phenotypes (Figure 3(c)). Model (G) achieves a larger population size551

than the two other models. This buffering of the population against environmental change happens552

because adaptive phenotypic plasticity results in a change in the mean phenotype (Figure 2(c)) that553

increases the expected recruitment rate and asymptotic population size (Figure 2(b)). In contrast,554

non-adaptive plasticity exacerbates the consequences via a change in the mean phenotype that555

decreases fitness.556

In contrast to our example models in the §Adaptive Evolution, the IPMs we have developed

in this section, and indeed all non-genetic IPMs so far published, achieve an asymptotic population

growth rate or equilibrium population size and a stable population structure. These IPMs have

monotonically increasing or decreasing fitness functions: an increase in the character results in an

increase in expected fitness. A consequence of this is that in these models the recruitment function

acts to alter the location of the character distribution, and often also alter its shape (Wallace et al.,

2013). In other words, NR(E , t)−N(E , t) 6= 0. In models of species with non-overlapping generations

at equilibrium like those above, the inheritance function for E must exactly reverse the changes to

the character distribution generated by the fitness function. This means, for deterministic models,

that

NR(E , t)−N(E , t) = N(E ′, t+ 1)−NR(E , t). (17)

This equality requires moments of parental and offspring characters to differ from one another if557

NR(E , t) − N(E , t) 6= 0. When there is a correlation between parental and offspring traits in the558

inheritance function for E as in our models, the intercept of the inheritance function must take a559

value such that offspring characters are smaller than their parent’s were at the same age (Coulson560

and Tuljapurkar, 2008).561

IPMs for species with overlapping generations include development functions D(E ′|E , a, t).562

These functions can alter the size (population size) and shape of the distribution of E as indi-563
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viduals age. When generations are overlapping, and at equilibrium, changes to the location of the564

character distribution via survival, recruitment and development are all exactly countered by the565

inheritance functions H(X ′|X , a, t).566

Coulson and Tuljapurkar (2008) showed that in red deer age-specific effects meant that young567

and old parents were incapable of producing offspring that had the same body weight as they did568

at birth. This mechanism reversed the effects of viability selection removing small individuals from569

the population early in life. The same process was observed in marmots (Ozgul et al., 2010) and570

Soay sheep (Ozgul et al., 2009) and may be general for body size in mammals.571

The models we have developed do not incorporate the evolution of phenotypic plasticity. How-572

ever, if genotype-by-environment interactions were included in models, such that different breeding573

values had different responses to environmental variation, then plasticity could evolve. If this was574

coupled with a segregation variance that introduced novel genetic variance, this could capture the575

evolution of novel phenotypic plasticity. However, over the time periods over which our simulations576

are conducted, the evolution of novel forms of phenotypic plasticity, is unlikely to play a major role577

in population responses to environmental change.578

We have now developed IPMs for (i) A where we assumed all individuals had the same, constant,579

E and (ii) E where we assumed all individuals had the same, constant, A. We have shown how IPMs580

can capture a wide range of biological processes including adaptive and non-adaptive plasticity and581

correlated characters, and the circumstances when equilibria are achieved. We now link together582

these advances into models of the joint dynamics of the bivariate distribution N(A, E , t).583

Models for the phenotype consisting of genetic and environmental components584

In the section we construct models where the character can be determined by a mixture of the585

genetic and environmental components. These models allow us to explore how adaptive evolution586

is influenced by plasticity.587

We first develop a dynamic univariate version of the Breeders equation (Falconer, 1960) for a588

species with non-overlapping generations in a constant environment. In this case, the environmental589
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component of the phenotype is assumed to be a consequence of developmental noise: individuals590

achieve their genetic potential, plus or minus a departure. At each generation within each breeding591

value, the distribution of the environmental component of the phenotype is assumed to be Gaussian592

with a mean of 0 and a constant variance (SI §1.1 Model I).593

Our initial conditions are a bivariate Gaussian distribution of A and E which we iterate forwards594

for 300 time steps. Over time, the mean of the genetic component of the phenotype increases. In595

contrast, the mean of the environmental component is constant. The population grows hyper-596

exponentially (Figure 4(a)), the mean of the phenotype increases in value due to evolution (Figure597

4(a,d)) and the additive genetic variance is slowly eroded (Figure S2). Because the additive genetic598

variance is eroded, while the phenotypic variance remains constant, the heritability declines over599

time (Figure S2).600

Our second model (SI §1.1 model J) has a negative density-dependent term in the fitness601

function. The phenotype evolves faster in this model than in our density-independent model (Figure602

4(b)). Population size grows nearly linearly in this model (Figure 4(d)), although the rate of increase603

does slow slightly each generation as genetic variation is eroded. The difference between the hyper-604

exponential (density-independent model) and nearly linear increases (density-dependent model)605

in population size explain the difference in the rates of evolution. This is because the selection606

differential that determines the rate of evolution (an emergent property from our model (Wallace607

et al., 2013)) has the population growth rate in its denominator. The population growth rate is608

smaller in the density-dependent model (just above unity) than in our density-independent one609

(it increases with time), and this leads to an increase in the strength of selection and the rate of610

evolution (see also Pelletier and Coulson, 2012). A consequence of this is that the additive genetic611

variation and heritability tend towards zero faster the in density-dependent model than in the612

density-independent one (Figure S2).613

In our third model (SI §1.1 model K), negative density-dependence is included in the inheritance614

function for the environmental component of the phenotype as well as in the fitness function. This615

captures adaptive phenotypic plasticity. This results in a negative change in the mean of the616
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environmental component of the phenotype with time (Figure 4(c)). This decrease is reflected in617

a change in the mean of the phenotype itself. Adaptive phenotypic plasticity leads to a decline in618

the population growth rate which results in a slight increase in the rate of evolution compared to619

the density-dependent model with no plasticity. However, the effect is not large and is only just620

distinguishable when comparing Figures 4(b) and (c).621

In our final models (SI §1.1 models L to N) we examine how a one off perturbation influences622

the mean of the phenotype, its components and the population growth rate (Figure 4(g)-(l)) when623

there is no plasticity, adaptive plasticity and non-adaptive plasticity. We set the variance in the624

genetic and environmental component of the phenotype to be equal, giving an initial heritability of625

h2 = 0.5. In each model we allow the population to achieve the same equilibrium population size in626

the absence of selection (RZ = 0). We then impose a one off mortality event when 99% of individuals627

above the mean of the phenotype are killed off. At this point we also impose selection (RZ = 0.1). In628

all three models the mortality event results in a small change in the mean value of the phenotype629

(SI §1.5 for an explanation) (Figure 4(g)-(i), red lines) but a halving of population size (Figure630

4(j)-(l)). Adaptive plasticity results in the environmental component of the phenotype returning631

to its pre-perturbation value very quickly (Figure 4(g)-(i) blue lines). In contrast, although the632

perturbation causes a modest change in the mean of the genetic component of the phenotype,633

it takes > 10 generations for evolution to reverse the change (Figure 4(g)-(i), black lines). This634

demonstrates that a strong selective effect can leave a large population dynamic impact, but leave635

only a small initial signature in the phenotype even when the trait is highly heritable.636

Over the longer term, the dynamics of the all components of the phenotype, the phenotype637

itself and the population dynamics all depend upon whether plasticity is adaptive or non-adaptive.638

Adaptive plasticity allows the population size to initially recover from the perturbation more quickly639

than when plasticity is absent or non-adaptive (Figure 4(j)-(l)). However, over a longer time640

period, non-adaptive plasticity results in the population achieving a larger size than when plasticity641

is absent or adaptive. These differences in population growth rate impact rates of evolution:642

immediately following the perturbation, the rate of evolution is greatest when plasticity is non-643
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adaptive. However, the rate of evolution then increases when plasticity is adaptive (Figures S2 and644

S3). As with our previous models, the effects of adaptive and non-adaptive plasticity on rates of645

evolution are relatively small, but our results demonstrate how the two processes can interact.646

Signatures of evolution in phenomenological descriptions of mechanistic pro-647

cesses648

The models in the previous section are quite complex. Do we always need to construct such649

evolutionarily explicit IPMs to predict population responses to environmental change, or can we650

rely on simpler, phenotypic IPMs? There are two reasons why it may be preferable to not construct651

evolutionarily explicit models. First, evolutionarily explicit IPMs are more complicated to construct652

than those that do not include genotypes or breeding values. Second, when data are unavailable653

to explicitly include breeding values into models (Traill et al., 2014b), the effects of evolution on654

predicted dynamics can still be explored by examining the consequences of perturbing parameter655

values (Traill et al., 2014a).656

When evolution occurs within a system we would expect parameters in phenomenological in-657

heritance and development functions that are fitted to data to change with time. We can see this658

in Figure 1(e)-(g)). In these age-structured evolutionarily explicit models, the bivariate breeding659

value distribution (black contours) changes location as evolution occurs. We have fitted Gaussian660

development functions to these bivariate distributions at the beginning of each simulation and661

at the end (coloured image plots). The parameters that determine these developments functions662

have clearly changed as the location of the functions have changed. A similar process occurs for663

inheritance functions (not shown).664

Numerous authors have previously noted this phenomenon in models of evolution. For exam-665

ple, in population genetic (Charlesworth, 1994) and eco-evolutionary models (Coulson et al., 2011;666

Yoshida et al., 2003) when genotype frequencies change with time, macroscopic, population level667

quantities like mean survival and recruitment also change; in adaptive dynamic models, as one668

strategy invades another, population level parameters inevitably change with strategy frequency669
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over time (Metz et al., 1996); in quantitative genetic predator-prey models population level param-670

eters of both predators and prey vary over time leading to persistence of the interaction (Doebeli,671

1997); and in evolutionarily explicit IPMs parameters in inheritance functions have been shown672

to change with time as evolution progresses (Rees and Ellner, 2016). These insights are useful673

because if evolution is occurring within a system, then temporal trends in statistical estimates of674

model parameters would be expected – in other words, the effect of time, either additively or in675

an interaction with other parameters, would be expected in µH(Z, t), µH(Z, a, t) or µD(Z, t). If676

marked temporal trends are observed in parameters in development and inheritance functions that677

cannot be attributed to a changing environmental driver, then evolutionarily explicit IPMs may be678

required.679

What about parameters in fitness functions S(Z, t) and R(Z, t)? Can any inferences from680

temporal trends in these parameters be made? In our approach, evolution of a focal trait would681

not be expected to alter statistical estimates of the fitness functions. In our models, evolution682

simply moves the location and shape of the phenotype distribution, but not its association with683

survival or recruitment.684

We have identified one circumstance where evolution will leave a signature in the dynamics of685

fitness function parameters. Parameters in these functions can evolve in the presence of a genetically686

unmeasured correlated character that is also evolving. To demonstrate this we construct a model687

of a bivariate character, examine the dynamics it predicts, before exploring the consequences of688

failing to measure one of the characters.689

We assume clonal inheritance such that dynamics of the characters are solely determined by a

bivariate fitness function,

R(A, t) = RI −RA1A1 +RA2A2 (18)

The dynamics this model predicts depend upon the initial covariance between the two characters690

in a similar way to our age-structured model (equation 11). In our first example the two characters691

negatively covary, while in the second they positively covary (SI §1.1 for model parameterizations).692

The initial negative covariation allows rapid evolution, with population growth (Figure 5(a)), the693

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/090894doi: bioRxiv preprint 

https://doi.org/10.1101/090894
http://creativecommons.org/licenses/by-nc-nd/4.0/


mean of the characters (Figure 5(b)), their variances (Figure 5(c))) and the covariance between694

them (Figure 5(d)) evolving relatively quickly. In contrast, when the two characters positively695

covary, evolution is much slower, with the character means, variances and covariance changing696

much more slowly, even though the fitness functions are identical in each model (Figure 5(e)-(h)).697

We now construct a fitness function for A1 when A2 is not measured. We start by defining

mean fitness, an observable, as E(R.t) = E(R(A, t)). The slope R̂A1,t is given by,

R̂A1,t = RA1 +
σ(A1,A2, t)

σ2(A1, t)
RA2. (19)

The intercept can be calculated in the usual manner by estimating the means of fitness and A1

R̂I,t = E(R, t)− R̂A1,tE(A1, t), (20)

giving,

R(A, t) = R̂I,t + R̂A1,tA1. (21)

Equation (21) is what would be estimated from data if A2 were not measured and included in698

analyses (Kendall, 2015; Söderström and Stoica, 2002). It will correctly describe the consequences699

of selection on A1 even though A2 could be correlated with it. This is because the unmeasured700

correlated character impacts fitness whether it is measured or not, and consequently impacts the701

association between the focal character and fitness in its absence (Lande and Arnold, 1983). How-702

ever, the fitness function cannot provide accurate predictions over multiple generations when it is703

assumed that the fitness function is constant.704

Over multiple generations the existence of unmeasured correlated characters will alter parame-705

ters in the fitness function in Equation (21) if selection alters genetic variances and covariances of706

measured and unmeasured correlated characters (Figure 5(i)-(j)). This is because R̂I,t and R̂A1,t707

are both functions of the covariance between the two characters (equations 19-21). If selection708

alters this covariance, parameters R̂I,t and R̂A1,t will evolve with time. It is also why we use the709

subscript t for R̂I,t and R̂A1,t. Evidence of correlated characters under selection can consequently710

be inferred if parameters in fitness functions are observed to change with time in a system in the711
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absence of a changing environmental driver. Note that a non-stationary unmeasured environmen-712

tal driver could also generate trends in parameter values in fitness functions in phenomenological713

IPMs.714

Discussion715

In this paper we develop an approach that allows prediction of how populations respond to envi-716

ronmental change via adaptive evolution and plasticity. We do this by incorporating mechanistic717

insights from evolutionary genetics into data-driven structured population models. Our approach is718

to split the phenotype into its genetic and environmental components and to model the dynamics719

of the genetic component with functions based on mechanistic understanding. In contrast, the720

dynamics of the environmental component of the phenotype, where mechanistic insight is lacking,721

are modeled with phenomenological functions that can be identified from the analysis of data.722

Our approach is appropriate for sexually reproducing or clonal species with either overlapping or723

non-overlapping generations.724

Evolutionarily explicit structured models725

IPMs are now a widely used tool in ecology and evolution because of their versatility and the ease726

with which they can be parameterized (Merow et al., 2014). All key statistics routinely estimated727

in population ecology, quantitative genetics, population genetics and life history describe some728

aspect of a character distribution or its dynamics (Coulson et al., 2010). IPMs are so versatile729

because they describe the dynamics of these distributions. Characterization of the determinants730

of these statistics gained via sensitivity or elasticity analysis of models have provided insight into731

how ecological and evolutionary quantities that interest biologists are linked (Coulson et al., 2011).732

Although this logic was developed several years ago, there has recently been criticism that IPMs733

cannot be used to track the dynamics of multivariate breeding values expressed at different ages734

(Chevin, 2015; Janeiro et al., in press). Our paper addresses this criticism head-on—we show how735
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IPMs can be formulated to capture such mechanistic complexity. In demonstrating this we develop736

a general modeling approach to capture population responses to environmental change. Having737

done this, we are now in a position to construct IPMs of quantitative characters and examine how738

perturbing the environment will influence not only the dynamics of the phenotype and its genetic739

and environmental components, but also the life history (Steiner et al., 2014, 2012) and population740

dynamics (Easterling et al., 2000).741

The work we present here adds to a growing literature that explicitly incorporates evolution into742

structured models, and IPMs in particular. Within the population genetics paradigm, Charlesworth743

(1994) developed structured models with a one-to-one map between genotype and phenotype in744

age-structured populations. Building on this work, Coulson et al. (2011) showed how simple genetic745

architectures can be incorporated into IPMs, developing a model to explore how evolution at a single746

locus would occur simultaneously with phenotypic change of discrete and continuous characters,747

life history and population dynamics.748

Working in the quantitative genetic paradigm, Lande (1982) derived age-structured models749

that tracked the dynamics of the mean of the additive genetic component of the phenotype (E(A)750

in our notation) and the mean of the phenotype itself (E(Z)). He assumed a constant genetic-751

variance covariance matrix and consequently weak selection and normally distributed character752

values—assumptions we relax. Barfield et al. (2011) extended Lande (1982)’s approach to track753

the dynamics of the entire character distribution and to stage-structured populations. In doing so,754

they developed a general, flexible approach to track the entire distributions of A and Z. Childs755

et al. (2016) extended this approach to two sexes. Because A is inherited with mechanistic rules756

that are not impacted by the environment, while inheritance and development of E are plastic and757

can be impacted by the ecological environment (Falconer, 1960), it is difficult to incorporate the758

effects of the environment on the dynamics of the phenotype by focusing on A and Z as Lande759

(1982), Barfield et al. (2011) and Childs et al. (2016) have done. In contrast, our approach (which760

otherwise has a similar logic to Barfield et al. (2011) and Childs et al. (2016)) tracks the dynamics of761

E and A (or G—the full genotypic value, including non-additive components—if desired), making762
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incorporation of environmental drivers that influence inheritance and development of [E ] more763

straightforward. We show that it is possible to have selection operating on the phenotype while764

incorporating mechanistic insights into the dynamics of the genetic component of the phenotype765

and phenomenological insight into the role of the ecological environment on the dynamics of the766

environmental component of the phenotype. By doing this, we show how population responses to767

environmental change via adaptive evolution, phenotypic plasticity and epigenetic inheritance can768

be simultaneously explored. This opens up the way to provide novel insights into the circumstances769

when each process is expected to contribute to population responses to environmental change.770

Population responses to environmental change771

Unlike previous evolutionarily explicit IPMs (Barfield et al., 2011; Childs et al., 2016; Rees and772

Ellner, 2016), our approach requires explicit consideration of the inheritance and development of773

E , the environmental component of the phenotype. This allows our models to capture a range of774

plastic responses to environmental change along with adaptive ones. What do our findings say775

about the contributions of plasticity, evolution, and their interaction to population responses to776

environmental change?777

Detrimental environmental change often causes a decline in population size. When there is an778

association between a phenotypic trait and survival and recruitment rates, phenotypic change can779

lead to increased survival and recruitment rates (Ozgul et al., 2010) and consequently an increase780

in population growth rate and size. Two processes can lead to phenotypic change – plasticity781

and adaptive evolution. There has been considerable discussion about the relative roles of each in782

allowing populations to respond to change (e.g. Bonduriansky et al., 2012; Chevin et al., 2010).783

Genotypes and breeding values remain fixed within individuals throughout life which means784

that differential survival and recruitment rates are the processes that alter these distributions and785

underpin evolution. The strength of differential survival and recruitment can be impacted by envi-786

ronmental variation generating fluctuating selection (Lande, 2007). Environmental variation does787

not influence genetic inheritance: once mating pairs are formed, inheritance of breeding values, A,788
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does not alter the mean or variance of breeding value distributions (Fisher, 1930). In contrast,789

distributions of the environmental component of the phenotype can be altered via survival, re-790

cruitment, development and inheritance with each process potentially impacted by environmental791

variation (Reed et al., 2010). Given these differences between the dynamics of A and E plasticity792

can lead to more rapid change than evolution in our models (e.g. Figure 4). This is because more793

biological processes can directly alter the distribution of plastic characters than can impact dis-794

tributions of breeding values. These results are consistent with those of other authors, including795

Lande (2009) and Chevin et al. (2010), who also concluded that plastic change should be faster796

than evolutionary change. But how quickly will evolution alter phenotypic trait distributions?797

Our results on the speed of evolution suggest that claims of detectable rapid evolution in798

quantitative phenotypes is likely to take a few tens of generations. For example, environmental799

change increases mortality leading to a decline in population size, but for mortality selection to lead800

to evolutionary change over the course of a generation, a large proportion of the population needs801

to be selectively removed and the phenotype needs to be highly heritable. This is seen in our model802

results (Figure 4(g)-(i)) and with a simple numerical example: when all individuals above the mean803

of a normally distributed character are removed from the population and the trait has a heritable804

of h2 = 0.5, population size halves in a single time step but the mean of the character will only shift805

from the 50th percentile to the 37.5th percentile. For a standard normal distribution with a mean806

of 0 and a standard deviation of unity, this means the mean would only shift by 0.319 – i.e. less807

than 1
3

rd of a standard deviation – i.e. a long way from statistical significance. In reality, mortality808

selection resulting from environmental change will likely result in a change to the mean of the809

distribution that is only a fraction of a standard deviation compared to our example. Given this,810

reports of rapid evolution due to environmental change increasing mortality selection over a small811

number of generations (e.g. Coltman et al., 2003) should be treated with extreme caution. It is812

much more likely that change is a consequence of phenotypic plasticity. Over multiple generations,813

recruitment selection can also contribute to evolutionary change and our approach allows the role814

of this to be investigated. However, unless reproduction is restricted to individuals with extreme815
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phenotypic trait values in both sexes, it seems unlikely that evolution can generate statistically816

demonstrable evolutionary change over a small number of generations (Coulson et al., in revision).817

This is not to say that evolution is not important over longer time scales. Over tens of generations818

evolution can shift phenotypic trait means to a greater extent than phenotypic plasticity (Figure819

4(g)-(i) blue versus black lines).820

In order for plasticity to allow populations to rapidly respond to environmental change, a large821

proportion of individuals within the population must exhibit the same plastic response. A good822

example of such a dynamic is for size-related traits that are determined by resource availability,823

particularly when scramble competition is operating. When resources becoming limiting, all indi-824

viduals will be unable to develop as rapidly as when resources are more common. A consequence825

of this is that individuals that developed in cohorts when resource were sparse will exhibit smaller826

body sizes compared to individuals in those cohorts that developed when resources were more827

abundant. We can capture this form of plasticity in our framework with an additive effect of den-828

sity in the inheritance or development function for E (e.g. Figure 3). In contrast, when contest829

competition operates, larger individuals would acquire more resources than those that are smaller,830

and would develop faster. We can capture this in our models with interactions between density, E831

and A in either the inheritance or development functions for E .832

The above discussion demonstrates how our approach can be used to capture different forms of833

plasticity. However, for plasticity to help populations respond to environmental change it must be834

adaptive: plasticity must change the mean trait value in a way that increases fitness (Ghalambor835

et al., 2007). We demonstrate that for additive, linear models, adaptive and non-adaptive plasticity836

can be specified by altering the sign for the effect of the environment in the function specifying837

the mean dynamics of the inheritance or development functions (Figure 3). When interactions are838

included in these functions specifying general rules for whether plasticity is adaptive or non-adaptive839

will likely be more challenging. However, our approach provides a way in which to investigate when840

plasticity is adaptive or non-adaptive, and how different types of plasticity will influence population841

responses to environmental change.842
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Our results also show how plasticity can influence evolutionary rates. Plasticity, operating via843

development and inheritance functions for the environmental component of the phenotype, alters844

the distribution of the phenotype, and this can alter the strength of selection, which can then845

influence the dynamics of the genetic component of the phenotype (evolution). The effects of plas-846

ticity on selection and evolution can be surprisingly complex. We only examined the evolutionary847

consequences of plasticity following an environmental shock that influenced all individuals in the848

same way, but even in this simple case we found that adaptive plasticity initially slowed the rate849

of evolution compared to non-adaptive plasticity, before increasing it (Figure 5 and SI). In general850

in order to understand how plasticity will influence selection, it is necessary to understand how it851

influences both the numerator and denominator of the selection differential that underpins evolu-852

tion (Pelletier and Coulson, 2012). The numerator is the covariance between the phenotype and853

absolute fitness (Falconer, 1960) and the denominator is mean fitness. In our models of species with854

non-overlapping generations this is mean recruitment – the population growth rate (Fisher, 1930).855

Selection is linear in our models where plasticity influences all individuals in the same way via an856

additive effect of density on inheritance of the environmental component of the phenotype (figure857

5), and this means that plasticity influences the population growth rate rather than the numerator858

of the selection differential. A consequence of this is that it is differences in the population growth859

rate that generates the differences in evolutionary rates between models when plasticity is adaptive860

and non-adaptive. In more complex cases when plasticity influences the covariance between the861

phenotype and fitness via genotype-phenotype interactions within a generation, to understand how862

selection influences evolution it is necessary to understand how plasticity not only influences mean863

fitness, but also how it generates differences between the covariance between the genetic component864

of the phenotype and fitness and the covariance between the phenotype itself and fitness. Because865

the components of the selection differential can be calculated from IPMs (Coulson et al., 2010;866

Wallace et al., 2013) the approach we develop here provides a flexible way to examine how different867

types of plasticity can influence evolution following environmental change. But in order to explore868

such dynamics in real systems it will be necessary to parameterize our models for real systems.869
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Parameterizing and analyzing evolutionarily explicit IPMs870

A large literature exists on how to statistically parameterize IPMs (Easterling et al., 2000; Merow871

et al., 2014; Rees et al., 2014). The vast majority of IPMs have been constructed phenomenologi-872

cally, using statistical descriptions of observational data. Several authors have shown how fixed and873

random effects incorporated into these statistical functions can be formulated within IPMs (Childs874

et al., 2003; Coulson, 2012; Rees and Ellner, 2009), but additional statistical estimation is required875

to parameterize the evolutionarily explicit IPMs we have developed.876

Fitness functions in evolutionarily explicit IPMs can be parameterized using standard general,877

generalized and additive regression methods that are routinely used to parameterize phenomeno-878

logical IPMs (Rees and Ellner, 2009). If relatedness information is available and the infinitesimal879

model is assumed, genetic and phenotypic variances and covariances can be estimated using the880

animal model (Lynch and Walsh, 1998). These quantities can be used to construct the initial dis-881

tributions of the genetic and environmental components of the phenotype. Parameter estimates of882

ecological drivers fitted as fixed or random effects in the animal model can be used to parameterize883

inheritance and development functions for the environmental component of the phenotype. It is884

consequently possible to parameterize models using our approach with existing methods.885

There is also a large literature on how to analyze IPMs (Ellner and Rees, 2006; Steiner et al.,886

2014, 2012). The majority of these tools, including sensitivity and elasticity analysis of model887

predictions to transition rates and function parameters (Coulson et al., 2011, 2010; Ellner and Rees,888

2006; Steiner et al., 2014, 2012), are likely sufficiently general to be applicable to evolutionarily889

explicit IPMs. In future work we plan to parameterize models for bird, mammal and fish species890

with overlapping generations and to analyze them with existing methods. Once evolutionarily891

explicit IPMs have been parameterized and analyzed we will be able to explore how populations,892

phenotypic characters and life histories are predicted to respond to a range of environmental changes893

via plasticity and adaptation.894
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When should evolutionarily explicit IPMs be used to predict population re-895

sponses to environmental change?896

Chevin (2015) and Janeiro et al. (in press) speculated that published IPMs that did not include897

explicit evolutionary processes could provide spurious insight. Three strands of evidence suggest898

this speculation may often be unwarranted.899

First, the signature of evolutionary change in model predictions is a function of the heritability900

of the trait: when the phenotypic variance is dominated by the environmental component of the901

phenotype then the dynamics of that component will dominate model predictions. Most IPMs to902

date have been constructed for body weight (Merow et al., 2014), a trait that often has a heritability903

of less than 0.2 in vertebrates (e.g., blue tits; Garnett, 1981) and often around 0.1 (e.g., bighorn904

sheep; Wilson et al., 2005). This means that model predictions will be dominated by the dynamics905

of the environmental component of the phenotype and that a phenomenological statistical approach906

to parameterising these models has the potential to capture observed dynamics well.907

Second, even when phenotypic traits are heritable, they rarely evolve in the wild as predicted:908

evolutionary stasis of heritable phenotypic traits in the presence of directional selection is frequently909

observed in nature (Merilä et al., 2001). When fitness functions are monotonic in the phenotypic910

value and selection is directional (which is typical for body size (Kingsolver et al., 2001)), then911

in order to maintain an equilibrium trait distribution the inheritance function must reverse the912

phenotypic changes caused by selection. Coulson and Tuljapurkar (2008) showed this for the mean913

phenotypic trait; equation (17) demonstrates that this must apply to all moments of the phenotype914

distribution. However, when the genotype-phenotype map is additive and there is additive genetic915

variance for the trait, directional selection is expected to result in evolutionary change and the916

inheritance function for the genetic component of the phenotype can not reverse genetic changes917

attributable to selection. Unmeasured genetically correlated characters can prevent evolutionary918

change in these circumstances, although the cases when this is likely to prevent evolution are restric-919

tive, and evidence for such characters playing a major role in limiting evolution in the wild is lacking920

(Agrawal and Stinchcombe, 2009). Assuming selection on the phenotype has been measured ap-921
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propriately and is directional, this suggests that the assumption of an additive genotype-phenotype922

map may be violated, and the mean of the parental and offspring breeding value distributions may923

not be equal. A mechanism such as over-dominance can achieve this (Fisher, 1930). Our approach924

allows the effects of relaxing assumptions of quantitative genetics on evolutionary change to be ap-925

proximated through the use of phenomenological inheritance functions for the genetic component926

of the phenotype.927

Third, because evolutionary change is rarely observed in the wild when it is predicted, observed928

phenotype change in natural populations is usually attributable to plasticity (e.g. Ozgul et al.,929

2010, 2009). In these cases, standard, non-evolutionarily explicit, IPMs have accurately captured930

observed dynamics (Childs et al., 2003; Merow et al., 2014; Ozgul et al., 2010).931

These three strands of evidence suggest that evolutionarily explicit IPMs may frequently not932

be required to gain useful insight into population responses to environmental change. If there is no933

statistical evidence of temporal trends in inheritance, development or fitness function parameters934

once variation in the ecological environment has been corrected for, then the use of evolutionarily935

explicit IPMs may result in the construction of unnecessarily complex models. There is often a936

temptation to include ever more complexity into models, but this comes at the cost of analyt-937

ical tractability: as more mechanisms or processes are incorporated into models, understanding938

why a model produces the predictions it does becomes increasingly challenging. However, when939

evolutionary change is convincingly documented (e.g. Reznick et al., 1997) or is proposed to be a940

possible mechanism generating rapid phenotypic change (Coltman et al., 2003), the construction of941

evolutionarily explicit IPMs is advised as the models allow separation of the roles of adaptive and942

plastic responses to environmental change.943

We have shown how evolutionarily explicit IPMs can be constructed, invalidating the criticisms944

of Chevin (2015) and Janeiro et al. (in press) that IPMs have not been developed to incorporate the945

character-state approach of quantitative genetics. IPMs that are not evolutionarily explicit have946

been used to address many questions in ecology and their application has proven insightful (Merow947

et al., 2014). They are likely to remain widely used and we expect this use to result in important948
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new insights. However, we have extended their utility to cases where evolutionary processes are949

known, or proposed, to be drivers of phenotypic change.950

Conclusions951

In this paper we have developed a theoretical modeling approach that links demography and quan-952

titative genetics to explore how populations will respond to environmental change. The approach953

is general, providing formal links between ecology and evolution. Our work builds upon a growing954

literature of developing evolutionarily explicit structured population models. This body of litera-955

ture shows how flexible IPMs are. They provide a powerful tool with the potential to unify ecology956

and evolution.957
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Table 1: Notation used in the paper.

Notation Definition

Z An individual’s phenotypic trait value. Z can be anything that can be measured on

an organism when it is captured or observed. Z cannot be a life history quantity

(like life expectancy) which are emergent properties of the dynamics of Z.

G The genetic component of the phenotype defined as the total genotypic contribution

of an individual’s genotype to Z. G can be calculated across multiple loci and can

be decomposed into contributions from epistasis, dominance, and additive genetic

effects.

A The additive genetic component (breeding value) of G. Change in the distribution

of A reflects change in allele frequencies and consequently evolution.

E The environmental component of the phenotype defined as phenotypic variation not

attributable to genetic contributions. Determined by gene expression patterns or

developmental noise. Nutrient or energy availability may influence gene expression

meaning E may be correlated with environmental drivers θ.

θ An environmental driver

X X ∈ {Z,G,A, E}

N(X , t) The distribution of X at time t

S(X , t) Survival function: describes the expected association between X and survival be-

tween t and t+1. Only used in age-structured models.

R(X , t) Recruitment function: describes the expected association between X and the number

of offspring produced between t and t+ 1 that survive to recruit into the population

at time t+ 1.

H(X ′|X , t) Inheritance function: describes the expected probability of a reproducing individual

with character value X at t producing an offspring with character value X ′ at t+ 1

when it recruits to the population.
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D(X ′|X , t) Development function: describes expected probability of a surviving individual with

character value X at t expressing character value X ′ at t + 1. Only used in age-

structured models.

1165
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Table 2: Different forms of plasticity and their incorporation into IPMs. Each term in the table

below can be included in the functions µH(E , t), µH(E , a, t) or µD(E , a, t). Similar terms could be

included in V H(E , t), V H(E , a, t) or V D(E , a, t) if the variance in inheritance or development varied

for specific values of E in predictable ways. This would capture different forms of bet-hedging.

Term Biological interpretation Type of plasticity

µHI No plasticity.

+µHE ′E ′ Temporal autocorrelation in E No plasticity.

+µHθ θ Ecological environment influences all values of E in the

same way.

Additive plasticity generated

by temporal variation in the

ecological environment.

+µHθ,EθE Temporal autocorrelation in E depends upon the eco-

logical environment.

Non-additive plasticity gener-

ated by temporal and spatial

variation in the ecological en-

vironment.

+µHAA Value of E depends upon E . No plasticity unless E also de-

pends upon θ.

+µHθ,AθA Value of the E depends upon an interaction between

A and the ecological environment.

Genotype by environment in-

teraction.

+µHA,E ′AE ′ Temporal autocorrelation in E depends upon the A. Genotype by environment in-

teraction.

1166

Figure legends1167

Figure 1. The role of selection on the dynamics of A. Dynamics of univariate A subject to1168

linear selection and clonal inheritance (a)-(d) (SI §1.1 Model A). The population does not reach1169
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an equilibrium, with (a) population growth, and the (b) mean, (c) variance and (d) skew of the1170

character continually evolving. Imposing a maximum possible character value constrains change1171

(red lines versus black lines (a)-(d)). In the age-structured case we track the dynamics of a bivariate1172

character distribution (e)-(g) (SI §1.1 models B, C and D). The models in (e) and (f) (SI Models1173

B and C) are identical except the starting distribution at time t = 1 has a covariance of -0.2 in (f)1174

compared to 0.7 in (e). The parameterisation in (g) is chosen to demonstrate a case where the two1175

traits evolve in different directions. The coloured image plots in figures (e)-(g) represent Gaussian1176

development functions D(Z ′|Z, t) fitted to the bivariate distributions of A at the beginning and end1177

of the simulation. Evolution of the bivariate character has resulted in different parameterisations1178

of these phenomenological functions. The lighter the shading, the greater the probability of a1179

transition from character value Z at age 1 and to Z ′ age 2.1180

Figure 2. The dynamics of inheritance (SI Model E). The dynamics of (a) population growth rate1181

(R0), the (b) mean and (c) variance of A vary between models with clonal inheritance (black line),1182

the convolution in equation (15) (red line) and the Gaussian inheritance function in equation (16)1183

(blue line). Dynamics predicted from the convolution and the Gaussian inheritance function are1184

indistinguishable in this model. (d) the temporal dynamics of the clonal model versus the other1185

models. The initial distribution at t = 1 is Gaussian. After 100 generations the character distribu-1186

tions predicted by the clonal and sexual models have only diverged slightly. The infinitesimal model1187

of quantitative genetics assumes that the dynamics of alleles can be inferred from the dynamics of1188

genotypes. Under this assumption (e) selection alters genotype and allele frequencies, while inheri-1189

tance does not. In contrast, (f) when dominance variance operates, both selection and inheritance1190

alter genotype frequency while neither alter allele frequencies. For a Gaussian distributed char-1191

acter, (g) dominance variance acts as an offset, reducing the intercept of a Gaussian inheritance1192

function.1193

Figure 3. Dynamics of E and plasticity. (a) Return times to equilibrium for three inheritance1194

functions (SI §1.1 models F-H) following a one off perturbation (see main text). There is no1195

plasticity incorporated into model F (black line). Model G (red line) and model H (blue line)1196
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respectively incorporate adaptive and non-adaptive phenotypic plasticity. In (b) and (c) we imposed1197

a permanent environmental change by reducing the intercept of the fitness function. (c) Represents1198

the mean phenotype.1199

Figure 4. A dynamic version of the Breeders Equation. The dynamics of the phenotype (red lines)1200

and its genetic (black lines) and environmental (blue lines) components (a)-(c) and (g)-(i), and the1201

dynamics of the population (d)-(f) and (j)-(l). In the first model (a) and (d), both fitness and1202

inheritance of the environmental component of the phenotype are independent of density (SI §1.11203

model I). In the second model (b) and (e) fitness is negatively density-dependent and inheritance1204

of the environmental component of the phenotype is density-independent (SI §1.1 model J). In the1205

third model, both fitness and inheritance of the environmental component of the phenotype are1206

negative density-dependent (SI §1.1 Model K). The treatment of plasticity can dramatically influ-1207

ence the dynamics of the phenotype and population size (SI §1.1 models L-N). Adaptive phenotypic1208

plasticity (h) and (k) leads to the population size and phenotype recovering from a perturbation1209

much faster than non-adaptive plasticity (i)-(l). The absence of a plastic response (g) and (j) re-1210

sults in the population recovering from a perturbation at an intermediate rate between cases where1211

adaptive and non-adaptive plasticity are operating.1212

Figure 5. Dynamics of bivariate characters and evolution of fitness functions in the presence of1213

an unmeasured, genetically correlated character (SI §1.1 model P and Q). We construct a simple1214

model with clonal inheritance of two correlated characters that both influence fitness. We explore1215

two initial starting conditions that only differ in their genetic covariance (SI §1.1 models P and Q).1216

In (a)-(d) the covariance accelerates the rate of evolution compared to (e)-(h). The dynamics of the1217

fitness function for each character when the other character is not measured (i) and (j). Regardless1218

of the covariance between characters, the fitness functions evolve during the course of 120 time step1219

simulation.1220
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Supplementary information1221

1.1 Model Parameterization1222

Model A:1223

N(A, t = 1) = φ(8, 1)

R(A, t) = 0.1 + 0.2A

µH(A, t) = A

V (A, t) = 0

x = ∞ or x = 11.5

Models B and C:1224

S(A1, 1, t) =
1

1 + e−(0.1+0.03A)

S(A2, 2, t) = 0

R(A1, 1, t) = 0

R(A2, 2, t) = e0.01−0.075A.

Starting conditions at time t = 1 are multivariate normal with the following parameters, Model1225

B:1226

E(A1) = 7

E(A2) = 10

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = −0.2

61

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/090894doi: bioRxiv preprint 

https://doi.org/10.1101/090894
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model C:1227

E(A1) = 7

E(A2) = 10

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = 0.2

Model D:1228

S(A, 1, t) =
1

1 + e−(0.1+0.06A)

S(A, 2, t) = 0

R(A, 1, t) = 0

R(A, 2, t) = e0.01+0.05A.

Starting conditions at time t = 1 for model D:1229

E(A1) = 7.5

E(A2) = 16

σ2(A1) = 1

σ2(A2) = 0.8

σ(A1,A2) = −0.1

Model E:

R(A, t) = 0.2 + 0.1A. (22)

Model F: no plasticity:1230

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 4.64 + 0.5E

VH(E , t) = 1
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Model G: Adaptive phenotypic plasticity:1231

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 5 + 0.5E − 0.005n(t)

VH(E , t) = 1

Model H: Non-adaptive plasticity:1232

R(E , t) = 0.2 + 0.1E − 0.002n(t)

µH(E , t) = 4.29 + 0.5E + 0.005n(t)

VH(E , t) = 1

Model I1233

w(Z, t) = 0.3 + 0.1Z

µH(E , t) = 0

vH(E , t) = 1

Model J1234

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 0

vH(E , t) = 1

Model K1235

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 19− 0.065n(t)

vH(E , t) = 1
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Initial starting conditions for Z = A+ E for models I to K:1236

E(A) = 7

E(E) = 12

σ2(A) = 1

σ2(E) = 1

σ(A, E) = 0

Model L1237

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 12

vH(E , t) = 1

Model M1238

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 15.48− 0.03n(t)

vH(E , t) = 1

Model N1239

w(Z, t) = 0.3 + 0.1Z − 0.01n(t)

µH(E , t) = 8.52 + 0.03n(t)

vH(E , t) = 1
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Initial starting conditions for Z = A+ E for models L to N:1240

E(A) = 7

E(E) = 12

σ2(A) = 1

σ2(E) = 1

σ(A, E) = 0

Models P and Q:1241

w(A, t) = 2− 0.13A1 + 0.15A2

N(A′, t+ 1) = w(A, t)N(A, t)

Starting conditions at time t+ 1 for model P:1242

E(A1) = 7

E(A2) = 15

σ2(A1) = 1

σ2(A2) = 1

σ(A1,A2) = −0.7

Starting conditions at time t+ 1 for model Q:1243

E(A1) = 7

E(A2) = 15

σ2(A1) = 1

σ2(A2) = 1

σ(A1,A2) = 0.7
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1.2 Calculating quantities from model outputs1244

The expectation of a distribution of X = (G,A, E ,Z) can be calculated as

E(X , t) =

∫
XN(X , t)dX∫
N(X , t)dX

, (23)

The variance of a distribution can be calculated as

σ2(X , t) =

∫
XXN(X , t)dX∫
N(X , t)dX

− E(X , t)2. (24)

For a bivariate distribution X consisting of traits X1 and X2 then the covariance between these

two traits will be,

σ(X1,X2, t) =

∫
X1X2N(X , t)dX∫

N(X , t)dX
− E(X1, t)E(X2, t). (25)

The skew can be calculated as,

s3(X ) =

∫
X 3N(X , t)dX∫
N(X , t)dX

− 3E(X , t)σ2(X , t)− E(X , t)3√
σ2(X , t)3

The kurtosis can be calculated in the following way. First, we define the nth non-central moment1245

of a distribution at time t as mn(X , t) =
∫
XnN(X ,t)dX∫
N(X ,t)dX , then,1246

k4(X ) =

∫
X 4N(X ,t)dX∫
N(X ,t)dX − 4E(X , t)m3(X , t) + 6E(X , t)2m2(X )− 3E(X , t)4

σ2(X , t)
− 3

1.3 Gaussian inheritance function when demography differs between males and1247

females1248

The distribution of mothers and fathers at time t is respectively defined as Nf
R(A, t) and Nm

R (A, t).1249

These distributions are the same size.1250

We can write

N(A, t+ 1) =

∫
H(A′|Am,Af , t)Nm

R (A, t)dA (26)

where the component functions of H(A′|Am,Af , t) are1251

µH(A, t) = (1− η)E(Nf
R(A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t)) (27)
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and σ2(NR(A, t)) is the variance in A across all parents.1252

Alternatively,

N(A, t+ 1) =

∫
H(A′|Am,Af , t)Nf

R(A, t)dA (28)

where the component functions of H(A′|Am,Af , t) are1253

µH(A, t) = (1− η)E(Nm
R (A, t)) + ηA

V H(A, t) = (1− η)2σ2(NR(A, t)). (29)

As the distributions Nf
R(A, t) and Nm

R (A, t) depart from normality, the approximations will1254

predict dynamics that diverge from those predicted by the convolution.1255

1.4 How do different functions alter character distributions?1256

Assume N(X , t) is proportional to a Gaussian distribution. The following parameterizations of a1257

transition functions H(X|X ′, t) in a model N(X ′, t+ 1) =
∫
H(X ′|X , t)N(X , t) will have no effect1258

on the location or shape of the distribution such that N(X , t) = N(X ′, t+ 1),1259

µH(X , t) = (1− β)E(X , t) + βX

V H(X , t) = (1− β2)σ2(X , t). (30)

Note that in this model there is no fitness function and no selection.1260

When the intercept of µH(X , t) is less than (1−β)E(X , t) then E(X ′, t+ 1) < E(X ′, t) and vice1261

versa. A function µH(X , t) can consequently be parameterized to reduce the mean of a distribution1262

across generations or time steps if desired.1263

The slope β will reduce σ2(X ′, t + 1) by β2 compared to σ2(X , t). The intercept of V H(X , t)1264

injects additional variation. If the intercept is larger than (1 − β2)σ2(X , t) then σ2(X ′, t + 1) >1265

σ2(X , t). Functions µH(X , t) and V H(X , t) can consequently be selected to alter the variance from1266

one time step or age to the next.1267

The further the distribution N(X , t) departs from normality, the more approximate these equal-1268

ities will become. However, large departures from these equalities can be used to increase the mean1269

or variance of any distribution in a desired direction.1270
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In Figure S1 we show how µH(X , t) and V H(X , t) can be parameterized to modify the mean1271

and variance of N(X , t) when it is proportional to a normal distribution.1272

1.5 mortality selection and changes in the mean phenotype1273

When a trait is normally distribution, selection needs to be strong in order to substantially shift the1274

mean of a phenotype distribution. Such strong selection inevitably leads to a decrease in population1275

size. In Figure S3 we show how killing 25% of the heaviest individuals has only a small effect on1276

the mean for a distribution with a mean of 0 and a standard deviation of unity. The evolutionary1277

response is even less if E and G are uncorrelated. For example, in the example in Figure S3, the1278

evolutionary response would be half the phenotypic response for h=0.5. In order to substantially1279

shift the mean of the a normal distribution via mortality selection it is necessary for the majority1280

of the population to die.1281

Supplementary Information Figure Legends1282

Figure S1. How parameterizations of transition functions for the environmental component of the1283

phenotype H(E|E ′, t) can be used to grow, maintain or shrink the mean and variance of N(E , t+1).1284

We start with a normal distribution. The initial distribution is represented with a black line in1285

the main figures. The inset figures in (a) to (c) shows the transition functions, with the black line1286

representing the function that has no effect on the location or shape of N(E , t). (a) increasing or1287

decreasing the intercept of µH(E , t) influences the location, but not the shape of N(E , t). (b) How1288

altering the slope of µH(E , t) influences the shape of N(E , t). In this example the mean is unaffected1289

as the function passes through the x, y co-ordinate (E(E , t),E(E , t)). (c) how altering the intercept1290

of V H(E , t) influences the variance. The transition functions in the insets of (b) and (c) generate1291

distributions with the same means and variances (compare blue, red and black distributions in (b)1292

and (c)). A change in variance between N(E , t) and N(E ′, t + 1) achieved by altering the slope1293

of µH(E , t) or the intercept of V H(E , t) generates different amounts of mixing. In (d) upper and1294

lower H(E ′|E , t) functions impact the variance to the same extend (left hand figures) except the red1295
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function simply spreads out the distribution without altering the relative rank of each individual.1296

In contrast, the blue function changes relative ranks (right hand figures).1297

Figure S2. Dynamics of the additive genetic variance (a)-(c) and the heritability (d)-(f) in models1298

I to K. Models of the additive genetic (back line) and environmental (red line) variance (g)-(i)1299

and the heritability (j)-(l) in models L to N. See Figure 5 main paper for dynamics of means and1300

population growth.1301

Figure S3. A normal distribution with mean 0 and standard deviation 1 prior to mortality1302

selection (black line). Mortality occurs, killing off the top 25% of individuals (red distribution).1303

The mean changes from 0 (vertical dashed line) to -0.0324. In other words, even a large highly1304

selective mortality event has a relatively small effect on the mean of a normal distribution.1305
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Figure S1
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Figure S2

71

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2016. ; https://doi.org/10.1101/090894doi: bioRxiv preprint 

https://doi.org/10.1101/090894
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3
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