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Abstract

Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to
host genetics. However, we do not know whether genetic mutations in CRC tumors interact with
the structure and composition of the microbial communities surrounding the tumors, and if so,
whether changes in the microbiome can be used as a predictor for tumor mutational status. Here,
we characterized the association between CRC tumor mutational landscape and its proximal
microbial communities by performing whole-exome sequencing and microbiome profiling in
tumors and normal colorectal tissue samples from the same patient. We find a significant
association between loss-of-function mutations in relevant tumor genes and pathways and shifts
in the abundances of specific sets of bacterial taxa. In addition, by constructing a risk index
classifier from these sets of microbes, we accurately predict the existence of loss-of-function
mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely
based on the composition of the microbiota. These results can serve as a starting point for
understanding the interactions between host genetic alterations and proximal microbial
communities in CRC, as well as for the development of individualized microbiota-targeted
therapies.
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Introduction

The human gut is host to approximately a thousand different microbial species consisting
of both commensal and potentially pathogenic members!. In the context of colorectal cancer
(CRCO), it is clear that bacteria in the microbiome play a role in human cell signalinngn; for
example, in the case of CRC tumors that are host to the bacterium Fusobacterium nucleatum, the
microbial genome encodes a virulence factor, FadA, that can activate the B-catenin pathwaylz. In
addition, several attempts have been made to predict CRC status using the microbiome as a
biomarker!3~10. It has been shown that focusing on a single bacterial species, F. nucleatum, it is
possible to predict some clinically relevant features of the tumor present”. However, as only a
minority of CRCs are host to F. nucleatum, this is a somewhat limited applicationlg. Other
specific microbes have been linked to CRC, including Escherichia coli harboring polyketide
synthase (pks) islands, as reported by one group19’20 and enterotoxigenic Bacteroides Fragilis
(ETBF) by another?1 =23, The mechanism of action of these associations is still under investigation
with F. nucleatum being the most clearly developedlz.

In healthy individuals, host genetic variation can affect the composition of the
microbiome24~2%, and the associated human genetic variants are enriched in cancer-related genes
and pathways25 . However, it is still unknown whether somatic mutations in host cells can affect
the composition of the microbiome that directly interacts with host tissues. Here, we aim to find
(1) whether variation in somatic mutational profiles in CRC tumors is associated with variation in
the microbiome; (ii) which host genes and bacterial taxa drive the association; (iii) how these
patterns can shed light on the molecular mechanisms controlling host-microbiome interaction in
the tumor microenvironment; and (iv) whether this correlation can be used to construct a
microbiome-based predictor of genes and pathways mutated in the tumor.

Results
Changes in the microbiome reflect tumor stage.

We performed whole-exome sequencing on a set of 88 samples, comprised of 44 pairs of
tumor (adenocarcinomas) and normal colon tissue sample from the same patient, with previously
characterized tissue-associated microbiomes?. The mutations in each of the tumors’
protein-coding regions were identified relative to the patient-matched normal sample and
annotated as either synonymous, non-synonymous, or loss-of-function (LoF) mutations
(Supplementary Figs. 1-2, and Supplementary Tables 1-2). The mutations were collapsed by
gene as well as by pathways using both Kyoto Encyclopedia of Genes and Genomes (KEGG)

and pathway interaction database (PID) annotations0 3.

We first investigated the relationship between microbial communities and tumor stage
(Fig. 1). We hypothesize that the structure and composition of the associated microbiome can be
affected by relevant physiological and anatomical differences between the tumors at different
stages that would provide different microenvironmental niches for microbes. We identified the
changes in the microbial communities surrounding each tumor as a function of stage by grouping
the tumors into low stage (stages 1-2) and high stage (stages 3-4) classes and applied linear
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discriminant analysis (LDA) effect size (LEfSe) to the raw operational taxonomic unit (OTU)
tables corresponding to these tumors (Supplementary Tables 3-4)34. The set of taxon abundances
was transformed to generate a single value representing a risk index classifier for membership in
the low-stage or high-stage group (Fig. 1a; see Methods). To ascertain the error associated with
these risk indices, a leave-one-out (LOO) cross-validation approach was applied. We also used
the LOO results to generate receiver operating characteristic (ROC) curves and to calculate the
area under the curve (AUC; see Fig. 1b). In addition, we performed a permutation test to assess
the method’s robustness (Supplementary Table 4). Using this approach, we demonstrate that the
changes in abundances of 31 microbial taxa can be used to generate a classifier that distinguishes
between low-stage and high-stage tumors at a fixed specificity of 80% and an accuracy of 77.5%
(P = 0.02 by Mann-Whitney U test, and P = 0.007 by a permutation test; Supplementary Table
4).The resulting changes seen in our analysis of the microbial communities that vary by tumor
stage were similar to those found in previous studies, including one using a Chinese patient
cohort*33. In both cases, there were significant changes among several taxa within the phylum
Bacteroidetes, including Porphyromonadaceae, Paludibacter, and Cyclobacteriaceae (Fig. 1 and
Supplementary Table 4).

Tumor mutations correlate with consistent changes in the proximal microbiome.

Next, we attempted to use a similar approach to classify tumors based on mutational
profiles. We initially focused on individual genes that harbor loss-of-function (LoF) mutations,
as those, we predicted, would be the most likely to have a physiologically relevant interaction
with the surrounding microbiome. A prevalence filter was applied to include only those
mutations that were present in at least 10 or more patients at the gene level. The raw OTU table
was collapsed to the level of genus for the analysis. A visualization of the correlations between
gene-level mutational status and the associated microbial abundances revealed differing patterns
of abundances that suggests an interaction between the 11 most prevalent LoF tumor mutations
and the microbiome (Supplementary Fig. 3). We hypothesized that the presence of
mutation-specific patterns of microbial abundances could be statistically described by prediction
of tumor LoF mutations in individual genes using the microbiome. For each of eleven genes that
passed prevalence filtering cutoff, we identified the associated microbial taxa (Fig. 2a and
Supplementary Tables 5-6), generated risk indices for each patient (Fig. 2b-c), and plotted the
mean differences in abundances for a subset of microbial taxa interacting with each mutation
(Fig. 2d). We found that we are able to use microbiome composition profiles to predict the
existence of tumor LoF mutations in the human genes APC, ANKRD36C, CTBP2, KMT2C, and
ZNF717 (Q-value = 0.0011, 0.0011, 0.019, 0.019, and 0.055, respectively, by permutation test
after False Discovery Rate (FDR) correction for multiple tests with a Q value threshold of 0.10;
Fig. 2). The risk indices for each mutation were generated using sets of microbial taxa that
ranges from 22 (ZNF717) to 53 (ANKRD36C) taxa (Supplementary Table 5). The taxa that
showed the most dramatic differences in abundance when comparing tumors with and without
mutations are shown in Fig. 2d. For example, the abundance of Christensenellaceae is relatively
lower in tumors with APC mutations, but relatively higher in tumors with ZNF717 mutations.
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Next, we applied our interaction prediction approach, as described above, to the
pathway-level mutational data (see Methods). Following visualization of the pathway level
abundances (Supplementary Figs. 4-5) and applying the model, we found that each of the 21
KEGG pathways passing prevalence filter were able to be significantly predicted with a fixed
specificity of 80% and an accuracy up to 86% (Q-values < 0.02 by permutation test after FDR
correction; Fig. 3a-d, Supplementary Figs. 6-7, and Supplementary Table 7), as were 15 of the 19
tested PID pathways (Q-values < 0.04 by permutation test after FDR correction) (Fig. 3e-h, and
Supplementary Figs. 8-9, and Supplementary Table 7). The taxon abundances that were
specifically associated (direct or inverse correlations) with each of the LoF mutations in the
genes and pathways can be found in Supplementary Tables 8-11 and Supplementary Fig. 10. In
general, the number of taxa within each of the sets used to generate the risk indices was lower
than that used for the gene-level analyses (average of 37 taxa per gene-associated set compared
to 7 taxa per set associated with mutations in KEGG or PID pathways). When comparing results
using the gene-level interactions and the pathway level interactions, for instance looking at
mutations in APC (Fig. 2) and comparing them to mutations in the KEGG-defined Wnt signaling
pathway and the PID-defined Canonical Wnt signaling pathway (Fig. 3), the interactions at the
pathway level are more statistically significant (AUC for APC = 0.81, KEGG = 0.88, PID =
0.90). This trend is consistent and can be visualized as a density histogram of interaction
prediction accuracies (Supplementary Fig. 11).

Predicted microbiome interaction network affected by tumor mutational profile

Lastly, we assessed the correlations between taxa among tumors with and without LoF
mutations (Fig. 4; see methods). We found striking differences in structure of the network
comparing tumors with and without a Lof mutation in APC the correlations between taxa (Fig.
4a). For example, in tumors with mutations in APC, the abundance of Christensenellaceae is
positively correlated with Rhodocyclaceae and negatively correlated with Pedobacter. In tumors
lacking LoF mutations in 4PC, these correlations are lost and Christensenellaceae 1s instead
negatively correlated with Saprospiraceae and Gemm 1. We also assessed the network of
correlations across tumors with mutations in PID pathways (Fig. 4B). This analysis highlighted
that some pathway-level mutations show a shared set of correlations between taxa, while others
appear independent. Several of the taxa that can be used to predict LoF mutations in p75(NTR)
signaling share correlations among each other as well as with taxa associated with mutations in
PDGFR-beta signaling and direct p53 effectors.

Discussion

The link between colorectal cancer and the gut microbiome has been highlighted by a
large number of recent studies 2_18, with several hypotheses as to the causal role of microbes in
the discase 2123037 Since cancer is a genetic disease caused by mutations in host DNA, it is of
interest to study the microbiome in the context of tumor mutational profiles, especially given
recent studies showing an impact of host genetics on the microbiome2429. Here, we jointly
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analyzed tumor coding mutational profile and the taxonomic composition of the proximal
microbiome. We found that the composition of the proximal microbiome is correlated with
mutations in tumor DNA, and that this correlation can be used to predict mutated genes and
pathways solely based on the microbiome.

We performed quality control of the data and stringent filtering at every step (e.g.,
requiring 30x coverage at a site in both the tumor and matched normal sample to call a mutation;
see methods). While these requirements are likely to increase the frequency of false negatives
(true mutations that simply do not meet our criteria), this rigorous strategy is appropriate as a
means of increasing the biological relevance of our findings. Of note, when comparing the
common LoF mutations found in our dataset to those found in colorectal tumors sampled as part
of The Cancer Genome Atlas (TCGA) project, we find several commonalities, including a high
frequency of LoF mutations in APC, as well as numerous missense mutations in KRAS, NRAS,
and TP53, as expected (Supplementary Table 138, In general, the numbers of mutations across
ousrgsample set were also in line with those identified at part of the TCGA (Supplementary Table
2)

The association of microbial taxa with tumor stage (Fig. 1) mirrors recent results,
including a study of a Chinese population4’3 3. This concordance is relevant as it indicates that the
microbial communities appear to be consistent even when comparing geographically distinct
patient cohorts3?*%. One of the predictive taxa, Porphyromonadaceae, has been shown to be
altered in mouse models of CRC in other studies as well”>!14. A study on the link between
dysbiosis and colitis-induced colorectal cancer also showed similar results*!. For instance, the
bacterial genus Paludibacter was found to be associated with risk of developing tumors in a
mouse model*!. We find that Paludibacter is significantly associated with low-stage tumors,
again, supporting the hypothesis that these bacteria as associated with cancer risk and may be
contributing to early stage inflammation®!. Conversely, we found that the genus Coprococcus is
associated with high-stage tumors and not low stage tumors. Members of this genus are known to
generate butyrate and propionate, which in this context can act as antiinflammatory short chain
fatty acids*2. Although our results are correlational and cannot point to causal effects, these
findings suggest that driving inflammation may play a role in early stage cancer, while
generating nutrients at the cost of suppressing inflammation may be more beneficial to the tumor
in later stages.

Gene-level mutation data, visualized in Supplementary Fig. 3, show intriguing patterns of
microbial abundances that are associated with the tumors harboring different mutations. For
instance, as reflected in the differing patterns within each gene (rows) in the heatmap,
Aerococcus and Dorea are both show higher scaled abundances within tumors harboring
mutations in ZNF717, CTBP2, and APC, relative to tumors with LoF mutations in ANKRD36C
and KMT2C. This highlights the different patterns in the microbiome that can be found when
assessing genetically heterogeneous sets of tumors; as Dorea has been found to be increased in
tumor microbiomes by several different groups, whereas our work highlights some potential
genetic interactions that explain cases wherein Dorea is not increased at the tumor site’~ 8. Thus,
incorporating genetic profiles in studies of the microbiome in CRC may be beneficial and
uncover patterns that are dependant on specific tumor mutations.
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Although it may be difficult to ascertain the biological mechanism behind the predicted
interactions among mutated genes and microbial taxa (shown in Fig. 2), it is possible to generate
hypotheses based on what is already known in the relevant literature. For example, ANKRD36C
encodes a protein that may have a role in ion transport in epithelial cells™®3. Additionally, we find
that LoF mutations in 4APC correlate with changes in 25 different microbial taxa, including an
increase in the abundance of the genus Finegoldia. This genus has been identified in previous
studies of colon adenomas and also harbors species that act as opportunistic pathogens at sites
where the epithelium has been damaged6’44’45. In addition, Capnocytophaga has been identified as
a potential biomarker for lung cancer0. Interestingly, changes in the abundance of
Christensenellaceae are predictive of mutations in both APC and ZNF717. A recent study in
twins has identified Christensenellaceae as a taxon that is highly driven by host geneticszé. We
find that mutations in ZNF'717, a transcription factor commonly altered in gastric, hepatocellular,
and cervical cancers 4749, are associated with Verrucomicrobiaceae and Akkermansia, which are
both known to increase in conjunction with colitis>. Alphaproteobacteria are significant
contributors to our ability to predict mutations in CTBP2, a repressor of transcription known to
interact with the ARF tumor suppressorSl. Changes in this bacterial taxon’s abundance has also
been found to be associated with prostate cancer, however a mechanism of action was not
exploredsz. We also show that mutations in KMT2C, a gene commonly co-mutated along with
KRAS, could be predicted, in part, using the abundance of Ruminococcus”>. These bacteria have
been previously implicated in inflammatory bowel disorders and colorectal cancer by multiple
aroups-34-56,

Similar results were also evident when aggregatin% the mutations into KEGG and PID
pathways (Fig. 3, Supplementary Figs. 4-5; see Methods) 0-33 As an example, we find that the
abundance of microbes that predict KEGG pathways form two distinct clusters, and that the
genus Escherichia has a higher scaled abundance in tumors with mutations in the KEGG
pathways in cluster 1 relative to those in cluster 2 (Supplementary Fig. 4). Cluster 1 contains
adherens junctions, which are partially responsible for maintaining the intestinal barrier and
interestingly, a disruption of the intestinal barrier in mice using cyclophosphamide was shown to
cause a loss of adherens junction function and a concomitant increase in bacterial translocation
into the intestinal tissue, including species of Escherichia®’. When examining the heatmap with
LoF mutation collapsed into PID pathways (Supplementary Fig. 5), we again find differences in
scaled microbial abundances between the tumors as a function of which pathways are mutated.
For instance, we find lower abundance of Pseudomonas in tumors with LoF mutations in the
pathways ‘regulation of nuclear B-catenin signaling and target gene transcription’, ‘degradation
of B-catenin’, ‘presenilin action in Notch and Wnt signaling’, and ‘canonical Wnt signaling
pathways’. Recent studies have shown that Pseudomonas strains that express the LecB gene can
lead to degradation of B-catenin, providing hypothetical support for the concept that this genus
may play a somewhat protective role in CRC by suppressing the Wnt signaling pa‘[hway5 . The
mechanism that might explain this phenomenon is still unclear but may have to do with
alterations in appropriate cell surface adhesion molecules for the LecB protein or a change in the
content of the cellular microenvironment”8->7.

Many of the interactions identified here between bacterial taxa and mutations in PID
pathways have been demonstrated experimentally in the literature. For example, in human oral
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cancer cells, it was shown that bacteria of interest were able to activate EGFR through the
generation of hydrogen peroxideéo. In addition, the correlation between ErbB1 downstream
signaling and increase in the abundance of Corynebacterium has been demonstrated
mechanistically in a model of atopic dermatitis, whereby EGFR inhibition results in dysbiosis
(the appearance of Corynebacterium species) and inflammation®!. Specific depletion of
Corynebacterium ablates the inflammatory responseél. Moreover, our finding that the abundance
of Fusobacterium is depleted in tumors with LoF mutations in the PDGFR-beta pathway, which
may be explained by the dependence of several pathogenic strains of bacteria for functionally
intact PDGFR signaling for adherence to intestinal epithelium62. In addition, p75(NTR) signaling
has been shown to operate as a tumor suppressor by mediating apoptosis in response to hypoxic
conditions and reactive oxygen species63’66. Alterations in this pathway have also been shown to
be useful as a biomarker for esophageal cancer®7-68,

Our study has several caveats. First, our study only shows correlations, and we cannot
directly assess causal effects. Thus, we do not know whether the microbiome is altered before or
after the appearance of specific mutations. Nevertheless, many of the predicted interactions
described above have been previously tested, albeit across a wide variety of experimental
systems and disease states, typically in isolation, for biological relevance and mechanism of
action. We expect that future studies will more comprehensively test the causality of interactions
by utilizing model organisms and cell culture techniques, where the effect of individual
mutations can be assessed. Additionally, we have only profiled the taxonomic composition of the
microbiome, and thus cannot detect interactions that are dependent on microbial genes or
functions. Similarly, using whole-exome sequencing does not allow us to include non-coding
mutations and larger tumor structural variants and chromosomal abnormalities. This can be
alleviated by the use of metagenomic shotgun sequencing to profile the microbiome, as well as
whole-genome sequencing to assess tumor mutations. Moreover, the study sample was relatively
small (n = 88 samples from 44 patients). Nevertheless, the sample size was sufficient to detect
significant patterns. Additional studies that use large tumor samples would be useful in
validating our results and identifying further associations.

In summary, we present a strong association between tumor genetic profiles and the
proximal microbiome, and identify tumor genes and pathways that correlate with specific
microbial taxa. We also show that the microbiome can be used as a predictor of tumor mutated
genes and pathways, and suggest potential mechanisms driving the interaction between the tumor
and its microbiota. Our proof-of-principle analysis can provide a starting point for the
development of diagnostics that utilize microbiome profiles to ascertain CRC tumor mutational
profiles, facilitating personalized treatments.

Methods
Patient inclusion and DNA extraction

88 tissue samples from 44 individuals were used, with one tumor and one normal sample
from each individual. These de-identified samples were obtained from the University of
Minnesota Biological Materials Procurement Network (Bionet), a facility that archives research
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samples from patients who have provided written, informed consent. These samples were
previously utilized and are described in detail in a previous study69. To reiterate these points, all
research conformed to the Helsinki Declaration and was approved by the University of
Minnesota Institutional Review Board, protocol 1310E44403. Tissue pairs were resected
concurrently, rinsed with sterile water, flash frozen in liquid nitrogen, and characterized by staff
pathologists. The criteria for selection were limited to the availability of patient-matched normal
and tumor tissue specimens. Additional patient metadata are provided in the indicated work®.

Microbiome characterization

The microbiome data used in the study was generated previously and is described
exhaustively in®. Briefly, microbial DNA was extracted from patient-matched normal and tumor
tissue samples using sonication for lysis and the AllPrep nucleic acid extraction kit (Qiagen,
Valencia, CA). The V5-V6 regions of the 16S rRNA gene were PCR amplified with the addition
of barcodes for multiplexing using the forward and reverse primer sets V5F and V6R from Cai,
et al.’%. The barcoded amplicons were pooled and Illumina adapters were ligated to the reads. A
single lane on an Illumina MiSeq instrument was used (250 cycles, paired-end) to generate 16S
rRNA gene sequences. The sequencing resulted in approximately 10.7 million total reads passing
quality filtering in total, with a mean value of 121,470 quality reads per sample. The forward and
reverse read pairs were merged using the USEARCH v7 program ‘fastq mergepairs’, allowing
stagger, with no mismatches allowed”!. OTUs were picked using the closed-reference picking
script in QIIME v1.7.0 using the Greengenes database (August 2013 release)72_74. The similarity
threshold was set at 97%, reverse-read matching was enabled, and reference-based chimera
calling was disabled.

Exome sequence data generation

Genomic DNA samples were quantified using a fluorometric assay, the Quant-iT
PicoGreen dsDNA Assay Kit (Life Technologies, Grand Island, NY). Samples were considered
passing quality control (QC) if they contained greater than 300 nanograms (ng) of DNA and
display an A260:280 ratio above 1.7. Full workflow details for library preparation are outlined in
the Nextera Rapid Capture Enrichment Protocol Guide (Illumina, Inc., San Diego, CA). In brief,
libraries for Illumina next-generation sequencing were generated using Nextera library creation
reagents (Illumina, Inc., San Diego, CA). A total of 50 ng of genomic DNA per sample were
used as input for the library preparation. The DNA was tagmented (simultaneously tagged and
fragmented) using Nextera transposome based fragmentation and transposition as part of the
Nextera Rapid Capture Enrichment kit (Illumina, Inc., San Diego, CA). This process added
Nextera adapters with complementarity to PCR primers containing sequences that allow addition
of Illumina flow cell adapters and dual-indexed barcodes. The tagmented DNA was amplified
using dual indexed barcoded primers. The amplified and indexed samples were pooled (8
samples per pool) and quantified to ensure appropriate DNA concentrations and fragment sizes
using the fluorometric PicoGreen assay and the Bioanalyzer High-Sensitivity DNA Chip
(Agilent Technologies, Santa Clara, CA). Libraries were considered to pass QC as long as they
contained more than 500 ng of DNA and had an average peak size between 200 - 1000 base
pairs. For hybridization and sequence capture, 500 nanograms of amplified library was
hybridized to biotinylated oligonucleotide probes complementary to regions of interest at 58° C
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for 24 hours. Library-probe hybrids were captured using streptavidin-coated magnetic beads and
subjected to multiple washing steps to remove non-specifically bound material. The washed and
eluted library was subjected to a second hybridization and capture to further enrich target
sequences. The captured material was then amplified using 12 cycles of PCR. The captured,
amplified libraries underwent QC using a Bioanalyzer, and fluorometric PicoGreen assay.
Libraries were considered to pass QC as long as they contained a DNA concentration greater
than 10 nM and had an average size between 300 - 400 base pairs. Libraries were hybridized to a
paired end flow cell at a concentration of 10 pM and individual fragments were clonally
amplified by bridge amplification on the Illumina cBot (Illumina, Inc., San Diego, CA). Eleven
lanes on an Illumina HiSeq 2000 (Illumina, Inc., San Diego, CA) were required to generate the
desired sequences. Once clustering was complete, the flow cell was loaded on the HiSeq 2000
and sequenced using Illumina’s SBS chemistry at 100 bp per read. Upon completion of read 1,
base pair index reads were performed to uniquely identify clustered libraries. Finally, the library
fragments were resynthesized in the reverse direction and sequenced from the opposite end of the
read 1 fragment, thus producing the paired end read 2. Full workflow details are outlined in
Illumina’s cBot User Guide and HiSeq 2000 User Guides. Base call (.bcl) files for each cycle of
sequencing were generated by Illumina Real Time Analysis (RTA) software. The base call files
and run folders were then exported to servers maintained at the Minnesota Supercomputing
Institute. Primary analysis and de-multiplexing was performed using Illumina’s CASAVA
software 1.8.2. The end result of the CASAVA workflow was de-multiplexed FASTQ files that
were utilized in subsequent analysis for read QC, mapping, and mutation calling.

Exome data analysis

The exome sequence data contained approximately 4.2 billion reads in total following
adapter removal and quality filtering, inclusive of forward and reverse reads, with a mean value
of 47.8 million high-quality reads per sample. The raw reads were assessed using FastQC
v0.11.2 and the Nextera adapters removed using cutadapt v1.8.17376, Simultaneously, cutadapt
was used to trim reads at bases with quality scores less than 20. Reads shorter than 40 bases were
excluded. The trimmed and filtered read pairs were aligned and mapped to the human reference
genome (hgl9) using bwa v0.7.10 resulting in a bam file for each patient sample77. These files
were further processed to sort the reads, add read groups, correct the mate-pair information, and
mark and remove PCR duplicates using picard tools v1.133 and samtools v0.1.1878:79,
Tumor-specific mutations were identified using FreeBayes VO.9.14-24-gc29203680. Following
these steps, 94.0% of the remaining read pairs mapped to the reference genome, hgl9.
Specifically, SNPs only were assessed and a minimum coverage at each identified mutation
position of more than 30X was required in both the patient normal and tumor samples. These
mutations were filtered to only include those that were within protein-coding regions and
compiled into a single vcf file. This vcf file was assessed using SNPeffect v4.1 K (2015-09-0) in
order to predict the potential impact of each of the mutations®!. Based on these results, the
mutations were grouped into three categories: (1) total mutations (2) non-synonymous mutations
and (3) loss of function (LoF) mutations. The total mutations group is self-explanatory. The
non-synonymous mutations included all the mutations in the total mutations group that were
non-silent. The LoF group only included those mutations that resulted in a premature stop codon,
a loss of a stop codon, or a frameshift mutation.
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Joint analysis of microbiome and exome data

Taxa that differentiated patients with or without LoF mutation were identified using
LEfSe34. All the taxa with a LDA score (log 10) > 2 were included in the calculation of the risk
indices, built to predict the presence or absence of a LoF mutation based on the OTU table
collapsed at genus level. To build the risk index, the relative abundances (arcsine square root
transformed) of the taxa associated with the LoF mutation (based on the LEfSe output) were
summed and the relative abundances of the taxa associated with no mutation (based on the
LEfSe output) were summed. The use of the unweighted sum in the risk index, rather than
relying on the regression coefficients from LDA, is a simple way to control the degree of
flexibility of the model when training on small sample sizes. More detail is described in a
previous publicationgz. Then the difference between these two sums was calculated, thereby
obtaining a risk index. This procedure was repeated 44 times to obtain a risk index for each
patient.

A leave-one-out procedure (also described above) was conducted to evaluate the taxa that
differentiated patients with or without LoF mutation in the held-out patient, based on the LEfSe
output of n-1 patients. In detail, the taxa that differentiated patients with or without LoF mutation
were identified using LEfSe in the n-1 dataset. The relative abundances of the taxa associated
with the LoF mutation (based on the LEfSe output of the n-1 dataset) were summed and the
relative abundances of the taxa associated with no mutation (based on the LEfSe output of the
n-1 dataset) were summed and were used to build the risk index in the held-out patient. In detail,
the difference between these two sums was calculated to obtain the risk index of the held-out
patient. This procedure was repeated 44 times, to produce a risk index in each of the held-out
patients, based on the difference between the sum of the taxa associated with the absence of LoF
mutation minus the sum of the taxa associated with the presence of the LoF mutation found in
each of the n-1 datasets. The significance of the difference in risk indexes between the patients
with LoF mutation and patients with LoF mutation for each gene was assessed using a
Mann-Whitney U test and a permutation test, in which we permuted the labels for a given gene
999 times, each time deriving new held-out predictions of the risk indexes for each subject for
that gene. Then the observed difference in means between the patients with LoF mutation and
patients with LoF mutation risk index predictions using the method on the actual LoF mutation
labels to the differences observed in the permutations to obtain an empirical P-value was
compared. The resulting P-values were corrected using the false discovery rate (FDR) correction
for multiple hypothesis tests.

Receiving Operating Characteristic (ROC) curves were plotted and the area under the
curve (AUC) values computed on a dataset containing 10 sets of predictions and corresponding
labels obtained from 10-fold cross-validation using ROCR package in R83. A risk index threshold
was also obtained that best predicts the presence or absence of LoF mutation with a
leave-one-out cross-validation on the risk index. Each held-out sample was treated as a new
patient on whom the optimal risk index cutoff was tested and subsequently refined to separate
patients who had a LoF mutation and patient who did not have a LoF.

Correlation analysis was performed using SparCC on a reduced OTU table containing
significant taxa identified using the above prediction methods collapsed to the genus level®*,
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Pseudo p-values were calculated using 100 randomized sets. Networks of correlations were
visualized using Cytoscape v3.1.0%.

As this work is an extension of a previous study of the CRC-associated microbiome, each
of the patients in this project have associated clinical data®. We used a linear model to determine
the extent to which any of these factors may correlate with mutation load. These included patient
sex, tumor stage, patient age, patient body mass index (BMI), and microsatellite instability (MSI)
status. None of these factors, alone or in combination, were found to significantly impact the
mutational data, though it bears noting that MSI status was only available for a subset (13 out of
44) of the patients.
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Figure Legends

Figure 1 | Correlation between the microbial community at a tumor that differentiates
between tumor stage. a, Low-stage (stages 1-2) and high-stage (stages 3-4) tumors can be
differentiated using a risk index classifier generated from microbial abundance data (y-axis). The
central black bar indicates the median, and the thin black bars represent the 25th and 75th
percentiles. b, A receiver operating characteristic (ROC) curve was generated using a 10-fold
cross-validation (blue dotted lines). The average of the 10-fold cross-validation curves is
represented as a thick black line. ¢, Differences in the mean abundances of a subset of the taxa
predicted to interact differentially with high-stage and low-stage tumors. This subset represents
those taxa that had a mean difference in abundance of greater than 0.1%, proportionally.

Figure 2 | Commonly mutated genes show a predicted interaction with changes in the
abundances of several microbial taxa. a, A heatmap of the scaled abundances values (cells) for
a subset of taxa chosen as they were identified as discriminatory in each leave-one-out iteration
(columns) that were found significantly associated with prevalent LoF mutations (rows). Scaled
abundances are from the patients with the indicated mutations. b, LoF mutations in each of the
indicated genes can be predicted using a risk index as a classifier (y-axis). The central black bar
indicates the median, and the thin black bars represent the 25th and 75th percentiles. ¢, ROC
curves were generated for each of the indicated mutations using a 10-fold cross-validation (blue
dotted lines). The average of the 10-fold cross-validation curves is represented as a thick black
line. d, Differences in the mean abundances of a subset of the taxa predicted to interact
differentially with tumors with a LoF mutation relative to those without the indicated mutation.
This subset represents those taxa that had a mean difference in abundance of greater than 0.1%,
proportionally.

Figure 3 | Pathways harboring prevalent LoF mutations correlate with changes in the
abundances of sets of microbial taxa. a, A heatmap of the scaled abundances values (cells) for
a subset of taxa (columns) that are found significantly associated with KEGG pathways
harboring LoF mutations (rows). Scaled abundances are from the patients with mutations in the
indicated pathways. b, LoF mutations in each of the indicated pathways can be predicted using a
risk index as a classifier (y-axis). The central black bar indicates the median, and the thin black
bars represent the 2nd and 4th quartiles. ¢, ROC curves were generated for each of the indicated
pathways using a 10-fold cross-validation (blue dotted lines). The average of the 10-fold
cross-validation curves is represented as a thick black line. d, Differences in the mean
abundances of a subset of the taxa predicted to interact differentially with tumors harboring
mutations in the indicated pathways relative to those without a mutation. This subset represents
those taxa that had a mean difference in abundance of greater than 0.1%, proportionally. e - f,
Identically structured visualizations as in a - d, but for PID pathway data rather than the KEGG
pathways.

Figure 4 | Interaction networks among bacteria are defined by host tumor mutations. a,
SparCC analysis of the microbial abundances for taxa identified by LEfSe for APC with LoF
mutations (left) and without mutation (right) produce distinct patterns of correlations (edges)
between a common set of taxa (nodes). Direct correlations are indicated as red edges and inverse
correlations as blue edges (SparCC R >= 0.25, P <= 0.05 for displayed edges). b, SparCC


https://doi.org/10.1101/090795
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/090795; this version posted December 1, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

analysis was run simultaneously for all taxa identified by LEfSe when predicting PID pathways.
There are interactions (dashed edges) between the taxa (grey nodes) associated with mutations
across sets of PID pathways (green nodes). The solid edges indicate SparCC R-values (red for
direct and blue for inverse correlations). The grey taxon nodes are scaled to the average
abundance of the taxa in the associated tumor set. Edge color indicates the direction of the

interaction, red for negative and blue for positive.
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