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Abstract

Ribosome profiling provides a detailed view into the complex dynamics of translation. Although
the precise relation between the observed ribosome footprint densities and the actual translation
elongation rates remains elusive, the data clearly suggest that elongation speed is quite heterogeneous
along the transcript. Previous studies have shown that elongation is locally regulated by multiple
factors, but the observed heterogeneity remains only partially explained. To dissect quantitatively
the different determinants of translation speed, we here use probabilistic modeling of the translation
dynamics to estimate transcript-specific initiation and local elongation rates from ribosome profiling
data. Using this model-based approach, we estimate the fraction of ribosomes (≥ 9%) undetected by
the current ribosome profiling protocol. These missing ribosomes come from regions harboring two or
more closely-stacked ribosomes, and not accounting for them leads to a substantial underestimation
of translation efficiency for highly occupied transcripts. We further quantify the extent of transcript-
and position-specific interference between ribosomes on the same transcript, and infer that the
movement of ≥ 2.5% of ribosomes is obstructed on average, with substantial variation across
different genes. The extent of interference also varies noticeably along the transcript sequence,
with a moderately elevated level near the start site and a significantly pronounced amount near
the termination site. However, we show that neither ribosomal interference nor the distribution
of slow codons is sufficient to explain the observed level of variation in the mean elongation rate
across the transcript sequence. Surprisingly, by optimizing the fit of statistical linear models, we
find that the hydropathy of the nascent polypeptide segment within the ribosome plays a major
role in governing the variation of the mean elongation rate along the transcript. In addition, we
find that positively and negatively charged amino acid residues near the beginning and end of the
ribosomal exit tunnel, respectively, are important determinants of translation speed, and we argue
that this result is consistent with the known biophysical properties of the exit tunnel.
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Introduction

Ribosome profiling [1–3] is a powerful transcriptome-wide experimental protocol that utilizes
high-throughput sequencing technology to provide detailed positional information of ribosomes
on translated mRNA transcripts. As a useful tool to probe post-transcriptional regulations of
gene expression, ribosome profiling has notably been used to identify translated sequences within
transcriptomes, to monitor the process of translation and the maturation of nascent polypeptides in

vivo, and to study limiting determinants of protein synthesis (see recent reviews [4–6] for an overview
of diverse applications of the technique). In addition, since the ribosome occupancy at a given
position reflects the relative duration of time spent at that position, ribosome profiling provides
an unprecedented opportunity to study the local translational dynamics [7]. However, the precise
relation between the observed footprint densities and the corresponding translation elongation rates
remains elusive [6], thus making it difficult to interpret ribosome profiling data.

One factor which affects the translation elongation speed is ribosomal interference, which occurs
when slow translocation of a ribosome at a certain site blocks another one preceding it. Because the
information provided by ribosome profiling is marginal probability density (in the sense that it does
not capture the joint occupancy probability of multiple ribosomes on the same transcript), it is not
possible to observe ribosomal interference directly from data and therefore quantifying the role of
interference in limiting the elongation speed has remained challenging. A potential analytical issue
arises from the omission of polysomes (i.e., multiple adjacent ribosomes) in the current ribosome
profiling protocol [8–10]. In most analyses, ribosome positional distributions along the open reading
frame (ORF) are inferred from protected mRNA fragments which presumably reflect the size of the
60S ribosomal subunit (28-29 nt in S. Cerevisiae or 30-31 nt in mammalian cells). However, gradient
footprint profile also shows other larger protected fragments of 40-65 nt which can be attributed to
two closely stacked ribosomes that accumulate when the leading ribosome is stalled [10,11]. Not
taking these fragments into account in the ribosome profile may thus produce biased estimates of
ribosome densities, and, as a consequence, of elongation rates.

Over the past few years, multiple studies have tried to utilize ribosome profiling data to
identify the key determinants of the protein production and translation rates, but have arrived at
contradictory results [12–19]. Due to the vast complexity of the different biophysical mechanisms
involved in the decoding and translocation of the ribosome along the mRNA, it is indeed a challenging
problem to disentangle the composite factors that can modulate the elongation speed for a given
transcript sequence. Several studies have shown that elongation speed is locally regulated by multiple
factors, including tRNA availability and decoding time [19, 20], mRNA secondary structure [21],
peptide bond formation at the P-site [22], and the presence of specific amino acid residues [15,23]
in the nascent polypeptide that interact with the ribosomal exit tunnel [24]. However, the observed
heterogeneity in elongation rates along the transcript, notably the so-called 5Õ “translational ramp” [1],
remains only partially explained [14].

Here, we provide new insights into the major determinants of the translation dynamics, by
identifying features that can explain a large portion of the variation in the mean elongation rate
along the transcript, particularly the 5Õ translational ramp. We also present a new statistical
method that can be used to obtain accurate estimates of initiation and local elongation rates from
ribosome profiling and RNA-seq data. Our approach is based on a probabilistic model that takes
into account the principal features of the translation dynamics, and it allowed us to quantify the
extent of ribosomal interference (not directly observable from data) along the transcript.
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Results

Inference of initiation rates and local elongation rates

We developed an inference procedure based on an extended version of the biophysical TASEP
model [25] (see Fig. 1A, Fig. S1, Materials and Methods, and Supplementary Information)
to estimate transcript-specific initiation and local elongation rates from ribosome profiling and
RNA-seq data. In our model, the initiation rate is the exponential rate at which the A-site of a
ribosome enters the start codon, while the elongation rate at a given codon position is the rate
at which the A-site of a ribosome occupying that position translocates to the next downstream
codon. Here, both events are conditioned on there being no other ribosomes in front obstructing
the movement.

For the main part of our analysis, we used flash-freeze ribosome profiling and RNA-seq data of S.

Cerevisiae generated by Weinberg et al. [14]. We ran our inference method on a subset of 850 genes
selected based on length and footprint coverage (see Materials and Methods), and tested its
accuracy (detailed in Supplementary Information). Fig. 1B is an example illustrating the excellent
agreement between the actual ribosome footprint distribution for a specific gene from experiment
and the distribution of monosomes obtained from simulation under the extended TASEP model
with our inferred initiation and elongation rates.

We first used our estimates to see whether our method could recover what is known in the
literature. For the set of genes we considered, we found that the mean time between initiation
events varied from 5.5 s (5th percentile) to 20 s (95th percentile), with median = 10 s. These times
are of similar order but shorter than the times found previously [13] (4 s to 233 s, with median
= 40 s), which is explained by the fact that the set of genes we considered does not include lowly
expressed genes (i.e., with low ribosomal density). In agreement with previous findings [13, 14],
our inferred initiation rates were positively correlated (Pearson’s correlation coefficient r = 0.2646,
p-value < 10≠10) with the 5Õ-cap folding energy (see Materials and Methods) and negatively
correlated (r = ≠0.4, p-value < 10≠15) with the ORF length (these results are detailed in Fig. 2A).

To verify that our method effectively captured the dynamics associated with a specific codon
at the A-site, we separated the inferred elongation rates according to their corresponding codon
(the resulting distributions are shown in Fig. 2B). We observed that codon-specific mean elongation
rate (MER) was positively correlated with the inverse of the codon-specific A-site decoding time
estimated from Gardin et al. [19] (r = 0.7, p-value < 4 ◊ 10≠10, see Fig. 2C), supporting that
different codons are decoded at different rates at the A-site. We then compared these MER with
the ones estimated by applying our method to another flash-freeze dataset, generated by Williams
et al. [26]. Because of lower sequencing depth compared to Weinberg et al.’s data, the number of
genes passing our selection criteria decreased to 625 genes (see Materials and Methods). We
obtained an excellent correlation between our MER estimates for the two datasets (r = 0.92, p-value
< 4 ◊ 10≠25, see Fig. 2C).

Finally, since the differences in MER at different sites could be associated with tRNA availability
variations [20], we further compared the MER and the codon tAI value [12, 27], which reflects
the codon usage bias towards the more abundant tRNAs in the organism, and found a positive
correlation (r = 0.49, p-value < 5 ◊ 10≠5, see Fig. 2C). Altogether, these results suggested that our
estimates of the local elongation rates reflect tRNA-dependent regulation of translation speed and
that our estimates are consistent across different ribosome profile datasets.
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Isolated and stacked ribosome distributions across genes and codon positions

The standard ribosome profiling protocol selects for isolated ribosomes occupying 27 and 31 nt,
so larger mRNA fragments protected by closely-stacked ribosomes (separated by Æ 2 codons) are
typically not included in the experimental data, thus making the ribosome footprint distribution
inaccurate in regions of high traffic [8, 10,11]. To assess how much of this information is possibly
missing, we simulated under the extended TASEP model with our inferred initiation and elongation
rates to generate total footprint distributions that include closely stacked ribosomes, which would
be undetected by ribosome profiling experiments (a precise mathematical definition for our model is
provided in Materials and Methods).

We first verified that experimental ribosome profiling data did not capture closely-stacked
ribosomes, by comparing the translation efficiency (TE) in Weinberg’s dataset to the measurement
of per-gene ribosome density from polysome profiling carried out by Arava et al. [28] (for 588 genes
common to both datasets). TE is the ratio of the RPKM measurement for ribosomal footprint to
the RPKM measurement for mRNA [1], where RPKM corresponds to the number of mapped reads
per length of transcript in kilo base per million mapped reads. In other words, it quantifies for
each gene the average number of detected ribosomes per single transcript, up to a normalization
constant. When the total ribosome density of a gene is low, it coincides with the TE. We therefore
determined the normalization constant (0.83) by linearly fitting the TE to the total ribosome
densities measured by Arava et al. for values less than 1 ribosome per 100 codons (see Fig. 3A).
Interestingly, as shown in Fig. 3B, we found that the normalization constant found by fitting larger
densities was lower (0.61), suggesting that for highly occupied transcripts, the density of ribosome
inferred from TE underestimates the actual total ribosomal density. To see if our method could
accurately capture this difference, we simulated ribosomal footprint densities using our inferred rates
for a subset of high-density transcripts (195 genes with > 1 ribosome per 100 codons) contained
in Arava’s dataset, and distinguished the densities of detected ribosomes (which are not closely
stacked) and the total densities (which include all ribosomes). Performing the same linear fitting
against ribosomal densities from Arava et al. (Fig. 3C), we found a normalization constant of
0.80 for the simulated total ribosome density, which agrees very well with the aforementioned
normalization constant (0.83) for low-density transcripts (with < 1 ribosome per 100 codons). In
contrast, when the detected-ribosome density was fitted against Arava et al.’s data (Fig. 3D), we
found the normalization constant to be lower (0.67), consistent with the decrease we saw when the
raw TE values for high-density transcripts were fitted against Arava et al.’s data. We therefore
conclude that closely-stacked ribosomes comprise a large fraction of undetected ribosomes, and that
our method allows us to correct the TE value to get close to the actual total ribosome density.

After finding that highly occupied transcripts tend to have a significant amount of undetected
ribosomes, we then examined the overall proportion of ribosomes appearing as strictly stacked (with
no gap between them) or closely stacked (with Æ 2 codons between them), by computing their
proportion for each gene and averaging these fractions over all genes. We found that on average 12%
of ribosomes were closely stacked (Fig. 4A) and hence hidden from the experimental data. Among
these undetected ribosomes, we found that strictly-stacked ribosomes made up 58%, representing
7% of all ribosomes. Furthermore, obstructed ribosomes (a ribosome is said to be obstructed if
there is another ribosome immediately in front of it with no gap between them) comprised about a
half of the strictly-stacked ribosomes, which suggests that long ribosomal queues with three or more
ribosomes are rare. Because the 850 genes we selected were more highly occupied than average, the
fraction of closely-stacked and strictly-stacked ribosomes should be lower for the entire set of genes.
By extrapolating our estimates to a larger sample of 3941 genes (using their TE, see Fig. 4A), we
found that the average fractions of closely-stacked and strictly-stacked ribosomes should respectively
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be 9% and 5%; that is more than a half of undetected ribosomes are strictly stacked.
We looked at each gene separately and found that the proportion of the detected ribosomes varied

substantially between different genes, ranging from 76% (5th percentile) to 96% (95th percentile),
with mean and standard deviation equal to 88% and 6%, respectively (Fig. 4A). Such heterogeneity
can be explained by differences in the total ribosome occupancy. In Fig. 4B, we observed that the
difference between the total ribosome density (including undetected ribosomes) and the density
of detected ribosomes increased super-linearly as a function of the total ribosome density. As a
consequence, highly occupied transcripts have relatively more undetected ribosomes. On average,
the density of detected ribosomes was 6.5% lower than the total density for lowly occupied genes
(density < 1 ribosomes per 100 codons, 13% of the dataset), compared with 30% for highly occupied
genes (density > 2 ribosomes per 100 codons, 13 % of the dataset), and 14% for the rest.

At least two factors contribute to closely-stacked ribosomes in a transcript. First is the initiation
rate, which directly determines the average number of ribosomes occupying an mRNA transcript.
The second is the heterogeneity of translation speed along the ORF, which could result in ribosomal
interference. To examine their influence, we first plotted (Fig. 4C) the inferred initiation rate against
the polysome proportion and found a positive correlation (r = 0.56, p-value < 10≠15). As this only
partially explained the heterogeneity of closely-stacked ribosome proportions across different genes,
we then looked at the local fraction of the obstructed ribosomes along the transcript sequences
(Fig. 4D). Upon aligning the transcript sequences with respect to the start codon, we estimated
the average amount of interference generated at each position. We observed a global increase of
interference from the start to a peak located around the 30th codon (with the extent of interference
being 2.45 times higher than the gene-specific mean). This peak was followed by a slow decrease to
a plateau where no significant change in interference is observed. Since ribosomes in a high density
region are more likely to interfere, this result is consistent with the experimentally observed pattern
of average footprint distribution along the transcript [14], in particular with the trend of decreasing
ribosome-footprint density forming the 5Õ translation ramp [1,12] (see Fig. S2).

Aligning the transcript sequences with respect to the stop codon position, we detected a
significantly large peak of interference fraction located at 10 codons preceding the stop codon
(showing 14 times more interference than the gene-specific mean, Fig. 4D), with the corresponding
amount of ribosomes representing on average 3.5% of all obstructed ribosomes. Note that the length
of 10 codons corresponds to the footprint size of a single ribosome, and hence the distance between
the A-sites of two abutting ribosomes. Therefore, our result suggests that slow termination process
(in agreement with previous observations of ribosomal pausing during translation termination [29,30])
also affects the neighboring ribosome densities and causes more frequent stalling (supported by
another smaller peak present at position ≠20) at the end of translation.

The impact of ribosomal interference on translation dynamics

The differences in the amount of ribosome interference between different genes could lead to
significant biases when using the TE as a proxy for protein production rate. Using our results, we
could quantify the production rate precisely, and thus relate it to the detected or total ribosome
density. Simulating under the model with our inferred parameters, we first computed the protein
production rate, defined for each gene as the rate at which a single ribosome reaches the end of the
ORF and unbinds, leading to protein production.

We examined the distribution of protein production rates (Fig. 5A) and observed a range between
0.042 s≠1 (5th percentile) and 0.12 s≠1 (95th percentile), with median and standard deviation
equal to 0.075 s≠1 and 0.025 s≠1, respectively. The protein production rate of a gene was generally
lower than the corresponding translation initiation rate, due to an additional waiting time (≥ 3 s
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on average) caused by ribosomal interference. Comparing the protein production rate with the
detected-ribosome density (Fig. 5A) gave a high correlation (Pearson’s r = 0.91). However, we also
observed a super-linear increase of the production rate as the detected-ribosome density increased,
suggesting that because closely-stacked ribosomes are not included, the translational expression of
large TE genes could be underestimated. Using the total density of ribosomes (Fig. 5A) instead of
the detected-ribosome density improved the correlation (r = 0.94), but also led to a slight sub-linear
trend, due to some saturation appearing when the initiation rate gets so high that elongation rates
become limiting factors of translation.

To study how ribosomal interference affects the local ribosome dynamics, we examined the
difference between the inferred elongation rates of our mathematical model (we call them unobstructed

rates) and the effective rates given by the inverse of the average time spent at a particular position
(we call them observed rates). Upon aligning all transcripts with respect to the start codon and
averaging across the transcripts, we compared the average unobstructed rate at each position
with the corresponding average observed rate (Fig. 5B). Both curves showed an initial decrease
to a trough located at codon position around 40, followed by a slow increase to a plateau. These
variations were vertical reflections of the polysome proportion curve in Fig. 4D (with a shift such
that the peak is observed 10 codons downstream) and the 5Õ ramp obtained for ribosomal normalized
density (Fig. S2). Both unobstructed and observed rates initially increased from a very low rate
(≥ 3 codons/s) to a peak of 11.5 and 10 codons/s, respectively, located at position 10. They then
decreased to a local minimum of 9 and 7.9 codons/s, respectively, before increasing again to a
plateau around 11.5 and 10.9 codons/s, respectively. Furthermore, the gap between the unobstructed
and observed rates generally decreased (Fig. 5B, bottom plot) from 1.6 to 0.4 codons/s along the
transcript, suggesting a decreasing impact of ribosomal interference on the translation dynamics.
The reduction in the observed speed from the unobstructed elongation rate ranged from 5% (at the
plateau) to 15% (between codon positions 10 and 20).

Aligning the transcript sequences with respect to the stop codon position and applying the
same procedure, we observed a significant difference between the unobstructed and observed rates
at codon position ≠10. The gap size is 3 codons/s, which amounts to 30% reduction from the
unobstructed speed, while nearby sites have a regular level of 0.4 codons/s. This enhanced gap is
likely induced by stalling at the stop codon. A smaller bump (1.3 codons/s) was also observed at
codon position ≠20, reflecting the formation of a queue of three ribosomes.

Variation of codon-specific mean elongation rates along the transcript

After studying the local dynamics of translation and quantifying the increase of elongation rates
corresponding to the 5Õ ramp of decreasing ribosome density, we investigated the possible deter-
minants of such variation. The 5Õ ramp of ribosome density has previously been attributed to
slower elongation due to more frequent use of codons with low-abundance cognate tRNAs near the
5Õ-end [12]. However, this explanation has been recently argued to be insufficient [14], suggesting
other mechanisms to cause the ramp.

To study whether the preferential use of slow codons can explain the variation of elongation
rates along the transcript, we analyzed the positional distribution of different codons. To do so, we
first grouped the codons (except stop codons) into five groups according to their mean elongation
rates, and then plotted (Fig. 6A) their frequency of appearance at each position in the set of genes
we considered. At almost all positions, we found that the higher the mean elongation rate of a
group, the higher the frequency of its appearance (the average frequency of appearance per codon
type was 0.25%, 0.9%, 1.6%, 1.9% and 2.25% for the five groups in increasing order of the mean
elongation rate).
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Looking more closely at how these frequencies changed along the transcript between positions
50 and 200 (Fig. S3A), we observed an increase in frequency for the fastest codons, while the
opposite was true for slow codons. However, when we examined the associated positional variation in
elongation speed by setting the elongation rate of each codon type at all positions to its corresponding
average speed, we obtained an increase of 0.3 codons/s (Fig. S4A). This increase was not large
enough to explain the total variation observed at the 5Õ-ramp (approximately 2 codons/s). This
result thus suggested the existence of other major factors influencing the codon translation speed
along the first 200 codons.

To confirm this hypothesis, we plotted the variation of average elongation speed for each codon
type along the transcript sequence (Fig. 6B), which displayed a range between approximately 2 and
14 codons/s. Also, for each position, we computed the mean deviation of each codon’s elongation
rate from the codon-specific mean elongation rate. Fig. S3B shows the results, which groups the
codons according to their mean elongation rates, as done above.

Interestingly, we observed a general increase of the position-specific mean elongation rate from
position 40 to 200 (corresponding to the ramp region). Weighting these variations by position-specific
codon frequencies (Fig. S4B), we found that the mean elongation rate from position 40 to 200
increases from approximately 9.5 to 11.5 codons/s, which gives an increase of 2 codons/s, comparable
to what we previously observed in Fig. 5B. We thus concluded that the major determinant of the 5Õ

translational ramp was not the codon distribution, but an overall increase of translational speed
along the ORF.

The major role of hydropathy and charge distributions of nascent polypeptides

in explaining the positional variation of mean elongation rates

The above analyses suggested the existence of additional determinants that modulate local elongation
rates and may explain the observed pattern of elongation rates along the transcript. We sought out
to find these determinants using a statistical method.

Using molecular biology techniques, it has been demonstrated previously that electrostatic
interactions between nascent polypeptides and the ribosomal exit tunnel can modulate elongation
rates [31]. Motivated by this observation, we employed statistical linear models to identify specific
features of the nascent polypeptide that affect elongation rates and to quantify the extent of their
influence. We first analyzed the data from Weinberg et al. [14]. In order to eliminate potential
additional complications near stop codons due to ribosomal pausing, we focused on the genes of
length at least 300 (codons) among the set of 850 genes considered hitherto. In total 640 genes
were used for this study. The dependent variable in each linear model was the position-specific
mean deviation of elongation rates from codon-type-specific average elongation rates (the latter was
obtained by averaging over all transcripts and positions).

About 40 or so amino acid residues can be accommodated within the ribosome [24], so we first
considered codon positions 6 to 44, in order to focus on the dynamics as the nascent polypeptide
chain makes its initial pass through the peptidyl transferase center (PTC) and the ribosomal
exit tunnel. By optimizing the fit of linear models, we found that the PARS score (Materials
and Methods), which reflects the existence of mRNA secondary structure, in the window [9 : 19]
downstream of the A-site is a statistically significant explanatory feature that is negatively correlated
with the position-specific mean elongation rate in this region. This result is consistent with previous
findings [32] that mRNA secondary structure inhibits elongation near the 5Õ-end. This feature was
generally more important for longer transcripts. We also found important regulatory features of the
nascent polypeptide segment within the PTC and near the beginning of the exit tunnel. Specifically,
when we scanned linear models with different feature windows to obtain the best fit, we found
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that the number of positively charged residues in the window [1 : 9] and the number of negatively
charged residues in the window [6 : 26] are important features with opposite effects; the former
facilitates elongation, while the latter slows down elongation. These two charge features together
with the PARS score explain 93% of the positional variation (Fig. 7A) in the mean deviation of
elongation rates in this region.

We then tried to construct a linear model for codon positions 45 to 300. We could not obtain
a good fit only using explanatory features based on the PARS score and the number of charged
residues. Surprisingly, we found that the hydropathy of the nascent polypeptide chain in the window
[1 : 42] upstream of the A-site can alone explain 84% of the positional variation in the mean
deviation of elongation rates in this region. This window [1 : 42] was determined by optimizing the
fit of a linear model with hydropathy as the sole feature; the resulting fit is shown Fig. 7B. This
result implies that the more hydrophobic the nascent polypeptide segment is, the higher the mean
elongation rate.

Finally, we tried to obtain a single linear model for the combined region between positions 6
and 300. When we limited the number of features to three, we found the following quantities to be
particularly important: the mean hydropathy in the window [1 : 42], the mean number of positively
charged residues in the window [1 : 9], and the mean number of negatively charged residues in the
window [27 : 45], all upstream of the A-site. The PARS score did not contribute significantly to
improving the fit, suggesting that the mRNA secondary structure is not a notable determinant of
translation speed for the whole transcript sequence but rather only in the beginning of translation,
before the nascent polypeptide emerges from the ribosome tunnel. Using these features, we obtained
a fit (Fig. 7C) with the coefficient of determination R2 = 0.82; all three features had positive
regression coefficients.

We then took the above-mentioned features that we learned from analyzing the data from
Weinberg et al. [14] and used them to fit the previously-mentioned ribosome profiling data for 625
genes from Williams et al. [26]. This led to fits with goodness comparable to the ones mentioned
above: R2 = 0.86 for the region [6 : 44], R2 = 0.74 for the region [45 : 300], and R2 = 0.74 for the
region [6 : 300]. A few factors potentially contributed to slightly lower coefficients of determination
for Williams et al.’s data. First, 167 out of 625 genes in the dataset were shorter than 300 codons,
while we excluded such genes when we analyzed Weinberg et al.’s data to eliminate the effects
of ribosomal pausing near stop codons. Second, there are no RNA-seq data associated with the
ribosome profiling from Williams et al., so we could not refine the “naive” estimates of elongation
rates for this dataset (see Materials and Methods).

Discussion

We used probabilistic modeling of the translation dynamics to dissect the different determinants
of translation speed, and developed an efficient, simulation-based inference algorithm to estimate
transcript-specific initiation and local elongation rates from ribosome profiling data. Recently, an
alternate method was developed to estimate average codon elongation rates, by down-sampling data
to independently analyze many selected regions (windows) where the effects of codon usage are
particularly easy to analyze [19]. One advantage of our approach is that it enabled us to quantify
the extent of transcript- and position-specific ribosomal interference, which is hidden from the
experimental data because of the filtering of larger ribosomal footprints. Our analysis suggests that
these undetected ribosomes represent a non-negligible fraction (9%) of the total amount and that
more than a half of these ribosomes are involved in interference. A consequence of not accounting
for closely-stacked ribosomes is that the standard TE measure underestimates the total ribosome
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density for highly occupied genes. We showed that this bias can be corrected by employing our
inference method. Further, it allowed us to capture local variations of elongation rates that are
actually necessary to explain the observed translational ramp. Our results revealed that the extent
of ribosomal interference varies substantially across different genes and different positions. This
caused significant variations in the difference between the theoretical unobstructed rate and the
observed rate, suggesting that a more detailed experimental quantification of disomes is notably
needed to fully characterize ribosome occupancy [10].

Other approaches based on simulating translation dynamics have been proposed to explain the
experimentally observed ribosome profiles [9, 12, 13,17,18,33], but with contradictory results. One
source of complication comes from technical artifacts in the data. In particular, cycloheximide
pre-treatment, used to immobilize ribosomes, can lead to substantial codon-specific biases [14,34,35].
The use of flash-freeze technique alleviates some of these problems, and allows one to obtain
ribosome-footprint profiles and mRNA abundances that more faithfully reflect the translation
dynamics [14]. Our inferred rates from flash-freeze data showed that the elongation rate is indeed
modulated by the decoded codon located at the A-site of the ribosome and the corresponding
tRNA availability. The positive correlation between the codon-specific mean elongation rate and
the translation adaptation index supports the hypothesis that tRNA abundance and codon usage
co-evolved to optimize translation rates [12,36].

However, our refined analysis of the distribution of codon-specific elongation rates showed that
tRNA availability is not sufficient to fully explain the observed translational speed variation. In
particular, the 5Õ translational ramp variation cannot be sufficiently explained by the change of
frequencies of slow and fast codons across the transcript sequence, contrary to what was previously
suggested by Tuller et al. [12, 37]. An earlier study [31] proposed that electrostatic interactions
of nascent polypeptides with the charged walls of the ribosomal exit tunnel could be one of the
possible mechanisms of modulation of translation speed. Indeed, subsequent studies showed that
specific configurations of amino acids along the nascent polypeptide segment within the exit tunnel
can contribute to a slowdown or arrest of translation [15,23,24,38,39]. One of the major findings
of our work is that the mean variation of elongation rates averaged over all the genes can be well
explained by a linear model with only few features, namely the amount of charged amino acid
residues in the nascent polypeptide at the beginning and end of the tunnel, and the hydropathy of
the nascent polypeptide segment within the ribosome. These features were selected by statistically
optimizing the fit of the linear model to position-specific mean elongation rates in a large window,
which included the 5Õ ramp.

We note that Tuller et al. [37] also employed linear regression to fit the 5Õ-ramp, but their model
and results are quite different from ours. First, they fitted a smoothed version of the normalized
average ribosome density variation across the transcript (see Fig. S2), whereas our model fits the
deviation from the mean codon elongation rate without any smoothing. Second, the features used in
their model — the tAI value, the total charge approximately covered by the ribosome (13 codons),
and the 5Õ folding energy down the A-site — were different from ours. They hand-picked their
features, while we learned them from the data. Lastly, while our fit is globally good over the first
300 codons (Fig. 7C), the fit obtained by Tuller et al. mainly explains the (smoothed) variation of
ribosome density in the first 50 codons (Spearman correlation of their fit was only 0.33 when the
first 50 codons were removed).

There are reasonable biophysical explanations for the particular set of features selected by our
statistical analyses. In order for the ribosome to translocate from one site to the next, the nascent
polypeptide has to be displaced to liberate enough space for the chain to incorporate the next amino
acid. The associated force needed to achieve this process is constrained by the biophysics of the
tunnel, which is known to be charged, aqueous, and narrow [24, 31, 40]. Our statistical analysis
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selected the number of positively charged residues near the beginning of the tunnel and the number
of negatively charged residues near the end of the tunnel, and both features had positive regression
coefficients, which implies that they both facilitate elongation. This finding is consistent with the
known electrostatic properties of the tunnel. Specifically, previous measurements of the electrostatic
potential inside the tunnel [31] shows that it is non-uniform (Fig. S5A). Performing a cubic spline
fit and taking its negative gradient suggests that the electric field induced by the potential points
outward (i.e., away from the PTC) near the beginning of the tunnel, while it points inward near
the end of the tunnel (Fig. S5B). Hence, both positively charged residue near the beginning of the
tunnel and negatively charged residue near the end of the tunnel will experience a force pointing
outward, thereby facilitating the movement of the polypeptide chain through the tunnel.

Another important feature, which to our knowledge has not been previously noted as a major
determinant of translation speed, is the hydropathy of the polypeptide segment within the PTC and
the exit tunnel. A possible explanation for the impact of hydropathy on the elongation rate is that
since the tunnel is aqueous [24] and wide enough to allow the formation of –-helical structure [40],
the hydrophobicity (which is an important factor driving compactness and rigidity [41]) of the
polypeptide segment inside the ribosome consequently drives the amount of force needed to push the
chain up the tunnel. While variation in translation rates could play a functional role in regulating
co-translational folding of the nascent polypeptide chain [42], our results on the impact of hydropathy
suggest that this link is more complex in that the folding (or pre-folding) in turn can actually alter
the rate of translation.

In summary, our results show how the time spent by the ribosome decoding and translocating
at a particular codon site is governed by three major determinants: ribosome interference, tRNA
abundance, and biophysical properties of the nascent polypeptide within the PTC and the ribosome
exit tunnel. It is quite remarkable that using a linear model with only few features allowed us
to fully and robustly capture the variations of the average elongation rate across the transcript
sequence. In addition to these overall determinants, our study also demonstrated the importance of
mRNA secondary structure in the first 40 codons and a pausing of the ribosome at or near the stop
codon, suggesting that additional local mechanisms may play a role in modulating translation in
specific parts of a transcript sequence.

A natural extension of our work is to investigate in more detail, based on the above findings, the
determinants of translation at the individual transcript level. To do so, a more detailed analysis and
modeling of the nascent polypeptide within and immediately outside the exit tunnel is needed, to
reveal how a specific amino acid sequence can affect the translation rate through possible interactions
or co-translational folding [42,43].

Materials and Methods

Experimental dataset

We used publicly available data in our analysis. The flash-freeze ribosome profiling data from
Weinberg et al. [14] can be accessed from the Gene Expression Omnibus (GEO) database with
the accession number GSE75897. The accession number for the flash-freeze data from Williams et

al. [26] is GSM1495503. To be able to determine normalization constants (detailed below) without
being biased by the heterogeneity of translational speed along the 5Õ ramp and to obtain robust
estimates of the steady-state distribution, we selected among the pool of 5887 genes the ones longer
than 200 codons and for which the average ribosome density was greater than 10 per site. For the
Weinberg et al. dataset this led to a set of 894 genes, to which we applied the first step of our
inference procedure (described below) to produce an estimate of the initiation rate. The algorithm
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converged for 850 genes, and the main results presented in this paper are based on those genes. For
the Williams et al. dataset, the same procedure gave 625 genes.

Mapping of the A-site from raw ribosome profile data

To map the A-sites from the raw short-read data, we used the following procedure: We selected the
reads of lengths 28, 29 and 30 nt, and, for each read, we looked at its first nucleotide and determined
how shifted (0, +1, or ≠1) it was from the closest codon’s first nucleotide. For the reads of length
28, we assigned the A-site to the codon located at position 15 for shift equal to +1, at position 16
for shift equal to 0, and removed the ones with shift ≠1 from our dataset, since there is ambiguity
as to which codon to select. For the reads of length 29, we assigned the A-site to the codon located
at position 16 for shift equal to +0, and removed the rest. For the reads of length 30, we assigned
the A-site to the codon located at position 16 for shift equal to 0, at position 17 for shift equal to
≠1, and removed the reads with shift +1.

Estimation of detected-ribosome densities from translation efficiency measure-

ments

Translation efficiency measurements were used to compute the monosome average density. Since
translation efficiency is given by the ratio of the RPKM measurement for ribosomal footprint to the
RPKM measurement for mRNA, it is proportional to the monosome average density. To estimate
the associated constant for each gene of our dataset, we used the measurements of ribosome density
from Arava et al. [28]. For genes with a ribosome density of less than 1 ribosome per 100 codons,
we fitted the translation efficiency as a function of the density to a linear function and divided all
the TEs by the coefficient of this fit to obtain estimates of the detected-ribosome density (Fig. 3).

Estimation of 5

Õ
-cap folding energy

The 5Õ-cap folding energy associated with each gene of our dataset was taken from Weinberg et

al. [14], who used sequences of length 70 nt from the 5Õ end of the mRNA transcript and calculated
the folding energies at 37¶C using RNAfold algorithm from Vienna RNA package [44].

Estimation of RNA secondary structure (PARS score)

To quantify RNA secondary structure at specific sites, we used the parallel analysis of RNA structure
(PARS) scores from Kertesz et al. [45]. It is based on deep sequencing of RNA fragments, providing
simultaneous in vitro profiling of the secondary structure of RNA species at single nucleotide
resolution in S. Cerevisiae (GEO accession number: GSE22393). We defined the PARS score of a
codon by averaging the PARS scores of the nucleotides in that codon.

Mathematical modeling of translation

To simulate ribosome profiles, we used a mathematical model based on the totally asymmetric
simple exclusion process (TASEP) [25]. Compared with the original TASEP, our model included
additional features accounting for the heterogeneity of elongation rates and physical size of the
ribosome. We assumed that each ribosome has a footprint size of 30 nucleotides (i.e., 10 codons) and
that the A-site is located at nucleotide positions 16-18 (from the 5Õ end) [46]. Protein production
consists of three phases: First, a ribosome arrives at the start codon, with exponentially distributed
rate (defined as the initiation rate). Subsequently, a ribosome with its A-site located at position i is
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allowed to move forward one codon position if this movement is not obstructed by the presence
of another ribosome located downstream. The associated conditional hopping time at each site is
exponentially distributed with a certain rate (defined as its elongation rate). When a ribosome
eventually reaches a stop codon, it unbinds at an exponential rate (for simplicity, we also refer to
this as an elongation rate), which eventually leads to protein production. By simulating under this
model with given initiation and position-specific elongation rates, we can sample ribosome positions
at different times and thereby approximate the marginal steady state distribution of ribosome
positions.

Definition of undetected ribosome and undetected ribosome fraction

During simulation we monitor the distance between consecutive ribosomes along the transcript.
Since experimental disome fragments were shown [10] to protect a broad range of sizes below ≥ 65 nt,
in our simulations we defined an undetection of ribosomes to occur when the distance between
the A-sites of consecutive ribosomes is Æ 12 codons (i.e., free space between the ribosomes is Æ 2
codons).

Inference procedure

A detailed description of our inference procedure is provided in Supplementary Information. Briefly,
for given experimental ribosome profile and monosome density (average number of monosomes
occupying a single mRNA copy), our inference procedure for estimating transcript-specific initiation
and local elongation rates of the assumed TASEP model consists of two steps (Fig. S1). 1) First,
we approximate the position-specific elongation rate by taking the inverse of the observed footprint
number (such approximation is valid when is no ribosomal interference), and then use simulation
to search over the initiation rate that minimizes the difference between the experimental detected-
ribosome density and the one obtained from simulation. 2) Then, simulating under these naive
estimates, we compare the simulated ribosome profile with the experimental one and detect positions,
called “error-sites”, where the absolute density difference is larger than a fixed threshold. If error-
sites are detected, we first consider the one closest to the 5Õ-end. We jointly optimize the elongation
rates in a neighborhood of this error-site and the initiation rate to minimize the error between
the simulated and the observed profile. With these new parameters, we then re-detect possible
error-sites located downstream and repeat the procedure until there are no more error-sites to
correct.

Because the profile and average density are invariant to a global scaling of the initiation and
elongation rates, the parameters obtained needed to be normalized to get the rates in appropriate
units. We normalized the rates such that the global average speed measured by simulations between
position 150 and the stop codon is 5.6 codons/s, as measured experimentally [7]. We restricted our
analysis to genes longer than 200 codons so that this normalization procedure is not biased by the
heterogeneity of translational speed along the 5Õ ramp.

For given initiation and position-specific elongation rates along the transcript, obtaining an
analytic formula for the protein synthesis flux is often difficult, if not impossible, due to potential
interference between ribosomes occupying the same transcript [47–49]. However, since translation is
generally limited by initiation, not by elongation, under realistic physiological conditions [13], [50],
typically only a few sites were affected by interference. This allowed us to cope with the high
dimensionality of the model space and obtain estimates of rate parameters that produced excellent
fit to the experimental data.
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Software implementation

Simulation of translation and our inference algorithm were implemented in Matlab. We simulated
the model using the next reaction method [51] derived from the Gillespie algorithm, which at each
step samples the next event (initiation, elongation, or termination) and the associated time based
on the current ribosome occupancy. To simulate a ribosome profile of size N , we first simulated 105

steps for burn-in. Then, after a fixed interval of subsequent time steps, we randomly picked one
occupied A-site (if there is one) and recorded it as a footprint location; this sampling scheme was
iterated until we obtained N footprints. Protein production flux was obtained by computing the
ratio between the number of ribosomes going through termination and the total time.
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Figure 1. Illustration of translation dynamics and inference from experimental data.
A. A schematic representation of the mathematical model of translation considered in this paper.
Each ribosome is assumed to occupy 10 codons. Initiation corresponds to an event where the A-site
of a ribosome enters the start codon, while elongation corresponds to a movement of the ribosome
such that its A-site moves to the next downstream codon. Both events are conditioned on there
being no other ribosomes in front obstructing the movement. The ribosome eventually reaches a
stop codon and subsequently unbinds from the transcript, leading to protein production. All these
stochastic events occur (conditioned on there being no obstruction) at some specific exponential
rates, which we try to infer from experimental data (see Materials and Methods). In our
simulations, we say that a ribosome is undetected when the distance between the A-sites of
consecutive ribosomes is Æ 12 codons (i.e., free space between the ribosomes is Æ 2 codons).. B. A
comparison between the actual experimental profile of detected ribosomes for a particular gene and
the distribution of detected ribosomes obtained from simulation under the mathematical model
with our inferred initiation and elongation rates.
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Figure 2. Analysis and comparison of the inferred rates. A. (Left) A histogram of
inferred initiation rates. (Middle) Comparison between the inferred initiation rates and the inverse
of the ORF length of the gene, showing a positive correlation (r = 0.44, p-value < 10≠15, computed
for unbinned data). (Right) Comparison between the inferred initiation rates and the 5Õ-cap folding
energy computed in Weinberg et al. [14], showing a positive correlation (Pearson’s correlation
coefficient r = 0.2646, p-value < 10≠10, computed for unbinned data). B. Distribution of
codon-specific elongation rates. Stop codons are boxed in blue, while the eight low-usage codons
reported by Zhang et al. [52] are boxed in red. C. Comparison between the codon-specific mean
elongation rates computed from B and (Left) the inverse of the codon mean “ribosome residence
time” (RRT) estimated by Gardin et al. [19], (Middle) the codon-specific mean elongation rates
computed from running our method on the Williams et al. dataset [26], and (Right) the tAI value,
computed by Tuller et al. [12].
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General model:
     f(x) = a*x
Coefficients (with 95% confidence
bounds):
       a = 0.61 (0.6, 0.63)

General model:
     f(x) = a*x
Coefficients (with 95% confidence
bounds):
       a = 0.67 (0.64, 0.69)
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Figure 3. Comparison between translation efficiency (TE) and total ribosome
density. All linear fit results are shown in the inset. A. The gene-specific TE for 588 genes from
Weinberg et al.’s data [14] (see Materials and Methods) against the corresponding total
ribosome density (average number of ribosomes per 100 codons) from Arava et al. [28]. We
performed a linear fit of the points for which the corresponding ribosome density was less than 1
ribosome per 100 codons. B. Similar fit as in A in the range of ribosome density larger than 1
ribosome per 100 codons. C. Simulated total densities for a subset of 195 genes obtained using our
inferred rates, against the ribosome density from Arava et al. D. Simulated detected-ribosome
densities for the same 195 genes against the ribosome density from Arava et al. These results
suggest that closely-stacked ribosomes comprise a large fraction of undetected ribosomes, and that
our method allows us to correct the TE value to get close to the actual total ribosome density.
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Figure 4. Stacked and undetected ribosome distributions. A. (Left) We first estimated
the average proportions of strictly-stacked (blue) and undetected ribosomes (red) across all genes
considered (850 genes). We then extrapolated these proportions to 3941 genes by binning the 850
genes by their detected-ribosome density (bin width = 0.1) and computing for each bin the average
proportion of strictly-stacked and undetected ribosomes. For any given gene of the extended
dataset (3941 genes), we assigned the bin-specific average proportions of strictly-stacked and
undetected ribosomes. (Right) Histograms of gene-specific proportions of detected ribosomes for
the 850 genes dataset. B. The difference between the total ribosome density and the
detected-ribosome density as a function of the total ribosome density. The plot shows a super-linear
behavior. C. Undetected ribosome fraction against the initiation rate. Pearson’s correlation
coefficient r = 0.61. D. (Left) Relative amount of interference along the first 200 codons. After
filtering the obstructed ribosomes in our simulations for each transcript profile, we normalized the
resulting profiles by the average number of obstructed ribosomes over the whole sequence. Upon
aligning the transcript sequences with respect to the start codon, we then averaged these different
normalized profiles at each site. (Right) Relative amount of site specific interference when the
transcript sequences are aligned with respect to the stop codon.
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Figure 5. The impact of ribosomal interference on translation dynamics. A. Analysis
of protein production. (Left) A histogram of protein production rates. (Middle) Comparison
between the protein production rate and the detected-ribosome density obtained from simulations.
In red, we plotted the simulated production rate as a function of ribosome density. The red line
corresponds to the production rate when we assume no interference and a constant elongation
speed of 5.6 codons/s, which was measured experimentally [7]. (Right) Comparison between the
production rate and the total ribosome density density obtained from simulations. B. (Left)
Position-specific elongation rates averaged over all transcript sequences, aligned with respect to the
start codon. Plotted are the inferred unobstructed rate (in red) and the observed rate (in blue).
The bottom plot shows the difference between the two curves. (Right) Similar plots as the ones on
the left, when the transcript sequences are aligned with respect to the stop codon position.
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Figure 6. Heterogeneity of codon distributions and elongation speed along the
transcript. A. Codon frequency metagene analysis. We grouped the codons (except stop codons)
into five groups according to their mean elongation rates (MER) and plotted their frequency of
appearance at each position in the set of genes we considered. The first group contained 4 codons
with MER between 4 and 6 codons/s; the second group 13 codons with MER between 6 and 8; the
third group 13 codons with MER between 8 and 10; the fourth group 16 codons with MER between
10 and 12; and the fifth group 15 codons with MER > 12. B. Smoothed mean elongation speed
along the ORF for each codon type (stop codons are excluded). At each position i, we computed an
average of codon-specific MER between positions i ≠ 20 and i + 20. In black, we plot an average of
the 61 curves.
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A

B

C

Figure 7. Linear model fits of the mean deviation of elongation rates for the data
from Weinberg et al. [14]. The dependent variable is the mean deviation of elongation rates
from codon-type-specific average elongation rates. Green lines correspond to the estimates from
ribosome profiling data, while red dots correspond to our model fits based on a small (1 or 3)
number of features. A. A fit for codon positions [6 : 44] obtained using three features: the mean
PARS score in the window [9 : 19] downstream of the A-site, the mean number of negatively
charged nascent amino acid residues in the window [6 : 26] upstream of the A-site, and the mean
number of positively charged residues in the window [1 : 9] upstream of the A-site. The first two
features had negative regression coefficients, while the last one had a positive regression coefficient.
The coefficient of determination R2 was 0.93 for this fit. B. A fit (R2 = 0.84) for the region
[45 : 300] obtained using only a single feature: the mean hydropathy of the nascent peptide segment
in the window [1 : 42] upstream of the A-site. C. A fit (R2 = 0.82) for the combined region [6 : 300]
obtained using three features upstream of the A-site: the mean hydropathy of the nascent peptide
chain in the window [1 : 42], the mean number of positively charged residues in the window [1 : 9],
and the mean number of negatively charged residues in the window [27 : 45].
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Inference of Initiation and Elongation Rates

For an experimental profile P
exp

= (P
exp

(1), P
exp

(2), . . . , P
exp

(L)), where L is the gene length and
P

exp

(i) the number of reads detected at position i, and a monosome density D
exp

(number of
monosomes per mRNA), we detail here the procedure to infer the associated elongation rates and
initiation rate.

Naive estimates of elongation rates

To infer the di�erent parameters of the model (namely, the initiation rate and the elongation rates),
we first approximate the elongation rate at position i by

⁄
0

(i) =

Y
_]

_[
min

A

⁄
max

,
P

max

P
exp

(i)

B

, if P
exp

(i) ”= 0,

⁄
max

, else.
,

where P
max

= max
i

(P
exp

(i)) and ⁄
max

is a fixed threshold value. These estimates well approximate
the true elongation rates when the ribosomes encounter few interference. In this case, the elongation
process of a single ribosome following the TASEP can indeed be approximated by a one dimensional
irreversible Markov chain. In this case, for two sites indexed by position i and j, with respective
elongation rates ⁄i and ⁄j , the ribosomal densities p(i) and p(j) satisfy at steady state the relation
p(i)
p(j)

= ⁄j

⁄i
. Using the estimates given by ⁄

0

, we can simulate profiles for any initiation rate value –

and obtain the corresponding monosomal average density D(–). Since D is an increasing function
of –, we then estimate the initiation rate by computing argmin

–
|D

exp

≠ D(–)| by using a binary
search algorithm.
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Detection of sites with significant errors

Using these first estimates, we simulate the associated profile and compare it to P
exp

. When
there is interference at a certain position, the previous estimates may indeed not be valid and
thus lead to significant errors. To compare the experimental profile P

exp

to another profile P =
(P (1), P (2), . . . , P (L)), we define the error at position i as

Á(i) =
-----

P
exp

(i)
q

k P
exp

(k) ≠ P (i)
q

k P (k)

----- .

We introduce a significant error threshold, given by

Á
0

= 10
q

i Á(i)
L

.

When the error at a site i
0

is larger than Á
0

, we define the complementary set of sites to correct as
I

0

= {sites i | i œ [i
0

≠ 30, i
0

≠ 10] and P (i) < Pt} ,

where Pt is a fixed threshold value.

Refinement step

In the next step of the inference procedure, we correct the elongation rates at i
0

and I
0

to minimize
the global error between the corresponding simulated profile and P

exp

. For a given sequence of
rates ⁄ = (⁄(1), . . . , ⁄(L)), error site i

0

and corresponding set Ii
0

, we define the modified sequence

⁄i
0

,I
0

—
1

,—
2

(i) =

Y
_]

_[

—
1

⁄(i) if i = i
0

—
2

⁄(i) if i œ I
0

⁄(i) else
,

where —
1

, —
2

> 0. For such a sequence, we can apply the same previous procedure to estimate the
initiation rate –—

1

,—
2

which fits the experimental monosomal density and get an associated profile
P—

1

,—
2

. By double golden section search method (for a fixed —
1

, we find optimal —
2

by golden search
and use this to also optimize —

1

by golden search), we compute

(—̂
1

, —̂
2

) = argmin
—

1

,—
2

A
ÿ

i

|P—
1

,—
2

(i) ≠ P
exp

(i)|
B

.

If only one error site has been detected, the inference procedure ends with –
ˆ—
1

, ˆ—
2

and ⁄i
0

,I
0

ˆ—
1

, ˆ—
2

as the
final estimated initiation and elongation rates. For multiple error sites, we dynamically apply the
procedure we described. We first find the optimal rates for the site closest to the 5Õ end (with the
supplementary condition that the modified rates do not introduce significant errors upstream of
the original error site). We then update the positions of error sites and repeat the procedure until
no error sites are detected downstream of the last error site treated.

Normalization

The elongation and initiation rates obtained after running the inference procedure need to be nor-
malized to get the translation dynamics in appropriate units. To get for each gene the normalization
constant, we simulated 10000 ribosomal runs from position 150 and recorded the average time to
reach the last codon. After computing the associated average speed v (dividing the length run by
ribosomes by the corresponding average time), we normalized the rates by 5.6/v to match the exper-
imental observations of Ingolia et al. [1], which found a consistent average speed of approximately
5.6 codon.s≠1 for each gene.
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Results of the Inference Procedure

We ran the inference procedure on a yeast ribosome profiling dataset of 850 genes (see Methods).
The parameters used were Pt = 1

0.7⁄
max

= 35 and ⁄
max

= 50. We tested the accuracy of our method
by first comparing the experimental ribosomal densities with the ones obtained by simulations
(Figure S6). The simulated and experimental densities were in good agreement, showing a Pearson’s
correlation coe�cient of 0.986. The individual profiles obtained by simulations also showed good
agreement with the experiments, with Pearson’s correlation coe�cient of 0.975.

We then analyzed more precisely how the procedure performed on each gene. During the
inference procedure, 383 genes over the 850 in the dataset (45%) did not require corrections, which
means that the di�erence of profile observed between the simulation and the experiment was for
these genes globally under the threshold error fixed by our procedure. For the remaining 467
genes, the number of error sites per gene above the threshold error was in average 1.57 (std =
0.925) (Figure S7A). Since the first step of the inference gives the right estimates when there is
no interference, we measured if some interference influenced the translation at the error sites we
detected. To do so, we numerically estimated the probability of a ribosome occupying a certain
site to block a ribosome located 10 codons before. We call this probability the interference rate.
We found that the interference rate of error sites was in average equal to 0.245 compared with an
average rate of 0.011 over all the sites of our dataset (Figure S7B). This large di�erence showed, as
we expected, that local profile errors between experimental and simulations after the first round of
estimation are primarily due to ribosomal interference. We then studied the e�ciency of the rates
refinement step of the procedure. The decrease in error was in average of 57% (Figure S7C). For
65% of the sites the error after correction went under the initial threshold of error site detection.
The reasons for correction failure can vary from too large initial error, configurations of error sites
too close to allow separate correction and more generally possible missing reads or errors in the
original data.
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Figure S1: A schematic description of our inference procedure. Given a ribosome foot-
print profile and a measure of average detected-ribosome density (“translation e�ciency”), we first
approximate the position-specific elongation rate by taking the inverse of the observed footprint
number. Then, with these approximate elongation rates, we use simulation to search over the initia-
tion rate that minimizes the di�erence between the experimental density and the one obtained from
simulation. We then refine these naive estimates using an iterative procedure as follows: Starting
with the naive estimates, we compare the simulation result with the experimental ribosome profile
and detect “error-sites” where the absolute density di�erence is larger than a chosen threshold. If
error-sites are found, we start with the one closest to the 5Õ-end, and jointly optimize the elongation
rates in a neighborhood of this error-site and the initiation rate to minimize the error between the
simulated and the observed profile. Using these new parameters in simulation, we then re-detect
possible error-sites located downstream and repeat the procedure until there are no more error-sites
to correct.
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Figure S2: Metagene relative normalized ribosome-footprint density as a function of

codon position. Ribosome profile footprint (RPF) reads in open reading frames (ORFs) were
individually normalized by the mean RPF reads within the ORF, and then averaged with equal
weight for each codon position across all ORFs, as in Ingolia et al. [2].
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Figure S3: Detailed codon frequency of appearance and elongation speed along the

transcript. A. Di�erent panels show the frequency of appearance for each group of codons from
Fig. 6A. The black curve in each panel corresponds to a smoothed version, for which the value
at position i is obtained by averaging the values between positions i ≠ 20 and i + 20. B. The
di�erence between codon-specific local speed shown in Fig. 6B and the average of codon-specific
speeds between position 20 and 180. Di�erent codons are grouped as in A. For each panel, the
black curve corresponds to an average of the curves in that panel.
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Figure S4: A. Average elongation speed along the transcript obtained by setting the elongation
speed for each codon type at all positions to the corresponding mean elongation speed computed
from Fig. 2B. This plot shows that the variation of codon frequency along the transcript is not
su�cient to explain the 5Õ translational ramp. B. Average elongation speed along the transcript
obtained by setting the elongation speed for each codon to the position-specific mean elongation
rate in Fig. 6B.
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A

Figure S5: A. A cubic spline fit V (z) (red curve) of experimentally measured electrostatic potential
(blue dots) inside and immediately outside the ribosomal exit tunnel. The experimental potential
measurements are from Lu and Deutsch [3]. UnivariateSpline function in scipy.interpolate module
of Python was used with the default smoothing setting. B. Electric field obtained by ≠dV (z)/dz
where z is the direction along the tunnel. This plot suggests that the induced electric field points
outward (i.e., away from the PTC) near the beginning of the tunnel, while it points inward near
the end of the tunnel.
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Figure S6: Comparison between experimental data and numerical results from inference

procedure. We applied the inference method to a set of 850 genes in S. Cerevisiae (see Methods)
and compared the total (left) and local (right) densities of the original dataset with the ones
obtained by simulations of the model with the inferred parameters.
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Figure S7: Detailed results of the inference procedure. A. Histogram of the number of
significant errors detected for each gene. B. Histogram of interference rate for significant error sites
(left) and for all sites (right). C. Histogram of error improvement after the refinement step, given
by the ratio of error after correction over error before.
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