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Abstract  

Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to                
host genetic variation. However, we do not know whether, in addition to baseline host genetics,               
somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and             
if so, whether these changes can be used to understand microbe-host interactions with potential              
functional biological relevance. Here, we characterized the association between CRC microbial           
communities and tumor mutations using microbiome profiling and whole-exome sequencing in           
44 pairs of tumors and matched normal tissues. We found statistically significant associations             
between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets              
of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to             
statistically predict interactions between loss-of-function tumor mutations in cancer-related         
genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the               
microbiome. These results can serve as a starting point for fine-grained exploration of the              
functional interactions between discrete alterations in tumor DNA and proximal microbial           
communities in CRC. In addition, these findings can lead to the development of improved              
microbiome-based CRC screening methods, as well as individualized microbiota-targeting         
therapies. 
 

 

Author summary 

Although the gut microbiome - the collection of microorganisms that inhabit our            
gastrointestinal tract - has been implicated in colorectal cancer, colorectal tumors are caused by              
genetic mutations in host DNA. Here, we explored whether various mutations in colorectal             
tumors are correlated with specific changes in the bacterial communities that live in and on these                
tumors. We find that the genes and biological pathways that are mutated in tumors are correlated                
with variation in the composition of the microbiome. In fact, these changes in the microbiome               
are consistent enough that we can use them to statistically predict tumor mutations solely based               
on the microbiome. Our results may be used to understand the roles of specific microbes in CRC                 
biology, and could also be the starting point of microbiome-based diagnostics for not only              
detection of CRC, but characterization of tumor mutational profiles. 

  
 

 

Introduction 

The human gut is host to approximately a thousand different microbial species consisting             
of both commensal and potentially pathogenic members ​[1] ​. In the context of colorectal cancer             
(CRC), it is clear that bacteria in the microbiome play a role in human cell signaling ​[2–11] ​; for                 
example, in the case of CRC tumors that are host to the bacterium ​Fusobacterium nucleatum ​, the                
microbial genome encodes a virulence factor, ​FadA​, that can activate the β-catenin pathway ​[12] ​.             
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In addition, several attempts have been made to predict CRC status using the microbiome as a                
biomarker ​[13–16] ​. It has been shown that by focusing on ​F. nucleatum ​, it is possible to predict                
some clinically relevant features of the tumor present​[17] ​. There is a positive, but not statistically               
significant, association between ​F. nucleatum presence in colorectal cancers in patients who eat a              
Western diet​[18] ​. Regardless, as only a minority of CRCs are host to ​F. nucleatum ​, the use of                 
this species as a sole maker are limited ​[18,19] ​. Other specific microbes have been linked to               
CRC, including ​Escherichia coli ​harboring polyketide synthase (pks) islands ​[20,21] and          
enterotoxigenic ​Bacteroides Fragilis (ETBF) ​[22–24] ​. The mechanism of action of these          
associations is still under investigation with ​F. nucleatum ​ being the most clearly developed ​[12] ​.  

A major challenge in the research on the CRC-associated microbiome is the variability of              
the findings by different research groups. Comparisons among and between the findings from             
groups studying different patient populations arrive at differing sets of microbes that appear             
correlated with CRC. As highlighted above, several groups have focused on individual microbial             
taxa to identify functional associations that explain the statistical correlations between individual            
microbial species and cancer. It is clear that not all of the structural and compositional changes in                 
the tumor-associated microbiome are functionally relevant and clinically actionable. This          
situation is analogous to passenger and driver mutations in cancer. In this case there are               
passenger microbes that show altered abundance at the site of the tumor simply due to the                
changes brought about by the aberrant physiology of tumorigenesis. Others, the driver microbes,             
are potentially oncogenic, drive tumor development once it has formed, or some combination of              
the two. Conversely, in the cases where specific microbial taxa are depleted at the site of the                 
tumor, the microbes may have anticancer effects that remain to be explored.  

We know that in healthy individuals, host genetic variation can affect the composition of              
the microbiome ​[25–30] ​, and the associated human genetic variants are enriched with           
cancer-related genes and pathways ​[26] ​. However, it is still unknown whether somatic mutations            
causing disruptions in genes and pathways in the host’s cells can affect the composition of the                
microbiome that directly interacts with these tissues. It is also clear that individual taxa are likely                
to have differential interactions with host tissues dependent on the larger context of the              
community as a whole ( ​e.g. ​not all patients with high levels of ​F. nucleatum ​in their gut                 
microbiomes will develop CRC). It is likely that the genetic and phenotypic heterogeneity of              
tumors also results in differential interactions with the microbiome. This variation, if not             
accounted for when assessing the tumor microbiome, might allow researchers to uncover generic             
or widely prevalent microbial changes at the site of the tumor. Including genetic information              
about the cancer in the assessment of tumor-microbiota interactions would allow for a more              
fine-grained analysis that unmasks the subtle interactions that might be lost in a generic              
tumor-normal comparison. To that end, we have performed a inter-tumor analysis accounting for             
the genetic heterogeneity present between them. In this work we show (i) associations between              
the tumor microbiome and variation in somatic mutational profiles in CRC tumors; (ii) which              
host genes and bacterial taxa drive the association; (iii) how these patterns can shed light on the                 
molecular mechanisms controlling host-microbiome interaction in the tumor microenvironment;         
and (iv) how this correlation can be used to construct a microbiome-based statistical predictor of               
genes and pathways mutated CRC tumors. These findings provide a framework for discovery of              
sets of microbial taxa (communities) that should be further explored using direct functional             
assessment to determine passenger or driver status. 
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Results 

Changes in the microbiome reflect tumor stage 

We performed whole-exome sequencing on a set of 88 samples, comprised of 44 pairs of               
tumor (adenocarcinomas) and normal colon tissue sample from the same patient, with previously             
characterized tissue-associated microbiomes ​[2] ​. The mutations in each of the tumors’          
protein-coding regions were identified relative to the patient-matched normal sample and           
annotated as either synonymous, non-synonymous, or loss-of-function (LoF) mutations (S1          
Table, S2 Table, S1 Fig, and S2 Fig). The ranges of mutations per tumor in our data set were                   
between 19-6678 (total), 10-3646 (missense) and 0-208 (LoF).The mutations were collapsed by            
gene as well as by pathways using both Kyoto Encyclopedia of Genes and Genomes (KEGG)               
and pathway interaction database (PID) annotations ​[31–34] (see Materials and Methods). We           
performed quality control of the data and stringent filtering at every step, with the goal of                
reducing false positives in mutation calling and statistical prediction ( ​e.g. ​, requiring 30x            
coverage at a site in both the tumor and matched normal sample to call a mutation; see Materials                  
and Methods). While these requirements are likely to increase the frequency of false negatives              
(true mutations that simply do not meet our criteria), this rigorous strategy is appropriate as a                
means of increasing the biological relevance of our findings. Of note, when comparing the              
common LoF mutations found in our dataset to those found in colorectal tumors sampled as part                
of The Cancer Genome Atlas (TCGA) project, we find several commonalities, including a high              
frequency of LoF mutations in ​APC, ​as well as numerous missense mutations in ​KRAS ​, ​NRAS,               
and ​TP53​, as expected (S1 Table) ​[35] ​. In general, the range of mutations across our sample set                
were also in line with those identified as part of TCGA and other CRC exome sequencing studies                 
(see S15 Table and S16 Table for comparisons) ​[35–39] ​.  

We first investigated the relationship between microbial communities and tumor stage           
( ​Fig. 1​). We hypothesize that the structure and composition of the associated microbiome can be               
affected by relevant physiological and anatomical differences between the tumors at different            
stages that would provide different microenvironmental niches for microbes. We identified the            
changes in the microbial communities surrounding each tumor as a function of stage by grouping               
the tumors into low stage (stages 1-2) and high stage (stages 3-4) classes, due to the low number                  
of total tumors with available stage information, and applied linear discriminant analysis (LDA)             
effect size (LEfSe) to the raw operational taxonomic unit (OTU) tables corresponding to these              
tumors (S3 Table, S5 Table, and S6 Table) ​[40] ​. The set of taxon abundances was transformed to                
generate a single value representing a risk index classifier for membership in the low-stage or               
high-stage group ( ​Fig. 1A ​; see Methods). To ascertain the error associated with these risk              
indices, a leave-one-out (LOO) cross-validation approach was applied. We also used the LOO             
results to generate receiver operating characteristic (ROC) curves and to calculate the area under              
the curve (AUC; see ​Fig. 1B​). In addition, we performed a permutation test to assess the                
method’s robustness (S5 Table). Using this approach, we demonstrate that the changes in             
abundances of 31 microbial taxa can be used to generate a classifier that distinguishes between               
low-stage and high-stage tumors at a fixed specificity of 80% and an accuracy of 77.5% (P =                 
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0.02 by Mann-Whitney U test, and P = 0.007 by a permutation test; S5 Table). The resulting                 
changes seen in our analysis of the microbial communities that vary by tumor stage were similar                
to those found in previous studies, including one using a Chinese patient cohort​[4,41] ​. In both               
cases, there were significant changes among several taxa within the phylum ​Bacteroidetes ​,            
including ​Porphyromonadaceae​, and ​Cyclobacteriaceae ( ​Fig. 1 and S5 Table). We applied the            
model generated from our data to two independent datasets that were analyses of the CRC               
microbiome and that also reported tumor staging ​[10,42] (S3 Fig). In the case of Flemer ​et al. the                 
same approach successfully separated the low stage from high stage tumors, whereas the trend              
was the same in the case of the Yoon, ​et al. data, it is likely that the n-value was too low to                      
achieve significance (S3 Fig). 

The comparisons of interest here are between tumor samples at high stage and tumor              
samples at low stage. This study utilized patient-matched normal samples, but these are not true               
normals, as they came from the same cancer patients who themselves have low or high stage                
cancer. To address the question of how the CRC samples, grouped by stage, compare to               
independent normal samples from healthy individuals, we obtained unpublished colonic mucosal           
microbiome data from a separate, but otherwise methodologically similar, study being performed            
at the University of Minnesota that included the tissue-associated microbiome from individuals            
without cancer (n=12) undergoing routine colonoscopy. The OTU tables from the normal            
samples as well as the low-stage and high-stage samples were merged and assessed using the               
aforementioned LEfSe LOO approach (see Methods) to generate a model that is relevant to the               
normal and cancer samples (S4 Fig). The high-stage and low-stage samples were still able to be                
separated, as were the differences between the normal and the low-stage. Interestingly, the             
high-stage samples were not able to be statistically separated from the normal samples using this               
model. 

Tumor mutations correlate with consistent changes in the proximal microbiome 

Next, we attempted to use a similar approach to classify tumors based on mutational              
profiles. We initially focused on individual genes that harbor loss-of-function (LoF) mutations,            
as those, we predicted, would be the most likely to have a physiologically relevant interaction               
with the surrounding microbiome. We applied a prevalence filter to include only those mutations              
that were present in at least 10 or more patients at the gene level, including 11 genes in the                   
analysis. The purpose of the filter was to limit the number of statistical tests while maintaining a                 
reasonable number of possibly cancer-driving mutations; see S7 Table for how changes in this              
cutoff affect the number of genes included in the analysis. The raw OTU table was collapsed to                 
the level of genus for the analysis. A visualization of the correlations between gene-level              
mutational status and the associated microbial abundances revealed differing patterns of           
abundances that suggests an interaction between the 11 most prevalent LoF tumor mutations and              
the microbiome ( ​Fig. 2 and S5 Fig). We hypothesized that the presence of mutation-specific              
patterns of microbial abundances could be statistically described by prediction of tumor LoF             
mutations in individual genes using the microbiome. For each of eleven genes that passed              
prevalence filtering cutoff, we identified the associated microbial taxa ( ​Fig. 2A ​, S6 Table, and              
S8 Table), generated risk indices for each patient ( ​Fig. 2B-C ​), and plotted the mean differences               
in abundances for a subset of microbial taxa interacting with each mutation ( ​Fig. 2D ​). We found                
that we are able to use microbiome composition profiles to predict the existence of tumor LoF                
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mutations in the human genes ​APC ​, ​ANKRD36C ​, ​CTBP2 ​, ​KMT2C​, and ​ZNF717 ​(Q-value =             
0.0011, 0.0011, 0.019, 0.019, and 0.055, respectively, by permutation test after False Discovery             
Rate (FDR) correction for multiple tests; ​Fig. 2​). The risk indices for each mutation were               
generated using sets of microbial taxa that ranges from 22 ( ​ZNF717​) to 53 ( ​ANKRD36C ​) taxa               
(S6 Table). The taxa that showed the most dramatic differences in abundance when comparing              
tumors with and without mutations are shown in Fig 2D. For example, the abundance of               
Christensenellaceae is relatively lower in tumors with ​APC mutations, but relatively higher in             
tumors with ​ZNF717​ mutations. 

To determine if our ability to find associations between specific mutations and microbial             
signatures was simply the result of being confounded by stage ( ​e.g. perhaps high-stage tumors all               
have mutations in ​APC ​, meaning that the ability to separate tumors by mutations in this gene are                 
potentially just a function of stage), we used mutation presence/absence information and tumor             
stage to look for confounding correlations between the two using Fisher’s exact test. The results               
show that there is no confounding associations between mutation status and tumor stage (S9              
Table). 

Next, we applied our interaction prediction approach, as described above, to the            
pathway-level mutational data ( ​Fig. 3​; see Methods). Following visualization of the pathway            
level abundances (S6 Fig, S7 Fig), we found that LoF mutations in each of the 21 KEGG                 
pathways passing prevalence filter can be significantly predicted with a fixed specificity of 80%              
and an accuracy up to 86% (Q-values < 0.02 by permutation test after FDR correction; ​Fig                

3A-D ​, ​S10 Table, S8 Fig, and S9 Fig). Similarly, microbiome composition significantly            
predicted LoF mutations in 15 of the 19 tested PID pathways (Q-values < 0.04 by permutation                
test after FDR correction) ( ​Fig 3E-H, S10 Table, S10 Fig, and S11 Fig). The full sets of taxon                  
abundances that were specifically associated with each of the LoF mutations in the genes and               
pathways can be found in S11 Table, S12 Table, S13 Table, S14 Table, and S12 Fig. In general,                  
the number of taxa within each of the sets used to generate the risk indices was lower than that                   
used for the gene-level analyses, with an average of 37 taxa per gene compared to 7 taxa per                  
pathway. When comparing results using the gene-level interactions and the pathway level            
interactions, for instance looking at mutations in ​APC ( ​Fig. 2​) and comparing them to mutations               
in the KEGG-defined Wnt signaling pathway and the PID-defined Canonical Wnt signaling            
pathway ( ​Fig 3​), the interactions at the pathway level are more statistically significant (AUC for               
APC ​= 0.81, KEGG = 0.88, PID = 0.90). This trend is consistent and can be visualized as a                   
density histogram of interaction prediction accuracies (S13 Fig), indicating a stronger signal of             
interaction with the microbiome when using pathway-level mutational data. 

 

Predicted microbiome interaction network affected by tumor mutational profile 

Lastly, we assessed the correlations between taxa among tumors with and without LoF             
mutations ( ​Fig. 4​; see methods). We found striking differences in the structure of the network               
comparing tumors with and without a Lof mutation in ​APC the correlations between taxa ( ​Fig               

4A ​). For example, in tumors with mutations in ​APC ​, the abundance of ​Christensenellaceae is              
positively correlated with ​Rhodocyclaceae and negatively correlated with ​Pedobacter ​. In tumors           
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lacking LoF mutations in ​APC ​, these correlations are lost and ​Christensenellaceae is instead             
negatively correlated with ​Saprospiraceae and ​Gemm 1​. We also assessed the network of             
correlations across tumors with mutations in PID pathways ( ​Fig 4B​). This analysis highlighted             
that some pathway-level mutations show a shared set of correlations between taxa, while others              
appear independent. It is interesting to note that there are several PID pathways that biologically               
linked ( ​e.g. ​Degradation of beta-catenin, Regulation of nuclear b-catenin signaling, Presenilin           
action in Notch and Wnt Signaling, and Canonical Wnt signaling pathway). These pathways do              
indeed share core elements, but as defined by the PID authors, are comprised of distinct               
combinations of genes (S14 Fig)​[34] ​. Several of the taxa that can be used to predict LoF                
mutations in p75(NTR) signaling share correlations among each other as well as with taxa              
associated with mutations in PDGFR-beta signaling and direct p53 effectors.  

 

Discussion 

The link between colorectal cancer and the gut microbiome has been highlighted by a              
large number of recent studies ​[2–17,19] ​, with several hypotheses as to the causal role of              
microbes in the disease​[9,12,43,44] ​. Given that host genetics is associated with microbiome            
composition, and since cancer is a genetic disease caused by mutations in host DNA, it is of                 
interest to study the microbiome in the context of tumor mutational profiles ​[25–30] ​. Here, we              
jointly analyzed tumor coding mutational profile and the taxonomic composition of the proximal             
microbiome. We found that the composition of the microbiome is correlated with mutations in              
tumor DNA, and that this correlation can be used to statistically predict mutated genes and               
pathways solely based on the microbiome. 

The association of microbial taxa with tumor stage (Fig 1) mirrors recent results,             
including a study of a Chinese population ​[4,41] ​. This concordance is relevant as it indicates that               
the microbial communities appear to be consistent even when comparing geographically distinct            
patient cohorts ​[45,46] ​. One of the predictive taxa, ​Porphyromonadaceae​, ​has been shown to be             
altered in mouse models of CRC in other studies as well​[7,14] ​. A study on the link between                 
dysbiosis and colitis-induced colorectal cancer also showed similar results ​[47] ​. For instance, the            
bacterial genus ​Paludibacter was found to be associated with risk of developing tumors in a               
mouse model​[47] ​. Additionally, other researchers have identified this taxa as a possible            
contributor to inflammation in bovine mastitis ​[48] ​. We find that ​Paludibacter is significantly            
associated with low-stage tumors, again, supporting the hypothesis that these bacteria are            
associated with cancer risk and may be contributing to early stage inflammation ​[47,48] ​. An             
equally likely hypothesis is that ​Paludibacter ​is using the inflammatory microenvironment to its             
own advantage, thereby explaining its association with the tissues at this state. Conversely, we              
found that the genus ​Coprococcus is associated with high-stage tumors and not low stage tumors.               
Members of this genus are known to generate butyrate and propionate, short chain fatty acids               
(SCFAs) that can be utilized by host colonocytes as an energy source and which, in this context,                 
can act as anti-inflammatory SCFAs ​[49,50] ​. Although our results are correlational and cannot            
point to causal effects, these findings suggest that driving inflammation may play a role in early                
stage cancer, while generating nutrients at the cost of suppressing inflammation may be more              
beneficial to the tumor in later stages. As microbes can have different effects dependent on their                
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environmental contexts, further work that studies the overall functional effects of microbial            
communities will need to be performed to assess how individual members interact and contribute              
to, suppress, or have no influence on inflammation.  

Gene-level mutation data, visualized in S5 Fig, show intriguing patterns of microbial            
abundances that are associated with the tumors harboring different mutations. While our            
previous work demonstrated that specific taxa, including ​Providencia ​, were significantly          
associated with tumors when compared to patient-matched normals, we did not find that this              
genus significantly discriminated among tumors based on LoF mutation status ​[2] ​. This suggests            
that there are potentially microbial taxa that might act as generic tumor-associated microbes and              
others that might rely on specific alterations in the tumor. For instance, as reflected in the                
differing patterns within each gene (rows) in the heatmap, ​Aerococcus and ​Dorea both show              
higher abundances within tumors harboring LoF mutations in ​ZNF717​, ​CTBP2 ​, and ​APC ​,            
relative to tumors with LoF mutations in ​ANKRD36C and ​KMT2C​. This highlights the different              
patterns in the microbiome that can be found when assessing genetically heterogeneous sets of              
tumors, as ​Dorea has been found to be differentially present in tumor microbiomes by several               
different groups. Our work highlights some potential genetic interactions that may explain the             
differences seen ( ​e.g. differences in the mutational statuses of the patients in the different cohorts               
could result in different findings) ​[3,5–8] ​. Thus, incorporating host genetic profiles in studies of             
the microbiome in CRC may be beneficial and uncover patterns in clearly specified subsets of               
patients that are defined depending on specific tumor mutations. 

While it is not possible to definitively identify the biological mechanism behind the             
predicted interactions among mutated genes and microbial taxa due to the correlative nature of              
this work (shown in Fig 2), it is possible to generate hypotheses based on what is already known                  
in the relevant literature. For example, we found that LoF mutations in ​APC correlate with               
changes in 25 different microbial taxa, including an increase in the abundance of the genus               
Finegoldia ​. This genus was identified in previous studies of colon adenomas and harbors species              
that are opportunistic pathogens at sites of epithelial damage​[6,51,52] ​. ​Capnocytophaga has been            
identified as a potential biomarker for lung cancer ​[53] ​. Our results also indicate that changes in               
the abundance of ​Christensenellaceae are associated with mutations in both APC and ​ZNF717​.             
A recent study in twins has identified ​Christensenellaceae as a taxon that is highly driven by host                 
genetics ​[27] ​. We found that mutations in ​ZNF717​, a transcription factor commonly altered in             
gastric, hepatocellular, and cervical cancers ​[54–56] ​, are associated with ​Verrucomicrobiaceae         
and ​Akkermansia ​, which are both known to increase in abundance in conjunction with             
colitis ​[57] ​. ​Alphaproteobacteria are significant contributors to our ability to predict mutations in            
CTBP2 ​, a repressor of transcription known to interact with the ARF tumor suppressor​[58] ​.             
Changes in this bacterial taxon’s abundance has also been found to be associated with prostate               
cancer, although the mechanism of action is unknown​[59] ​. We also show that mutations in              
KMT2C​, a gene commonly co-mutated along with ​KRAS, ​could be predicted, in part, using the               
abundance of ​Ruminococcus ​[60] ​. These bacteria have been previously implicated in          
inflammatory bowel disorders and colorectal cancer by multiple groups ​[8,61–63] ​.  

Similar results were also evident when aggregating the mutations into KEGG and PID             
pathways (Fig 3, S6 Fig, and S7 Fig; see Methods) ​[31–34] ​. As an example, we found that the                 
abundance of microbes that predict mutations in KEGG pathways form two distinct clusters, and              
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that the genus ​Escherichia has a higher scaled abundance in tumors with mutations in the KEGG                
pathways in cluster 1 relative to those in cluster 2 (S6 Fig). Cluster 1 contains adherens                
junctions, which are partially responsible for maintaining the intestinal barrier; a disruption of             
the intestinal barrier in mice using cyclophosphamide was shown to cause a loss of adherens               
junction function and a concomitant increase in bacterial translocation into the intestinal tissue,             
including species of ​Escherichia ​[64] ​. When examining the heatmap with LoF mutation           
collapsed into PID pathways (S7 Fig), we again identified differences in scaled microbial             
abundances between the tumors as a function of which pathways are mutated. For instance, we               
found lower abundance of ​Pseudomonas in tumors with LoF mutations in the pathways             
‘regulation of nuclear β-catenin signaling and target gene transcription’, ‘degradation of           
β-catenin’, ‘presenilin action in Notch and Wnt signaling’, and ‘canonical Wnt signaling            
pathways’. Recent studies have shown that ​Pseudomonas strains that express the ​LecB ​gene can              
lead to degradation of β-catenin, providing hypothetical support for the concept that this genus              
may play a somewhat protective role in CRC by suppressing the Wnt signaling pathway ​[65] ​. The               
mechanism that might explain this phenomenon is still unclear, but may have to do with               
alterations in appropriate cell surface adhesion molecules for the LecB protein or a change in the                
content of the cellular microenvironment ​[65,66] ​.  

Many of the interactions identified here between bacterial taxa and mutations in PID             
pathways have already been demonstrated experimentally in the literature. For example, in            
human oral cancer cells, it was shown that bacteria of interest were able to activate EGFR                
through the generation of hydrogen peroxide​[67] ​. In addition, the correlation between ErbB1            
downstream signaling and increase in the abundance of ​Corynebacterium ​has been demonstrated            
mechanistically in a model of atopic dermatitis, whereby EGFR inhibition results in dysbiosis             
(the appearance of ​Corynebacterium species) and inflammation ​[68] ​. Specific depletion of          
Corynebacterium ablates the inflammatory response​[68] ​. Moreover, our finding that the          
abundance of ​Fusobacterium is depleted in tumors with LoF mutations in the PDGFR-beta             
pathway may be explained by the dependence of several pathogenic strains of bacteria for              
functionally intact PDGFR signaling for adherence to intestinal epithelium ​[69] ​. In addition,           
p75(NTR) signaling has been shown to operate as a tumor suppressor by mediating apoptosis in               
response to hypoxic conditions and reactive oxygen species ​[70–73] ​. Alterations in this pathway            
have also been shown to be useful as a biomarker for esophageal cancer ​[74,75] ​. 

Our study has several caveats. First, our study only shows correlations, and we cannot              
directly assess causal effects. Thus, we do not know whether the microbiome is altered before or                
after the appearance of specific mutations. Nevertheless, many of the predicted interactions            
described above have been previously tested, albeit across a wide variety of experimental             
systems and disease states, typically in isolation, for biological relevance and mechanism of             
action. We anticipate that future studies will comprehensively test the causality of interactions by              
utilizing model organisms and cell culture techniques, where the directionality of the interactions             
between mutations and microbial taxa can be assessed. Additionally, we have only profiled the              
taxonomic composition of the microbiome, and thus cannot detect interactions that are dependent             
on microbial genes or functions. We also do not have an exhaustive history of each of the                 
patients and their backgrounds ( ​e.g. diet, family history, immune profile, ​etc​.), without which is              
it possible there may be a confounding variable that explains some of our correlations. Again,               
this work is the requisite precursor to functional analyses in a wet-lab setting. Similarly, using               
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whole-exome sequencing does not allow us to include non-coding mutations and larger tumor             
structural variants and chromosomal abnormalities. This can be alleviated by the use of             
metagenomic shotgun sequencing to profile the microbiome, as well as whole-genome           
sequencing to assess tumor mutations. Moreover, the study sample was relatively small (n = 88               
samples from 44 patients). Nevertheless, the sample size was sufficient to detect significant             
patterns. As ours is the first study, as far as we know, to present simultaneous exome sequencing                 
of tumors alongside assessment of the microbial communities associated with these tumors, no             
validation datasets are available. Additional studies that use large tumor samples would be useful              
in validating our results and identifying further associations as targets of functional interaction             
assays.  

From a broad perspective, tumors arise and thrive as a result of the combinatorial              
influences of their own genetics and their environments. In the context of the microbiome, there               
are three potential roles that microbial taxa may be playing in tumor biology: (1) they can                
contribute to the development and/or progression of the tumor; (2) they might have no effect on                
tumor formation or development, acting as pure commensals; and (3) they may provide             
protection against tumor development or progression. The research presented here does not            
address which of these hypotheses are most likely to play the largest role, as it is highly probable                  
that there are examples of microbial communities that align with each of these examples. The               
work presented here is a first attempt at identifying which points in the interplay between tumor                
genetics and the microbes in the tumor environment are ripe targets for future analysis to               
ascertain function and definitively identify what role these taxa are playing in the context of               
cancer pathogenesis, if any. 

In summary, we present an association between tumor genetic profiles and the proximal             
microbiome, and identify tumor genes and pathways that correlate with specific microbial taxa.             
We also show that the microbiome can be used as a predictor of mutated genes and pathways                 
within a tumor, and suggest potential mechanisms driving the interaction between the tumor and              
its microbiota. Our proof-of-principle analysis can provide a starting point for the development             
of diagnostics that utilize microbiome profiles to ascertain CRC tumor mutational profiles,            
facilitating personalized treatments. 

 

Materials and Methods 

Patient inclusion and DNA extraction 

88 tissue samples from 44 individuals were used, with one tumor and one normal sample               
from each individual. These de-identified samples were obtained from the University of            
Minnesota Biological Materials Procurement Network (Bionet), a facility that archives research           
samples from patients who have provided written, informed consent. These samples were            
previously utilized and are described in detail in a previous study​[76] ​. The patient information              
provided for this retrospective cohort did not include information related to immune status or              
inflammation. To reiterate these points, all research conformed to the Helsinki Declaration and             
was approved by the University of Minnesota Institutional Review Board, protocol 1310E44403.            
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Tissue pairs were resected concurrently, rinsed with sterile water, flash frozen in liquid nitrogen,              
and characterized by staff pathologists. The criteria for selection were limited to the availability              
of patient-matched normal and tumor tissue specimens. In all cases, normal tissue was confirmed              
by the pathologist to be tumor free. The tumor stages were classified using a modified stage                
grouping based on the TNM scale (collapsing the letter-scales into single numbers - eg. IIIA,               
IIIB, and IIIC are reported as stage 3. Additional patient metadata are provided in S4 Table and                 
in the indicated work​[76] ​. Microbial community data from 16S rRNA gene sequencing of an              
independent cohort of healthy patients (n =12) who underwent routine colonoscopies was            
acquired from a separate, unpublished dataset and used in the comparison of low-stage,             
high-stage, and normal microbial communities. 

 

Microbiome characterization 

The microbiome data used in the study was generated previously and is described             
exhaustively in ​[76] ​. Briefly, microbial DNA was extracted from patient-matched normal and           
tumor tissue samples using sonication for lysis and the AllPrep nucleic acid extraction kit              
(Qiagen, Valencia, CA). The V5-V6 regions of the 16S rRNA gene were PCR amplified with the                
addition of barcodes for multiplexing using the forward and reverse primer sets V5F and V6R               
from Cai, et al. ​[77] ​. The barcoded amplicons were pooled and Illumina adapters were ligated to               
the reads. A single lane on an Illumina MiSeq instrument was used (250 cycles, paired-end) to                
generate 16S rRNA gene sequences. The sequencing resulted in approximately 10.7 million total             
reads passing quality filtering in total, with a mean value of 121,470 quality reads per sample.                
The forward and reverse read pairs were merged using the USEARCH v7 program             
‘fastq_mergepairs’, allowing stagger, with no mismatches allowed ​[78] ​. OTUs were picked using           
the closed-reference picking script in QIIME v1.7.0 using the Greengenes database (August 2013             
release) ​[79–81] ​. The similarity threshold was set at 97%, reverse-read matching was enabled,            
and reference-based chimera calling was disabled.  

 

Exome sequence data generation  

Genomic DNA samples were quantified using a fluorometric assay, the ​Quant-iT           
PicoGreen dsDNA Assay Kit (Life Technologies, Grand Island, NY)​. Samples were considered            
passing quality control (QC) if they contained greater than 300 nanograms (ng) of DNA and               
display an A260:280 ratio above 1.7. Full workflow details for library preparation are outlined in               
the Nextera Rapid Capture Enrichment Protocol Guide ​(Illumina, Inc., San Diego, CA)​. In brief,              
libraries for Illumina next-generation sequencing were generated using Nextera library creation           
reagents ​(Illumina, Inc., San Diego, CA)​. ​A total of 50 ng of genomic DNA per sample were                 
used as input for the library preparation. The DNA was tagmented (simultaneously tagged and              
fragmented) using ​Nextera transposome based fragmentation and transposition as part of the            
Nextera Rapid Capture Enrichment kit (Illumina, Inc., San Diego, CA). This process added             
Nextera adapters with complementarity to PCR primers containing sequences that allow addition            
of Illumina flow cell adapters and dual-indexed barcodes. The tagmented DNA was amplified             
using dual indexed barcoded primers. ​The amplified and indexed samples were pooled (8             
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samples per pool) and quantified to ensure appropriate DNA concentrations and fragment sizes             
using the ​fluorometric PicoGreen assay and the Bioanalyzer High-Sensitivity DNA Chip           
(Agilent Technologies, Santa Clara, CA). ​Libraries were considered to pass QC as long as they               
contained more than 500 ng of DNA and had an average peak size between 200 - 1000 base                  
pairs. For hybridization and sequence capture, 500 nanograms of amplified library was            
hybridized to biotinylated oligonucleotide probes complementary to regions of interest at 58° C             
for 24 hours. Library-probe hybrids were captured using streptavidin-coated magnetic beads and            
subjected to multiple washing steps to remove non-specifically bound material. The washed and             
eluted library was subjected to a second hybridization and capture to further enrich target              
sequences. The captured material was then amplified using 12 cycles of PCR. The captured,              
amplified libraries underwent QC using a Bioanalyzer, and fluorometric PicoGreen assay.           
Libraries were considered to pass QC as long as they contained a DNA concentration greater               
than 10 nM and had an average size between 300 - 400 base pairs. Libraries were hybridized to a                   
paired end flow cell at a concentration of 10 pM and individual fragments were clonally               
amplified by bridge amplification on the Illumina cBot ​(Illumina, Inc., San Diego, CA)​. ​Eleven              
lanes on an Illumina HiSeq 2000 (Illumina, Inc., San Diego, CA) were required to generate the                
desired sequences. ​Once clustering was complete, the flow cell was loaded on the HiSeq 2000               
and sequenced using Illumina’s SBS chemistry at 100 bp per read. Upon completion of read 1,                
base pair index reads were performed to uniquely identify clustered libraries. Finally, the library              
fragments were resynthesized in the reverse direction and sequenced from the opposite end of the               
read 1 fragment, thus producing the paired end read 2. Full workflow details are outlined in                
Illumina’s cBot User Guide and HiSeq 2000 User Guides. Base call (.bcl) files for each cycle of                 
sequencing were generated by Illumina Real Time Analysis (RTA) software. The base call files              
and run folders were then exported to servers maintained at the Minnesota Supercomputing             
Institute. Primary analysis and de-multiplexing was performed using Illumina’s CASAVA          
software 1.8.2. The end result of the CASAVA workflow was de-multiplexed FASTQ files that              
were utilized in subsequent analysis for read QC, mapping, and mutation calling. 

 

Exome data analysis 

The exome sequence data contained approximately 4.2 billion reads in total following            
adapter removal and quality filtering, inclusive of forward and reverse reads, with a mean value               
of 47.8 million high-quality reads per sample. The raw reads were assessed using FastQC              
v0.11.2 and the Nextera adapters removed using cutadapt v1.8.1​[82,83] ​. Simultaneously,          
cutadapt was used to trim reads at bases with quality scores less than 20. Reads shorter than 40                  
bases were excluded. The trimmed and filtered read pairs were aligned and mapped to the human                
reference genome (hg19) using bwa v0.7.10 resulting in a bam file for each patient sample​[84] ​.               
These files were further processed to sort the reads, add read groups, correct the mate-pair               
information, and mark and remove PCR duplicates using picard tools v1.133 and samtools             
v0.1.18​[85,86] ​. Tumor-specific mutations were identified using FreeBayes       
v0.9.14-24-gc292036 ​[87] ​. Following these steps, 94.0% of the remaining read pairs mapped to            
the reference genome, hg19. Specifically, SNPs-only were assessed and a minimum coverage at             
each identified mutation position of more than 30X was required in both the patient normal and                
tumor samples. These mutations were filtered to only include those that were within             
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protein-coding regions which were then compiled into a single vcf file. We did not remove               
variants found in dbSNP. This vcf file was assessed using SNPeffect v4.1 K (2015-09-0) in order                
to predict the potential impact of each of the mutations ​[88] ​. Based on these results, the mutations                
were grouped into three categories: (1) total mutations (2) non-synonymous mutations and (3)             
loss of function (LoF) mutations. The total mutations group The total mutations group is simply               
the sum of all the mutations that were found in each tumor. The non-synonymous mutations               
included all the mutations in the total mutations group that were non-silent. The LoF group only                
included those mutations that resulted in a premature stop codon, a loss of a stop codon, or a                  
frameshift mutation. 

Mutations in genes were collapsed to pathways (PID and KEGG) based on pathway             
membership as defined by the relevant database authors ​[31,33,34] ​. Specifically, we relied upon            
Uniprot annotations to link genes to pathways with the database file, idmapping.dat.gz, available             
from Uniprot​[89,90] ​. This, three column database file is used by the web-based mapping             
interface for cross-referencing between genes and pathway membership datasets, including          
KEGG and PID ​[89] ​. In our case, we annotated each gene in our dataset with pathway               
membership information by first reducing the size of the idmapping.dat file by including only              
entries for KEGG and PID. For each LoF mutation in our dataset, we found the corresponding                
gene in the reduced database file with a matching ENSEMBL Gene ID (S1 Table) and recorded                
which grouping it was found in (KEGG or PID) and what the name of the defined pathway was                  
( ​e.g. ​Canonical Wnt signaling). Many genes had multiple annotations as they are members of              
more than one of the defined pathways. These annotations were used to identify which tumor               
samples had mutations in KEGG and PID pathways, defined as having at least one gene               
harboring a LoF mutation that was a member of the pathway.  

 

Joint analysis of microbiome data with tumor stage and mutation status in genes and              

pathways  

In order to identify microbial taxa that were significantly associated with specific            
characteristics ( ​i.e. tumor stage - Fig 1, LoF mutations in individual genes - Fig 2, and LoF                 
mutations within functional pathways - Fig 3), the OTU table was divided into two groups of                
tumors, defined by the characteristic of interest ( ​e.g. ​Low Stage vs. High Stage, Mutation vs. No                
Mutation). As it would be invalid to generate a model that was built using the actual test sample,                  
we used a “leave-one-out” approach when generating risk indices. To generate a risk index for a                
tumor, we started with an OTU table that contained all the tumors (43), leaving out the one for                  
which we were calculating the risk index. This 43-tumor OTU table was divided into two groups                
based on the characteristic of interest, as described above. These data were used as input into                
LEfSe, as a means of identifying the microbial taxa that were able to discriminate between the                
two groupings ​[40] ​. Taxa were considered significant discriminators if the base 10 logarithm of             
their LDA score was less than 2, as recommended. The taxa that were significant discriminators               
were themselves of two categories: those that were more abundant, for instance, at tumors that               
harbored a mutation and those that were more abundant at tumors that did not harbor a mutation.                 
The relative abundances of these taxa were arcsine root transformed and these transformed             
values - one for each category - were summed. The difference between these sums was               
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calculated and is the risk index value used in each of the aforementioned figures. The use of the                  
unweighted sum in the risk index, rather than relying entirely on the regression coefficients from               
LDA, is a simple way to control the degree of flexibility of the model when training on small                  
sample sizes. More detail is described in a previous publication ​[91] ​. This procedure was repeated              
a total of 44 times (once for each tumor, to complete the leave-one-out approach) to obtain a risk                  
index for each of the patients. The significance of the difference in risk indices between the                
patients found in one group vs. another ( ​e.g. ​low stage vs. high stage, with LoF mutation, without                 
LoF mutation) was assessed using a Mann-Whitney U test and a permutation test, in which we                
permuted the labels for a given group 999 times, each time deriving new held-out predictions of                
the risk indexes for each subject for that gene. Then the observed difference in means between                
the patients with LoF mutation and patients with LoF mutation risk index predictions using the               
method on the actual LoF mutation labels to the differences observed in the permutations to               
obtain an empirical P-value was compared. The resulting P-values were corrected using the false              
discovery rate (FDR) correction for multiple hypothesis tests. 

Receiving Operating Characteristic (ROC) curves were plotted and the area under the            
curve (AUC) values computed on a dataset containing 10 sets of predictions and corresponding              
labels obtained from 10-fold cross-validation using ROCR package in R​[92] ​. ​A risk index             
threshold was also obtained that best predicts the membership in a stage group or the presence or                 
absence of LoF mutation with a leave-one-out cross-validation on the risk index. Each held-out              
sample was treated as a new patient on whom the optimal risk index cutoff was tested and                 
subsequently refined to separate patients who had a LoF mutation and patient who did not have a                 
LoF.  

Correlation analysis was performed using SparCC on a reduced OTU table containing            
significant taxa identified using the above prediction methods collapsed to the genus level​[93] ​.             
Pseudo p-values were calculated using 100 randomized sets. Networks of correlations were            
visualized using Cytoscape v3.1.0 ​[94] ​. 

The patients in this study have associated clinical data as we described previously ​[76] ​,              
We used a linear model to determine the extent to which clinical factors may correlate with                
mutation load. These included patient sex, tumor stage, patient age, patient body mass index              
(BMI), and microsatellite instability (MSI) status. None of these factors, alone or in combination,              
were found to significantly impact the mutational data, though it bears noting that MSI status               
was only available for a subset (13 out of 44) of the patients. 

 

Availability of data and materials 

The microbiome datasets supporting the conclusions of this article are available in the NCBI              
sequence read archive: project accession number PRJNA284355,       
https://www.ncbi.nlm.nih.gov/sra/PRJNA284355 ​. 

The Exome sequencing dataset supporting the conclusions of this article are available (with             
proper access approval) from dbGAP - [ ​project accession number and hyperlink currently being             
generated ​]. 
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The tumor-specific mutation data supporting the conclusions of this article is included as S1              
Table. 
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Figure Legends 

Fig 1. Correlation between the microbial community at a tumor that differentiates between             

tumor stage.  

(A) Low-stage (stages 1-2) and high-stage (stages 3-4) tumors can be differentiated using a risk               
index classifier generated from microbial abundance data (y-axis). The central black bar            
indicates the median, and the thin black bars represent the 25th and 75th percentiles.  

(B) A receiver operating characteristic (ROC) curve was generated using a 10-fold            
cross-validation (blue dotted lines). The average of the 10-fold cross-validation curves is            
represented as a thick black line.  

(C) Differences in the mean abundances of a subset of the taxa predicted to interact differentially                
with high-stage and low-stage tumors. This subset represents those taxa that had a mean              
difference in abundance of greater than 0.1%, proportionally. 

Fig 2. ​Commonly mutated genes show a predicted interaction with changes in the             

abundances of several microbial taxa.  

(A) A heatmap of the scaled abundances values (cells) for a subset of taxa chosen as they were                  
identified as discriminatory in each leave-one-out iteration (columns) that were found           
significantly associated with prevalent LoF mutations (rows). Scaled abundances are from the            
patients with the indicated mutations.  

(B) LoF mutations in each of the indicated genes can be predicted using a risk index as a                  
classifier (y-axis). The central black bar indicates the median, and the thin black bars represent               
the 25th and 75th percentiles.  

(C) ROC curves were generated for each of the indicated mutations using a 10-fold              
cross-validation (blue dotted lines). The average of the 10-fold cross-validation curves is            
represented as a thick black line.  

(D) Differences in the mean abundances of a subset of the taxa predicted to interact differentially                
with tumors with a LoF mutation relative to those without the indicated mutation. This subset               
represents those taxa that had a mean difference in abundance of greater than 0.1%,              
proportionally. 

Fig 3. ​Pathways harboring prevalent LoF mutations correlate with changes in the            

abundances of sets of microbial taxa.  

(A) A heatmap of the scaled abundances values (cells) for a subset of taxa (columns) that are                 
found significantly associated with KEGG pathways harboring LoF mutations (rows). Scaled           
abundances are from the patients with mutations in the indicated pathways.  
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(B) LoF mutations in each of the indicated pathways can be predicted using a risk index as a                  
classifier (y-axis). The central black bar indicates the median, and the thin black bars represent               
the 2nd and 4th quartiles.  

(C) ROC curves were generated for each of the indicated pathways using a 10-fold              
cross-validation (blue dotted lines). The average of the 10-fold cross-validation curves is            
represented as a thick black line.  

(D) Differences in the mean abundances of a subset of the taxa predicted to interact differentially                
with tumors harboring mutations in the indicated pathways relative to those without a mutation.              
This subset represents those taxa that had a mean difference in abundance of greater than 0.1%,                
proportionally.  

(E - F) Identically structured visualizations as in (A - D), but for PID pathway data rather than                  
the KEGG pathways. 

Fig 4. Interaction networks among bacteria are defined by host tumor mutations.  

(A) SparCC analysis of the microbial abundances of the taxa identified by LEfSe for tumors               
APCLoF mutations in APC (left) and without mutation (right) produce distinct patterns of             
correlations (edges) between a common set of taxa (nodes). Direct correlations are indicated as              
red edges and inverse correlations as blue edges (SparCC R >= 0.25, P <= 0.05 for displayed                 
edges).  

(B) SparCC analysis was run simultaneously for all taxa identified by LEfSe when predicting              
interactions with mutations in PID pathways. There are interactions (dashed edges) between the             
taxa (grey nodes) associated with mutations across sets of PID pathways (green nodes). The solid               
edges indicate SparCC R-values (red for direct and blue for inverse correlations). The grey taxon               
nodes are scaled to the average abundance of the taxa in the associated tumor set. Edge color                 
indicates the direction of the interaction, red for negative and blue for positive. Note that while                
several of the pathways (green nodes) have closely related general functions ( ​e.g. ​“Canonical             
Wnt signaling pathway” and “Degradation of beta-catenin”), the underlying gene sets that            
comprise these pathways are distinct and result in independent correlations with microbial taxa.  

Supplementary Information 

S1 Table 

Tumor specific mutations. This files is a large, tab-separated dataset that contains information on              
each of the tumor-specific mutations found in the patient exome sequences. 

 

S2-S16 Tables.  
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An excel file contains S2-S16 Tables, each with their own descriptive headers, as individual tabs.               
This information includes specifics related to the exome sequencing, patient metadata, sets of             
taxa identified by LEfSe, and ROC curve generation. 

 

 

 

S1 Fig.  

Histogram of the proportion of reads passing quality  filter that aligned to the references genome. 

 

S2 Fig.  

Tumors harbored a wide range of mutations. The histograms at top indicate the frequency              
distribution of the total (green), missense (blue), and LoF (red) mutations found in the tumors               
from our patient cohort. The plots at bottom show the absolute numbers of tumor-specific              
mutations detected in the tumors on a flat scale (bottom left) as well as on a log scale (bottom                   
right).  

 

S3 Fig. 

Column dot plots of the risk indices determined using the stage-relevant model generated in this               
work to the microbiome data from Flemer, et al. (left) and Yoon, et al. (right). 

 

S4 Fig. 

Column dot plots of the risk indices calculated using a new model designed to separate microbial                
communities from normal, low stage, and high stage tumors. Normals included in this model and               
figure are from healthy individuals from an independent study, not from patient matched             
samples. 

 

S5 Fig. 

Heatmaps demonstrating the patterns of microbial abundances for patient samples with prevalent            
LoF mutations.  

(A) Scaled taxon abundances (columns) in the tumor samples that harbor LoF mutations in the               
genes indicated (rows).  

25 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/090795doi: bioRxiv preprint 

https://doi.org/10.1101/090795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(B) Scaled differences (tumor abundance - matched normal abundance) patients that harbor            
tumor- specific LoF mutations in the genes indicated (rows).  

 

S6 Fig. 

Heatmaps demonstrating the patterns of microbial abundances for patient samples with prevalent            
LoF mutations in KEGG pathways.  

(A) Scaled taxon abundances (columns) in the tumor samples that harbor LoF mutations in the               
KEGG pathways indicated (rows). Clusters 1 and 2 are labeled to facilitate discussion in main               
text.  

(B) Scaled differences (tumor abundance - matched normal abundance) patients that harbor            
tumor-specific LoF mutations in the KEGG pathways indicated (rows).  

 

S7 Fig.  

Heatmaps demonstrating the patterns of microbial abundances for patient samples with prevalent            
LoF mutations in PID pathways.  

(A) Scaled taxon abundances (columns) in the tumor samples that harbor LoF mutations in the               
PID pathways indicated (rows).  

(B) Scaled differences (tumor abundance - matched normal abundance) patients that harbor            
tumor-specific LoF mutations in the PID pathways indicated (rows). 

 

S8 Fig.  

LoF mutations in KEGG pathways can be predicted using a risk index as a classifier (y-axis). 

 

S9 Fig.  

ROC curves were generated for each of the KEGG pathways indicated in S6 Fig using a 10-fold                 
cross-validation (blue dotted lines). The average of the 10-fold cross-validation curves is            
represented as a thick black line. The AUC are indicated at bottom of each pathway panel. 

 

S10 Fig.  

 LoF mutations in PID pathways can be predicted using a risk index as a classifier (y-axis). 
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S11 Fig.  

ROC curves were generated for each of the PID pathways indicated in S8 Fig using a 10-fold                  
cross- validation (blue dotted lines). The average of the 10-fold cross-validation curves is             
represented as a thick black line. The AUC are indicated at bottom of each pathway panel. This                 
figure also includes BARD1 and Class I PI3K pathways, for references, although neither of these               
achieved statistical significance in other tests. 

 

S12 Fig.  

Large set of abundance plots for the taxa from each of the genes, KEGG pathways, and PID                 
pathways that harbored prevalent LoF mutations and showed significance as a means of             
predicting the interaction between the mutation and the microbiota. Abundances are plotted as             
both column dot plots as well as horizontal bar plots of the differences in the mean abundances                 
of a subset of the taxa predicted to interact differentially with tumors with a LoF mutation                
relative to those without the indicated mutation. These subsets represent those taxa that had a               
mean difference in abundance of greater than 0.1%, proportionally. 

 

S13 Fig.  

Interaction prediction accuracies increase when assessing biological pathways. A density          
histogram showing the distribution of prediction accuracies for individual genes (red), KEGG            
pathways (green), and PID pathways (blue). Interaction prediction accuracies are highest for            
human cancer-specific pathways from PID. The genes (red) exhibit a double peak distribution             
due to the relatively high accuracy achieved when predicting the presence of LoF mutations in               
KMT2C​ (80%). 

 

S14 Fig. 

Plot demonstrating the co-membership of genes within PID pathways. Horizontal bar chart            
indicates the total numbers of genes within each of the 4 PID pathways. Vertical bars in the bar                  
chart indicate numbers of genes that fall within the memberships indicated by filled in dots and                
lines at the intersections below the bars. 
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