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Abstract 
Motivation: Cancer of unknown primary origin constitutes 3-5% of all human malignancies. Patients 

with these carcinomas present with metastases without an established primary site, which may not be 

found even by thorough histological search methods. Patients with cancer of unknown primary origin 

always have poor prognosis and hardly have efficient treatment since most cancers respond well to 

specific chemotherapy or hormone drugs. Many studies have proposed classifiers based on miRNAs 

or mRNAs to predict the tumor origins, but few study focus on high-dimensional DNA methylation pro-

files. 

Results: We introduced three classifiers with novel feature selection algorithm combined with random 

forest to effectively identify highly tissue-specific epigenetics biomarkers such as microRNAs and CpG 

sites, which can help us predict the origin site of tumors. This algorithm, incorporating differential anal-

ysis and descending dimension algorithm, was applied on 14 histological tissues and over 5000 sam-

ples based on miRNA expression and DNA methylation profiles to assign given primary tumor to its 

origin tissue. Our study shows all of these three classifiers have an overall accuracy of 87.78% 

(72.55%-97.54%) based on miRNA datasets and an accuracy of 96.43% (MRMD: 87.85%-99.76%) or 

97.06% (PCA: 92.44%-100%) based on DNA methylation datasets on predicting the origin of tumors 

and suggests that the biomarkers we selected can efficiently predict the origin of tumors and allow the 

clinicians to avoid adjuvant systemic therapy or to choose less aggressive therapeutic options. We also 

developed a user-friendly webserver which enables users to predict the origin site of tumors by upload-

ing the miRNAs expression or DNA methylation profiles of those cancers. 

Availability: The webserver, data, and code are accessible free of charge at 

http://server.malab.cn/MMCOP/  

Contact: zouquan@nclab.net 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

In a general medical oncology service, Metastatic Cancer of Unknown 

Primary Origin (CUP) whose origin site of a tumor cannot be readily iden-

tified, which may account about for 3%-5% in the new cancer cases 

(Chaffer and Weinberg, 2011; Greco and Hainsworth, 2006; Gupta and 

Massagué, 2006; Hodi, et al., 2010; Joyce and Pollard, 2009). The origin 

site of CUP can also remain equivocal, even after thorough complete phys-

ical examination including pelvic and rectal examination (ADLER, et al., 

1999; Willett, et al., 2009), full blood count and biochemistry, urinalysis 

and stool occult blood testing, histological evaluation of biopsy material 

with the use of immunohistochemistry (Kwak, et al., 2010), radiological 

examination (Suzuki, et al., 2011), computed tomography (CT) of the ab-

domen (Giacchetti, et al., 2000; Investigators, 2006) and, in certain cases, 

mammography (Chlebowski, et al., 2010) fail to identify the primary site. 

This disease manifestation with highly heterogeneous characteristic is also 

one of the 10 most frequent cancers worldwide (Chaffer and Weinberg, 

2011). CUP also represents a clinically diverse group, typically presenting 

with moderately to well-differentiated adenocarcinoma, or undifferenti-

ated to poorly differentiated tumors, involving multiple organs such as 

liver, bone, lung, lymph nodes and breast (Greco and Hainsworth, 2006). 

Patients who are diagnosed as CUP with elusive origin site often represent 
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an incommensurate proportion of cancer deaths or a very poor median sur-

vival, often measured in months, the average survival time of these pa-

tients would be only about 9 to 12 months with a very low survival rate 

after diagnosis (Daugaard, et al., 2009). Even though the survival rate de-

pends on various factors such as the cancer cell type, where the cancer is 

found, how far the cancer has spread, the treatments received, and how 

well the cancer responds to treatment, the main reason why there exist a 

high mortality among CUP patients can be account for by the misclassifi-

cation of unknown tumor origin. A large proportion of cases remain undi-

agnosed or mistakenly diagnosed, with the result that therapy cannot be 

matched to their specific disease, particularly for certain cancers that re-

spond well to specific chemotherapy or hormone drugs. 

The rapidly development of next-generation sequencing (NGS) technol-

ogy (Hanahan and Weinberg, 2011; McKenna, et al., 2010) has not only 

greatly advanced the generation of vast high-throughput sequence data 

and revolutionized the human genomics research through the analysis on 

linking the phenotype to its genomics, including DNA microarray (ChIP-

chip) and RNA sequencing (RNA-seq) (Hormozdiari, et al., 2009; 

Kozubek, et al., 2013), but also enhances epigenetic studies with high cov-

erage density and flexibility (Hurd and Nelson, 2009; Ku, et al., 2011). 

Particularly, a major extension of the previous Infinium HumanMethyla-

tion27 BeadChip, called Infinium HumanMethylation450 (Infinium 

Methylation 450K; Illumina, Inc. CA, USA) was developed as a powerful 

technique in terms of agentia costs, sample throughput and coverage 

(Aryee, et al., 2014; Bibikova, et al., 2009; Dedeurwaerder, et al., 2011; 

Sandoval, et al., 2011). It holds a great promise for a better understanding 

of the epigenetic component in health and disease and promotes a more 

comprehensive view of methylation patterns at single-base resolution 

across the genome with the help of whole-genome bisulfite sequencing 

(WGBS) (Xi and Li, 2009) which leverages the power of NGS (Chen, et 

al., 2013; Kim, et al., 2011; Lister, et al., 2009). Since developing thera-

peutic strategies, especially those involving specific therapy, would be 

much more challenging in CUP cases, and use of sequencing microarrays 

can promise to ultimately be of help in this regard. Tumor classifications 

based on gene expression designed for clinical application to CUP, partic-

ularly on miRNAs expression profiles, which are small non-protein-cod-

ing RNAs (Bartel, 2009) that have been much found to regulate the ex-

pression of gene involved in many biological processes , such as cell pro-

liferation, cell death and differentiation (Bartel, 2009; Hayashita, et al., 

2005; Hwang and Mendell, 2006), had been proposed to predict the origin 

of tumors (Budhu, et al., 2008; Heinzelmann, et al., 2011; Rosenfeld, et 

al., 2008). For example, Rolf et al (Søkilde, et al., 2014) developed a 

miRNA-based classifier which mainly involved feature selection embed-

ded in the Least Absolute Shrinkage and Selection Operator (LASSO) 

classification algorithm, this classifier has demonstrated with an overall 

high accuracy (88%; CI, 75% - 94%) on predicting the origin site of CUP. 

However, some tissues such as stomach and esophagus were not still able 

to be separated by this classifier. Beyond the classifier based on miRNAs 

or gene expression, few study focus on predicting the origin site of CUP 

from other epigenetics level, particularly on DNA methylation (DNAm). 

Since CpG methylation is central to many biological processes and human 

diseases, which means they are also highly tissue-specific and sensitive 

for common tumors, so it would be helpful for the detection and prediction 

of cancer considering DNAm. 

In this study, we developed a novel prediction algorithm for three classi-

fier types that can effectively identify highly tissue-specific biomarkers 

(miRNA or CpGs) from high-throughput miRNA expression or DNAm 

profiles to evaluate the potential of these data to accurately identify the 

origin of CUP. A large and comprehensive data set both from miRNA 

expression and DNAm profiles was obtained from more than 4500 tumor 

samples and over 500 normal samples, respectively representing 14 com-

monly recognized sites of origin in the differential diagnosis for CUP. An-

other considerably prospective meaning of this algorithm is that it also 

provides us a new perspective to find the potential interaction between 

selected miRNAs and DNAm both from a same solid tissue.  

Our classifier based on miRNA expression and Illumina 450k DNAm pro-

files are available through the MiRNA-Methylation based CUP’s Origin 

Predictor (MMCOP: http://server.malab.cn/MMCOP/ ) webserver, which 

enables the researchers to predict the origin site of their interested tumors. 

2 Methods 

2.1 Flowchart 

Figure 1 is a flowchart of this study, also including the algorithm flow of 

those three classifiers. After the data preprocessing, 1-level and 2-level 

feature selection method were respectively applied on miRNA expression 

and DNA methylation profiles to identify tissue-specific biomarkers, then 

a random forest algorithm was combined to construct the classifiers. 

Figure. 1.  Schematic overview of the workflow of data analysis, and the 

development of three classifiers.  

 

Note: PCA: Principal Component Analysis; MRMD: Maximum-Relevance-Maxi-

mum-Distance; DNAm: DNA methylation.  

2.2 Tumor samples and normal samples 

For data quality control, we made a strict manual review for each data set 

both in miRNA and DNAm to only select those data meet the requirements 

of our study. One of the inclusion criterias for subsequent feature selection 

of miRNAs and DNAm CPGs was that the datasets should have enough 

samples for both case and control (at least 5) groups. After this manual 

quality control of dataset, total 6602 samples for miRNA-based profiles, 

including 6045 tumor samples; total 5379 samples for DNAm-based pro-

files, including 4668 tumor samples were collected through The Cancer 

Genome Atlas (TCGA) pilot project (https://tcga-data.nci.nih.gov/tcga/). 
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The samples based on miRNA expression profiles were sequenced by the 

BCGSC (IlluminaHiSeq_miRNAseq) sequencing platform, which enable 

a highly sensitive and specific detection of common miRNAs in human 

species. And the samples based on DNAm profiles were obtained from 

Infinium HumanMethylation450 platform, which allowing (for 12 sam-

ples in parallel) assessment of the methylation status of more than 480,000 

cytosines distributed over the whole genome (Dedeurwaerder, et al., 2011). 

MiRNA expression and DNAm profiles we selected respectively repre-

sented 14 clinically most relevant histologies, covering a broad selection 

of solid tumors. The details of all tissue samples, including the tumor sta-

tus, and the histopathologic details of the tumors used for constructing the 

classifier are provided in Table 1. The details of an independent set of 

tumors with known origin for validation of the classifier, were also avail-

able in this table. 

Table 1.  Number of Samples per Tissue for miRNAs expression and 

DNA methylation profiles, Training sets, Testing sets 

 

Note: miR: miRNAs; DNAm: DNA methylation; HeNe: Head and Neck; KRCC: 

Kidney Renal Clear Cell; KRPC: Kidney Renal Papillary Cell; LSC: Lingual squa-

mous cell; NT: normal tissue sample; TN: tumor tissue sample; Training set: A:A, 

the 1st A means the total dataset of a given tissue, while the 2nd A means the total 

datasets of other tissues; *This tissue has not corresponding dataset. 

2.3.  Data Preprocessing and Normalization 

All the preprocessing analysis of datasets were performed with the 

LIMMA package (Linear Models for Microarray and RNA-seq Data, 

http://www.bioconductor.org/packages/release/bioc/html/limma.html) 

(Ritchie, et al., 2015) embedded in the R environment (http://www.r-

project.org/). For miRNA-based datasets, we selected miRNA isoforms 

expression data since all isomiRs are from a specific miRNA locus and 

providing the mature miRNA expression information. For each tissue type 

of selected datasets, we removed the miRNAs or CpGs which have more 

than 30% missing value (NA) of the samples. Then, the rest of the missing 

values are imputed by using the impute.knn function. The maximum 

miRNA expression value was selected if there were multiple isoforms for 

a given miRNA in each sample. For DNAm datasets, only one of the mul-

tiple samples (technical replication: the sample which was profiled repeat-

edly by different research organizations) was selected and the absolute 

methylation values which represent the methylated intensity of every 

CpGs was calculated by using BMIQ_1.4 (Beta MIxture Quantile dilation) 

(Teschendorff, et al., 2013) to correct the Type II probe bias. Both for 

miRNA and DNAm datasets, the expression values of miRNA and the 

beta value of CpGs were logarithmically transformed (base 2) and quantile 

normalized. 

2.4.  Feature selection and random forest 

2.4.1. 1st-level Feature Selection 

For miRNA-based and DNAm-based samples, 1st-level feature selection 

(three differential analysis steps) was conducted by Limma to identify tis-

sue-specific miRNAs/CpGs and reduce the considerable redundancy of 

original data. Three different steps were used to select miRNAs/CpGs 

which should show: 

 an abnormally expression/methylated value in a given normal tissue 

compared with other normal tissue types (one versus all, threshold: 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.01); 

 the same value in a given cancer tissue when compared with the 

corresponding normal tissues (one versus all, threshold: 𝑃 −
𝑣𝑎𝑙𝑢𝑒 ≥  0.5); 

 an abnormally expression value for the corresponding cancer type 

when compared with other tumor tissues (one versus all, threshold: 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.01). 

The 1st step was aimed to select out the miRNAs or CpGs whose mean 

value level is significantly different between a given normal tissue type 

and other normal tissue types. Since the goal of this study is to predict the 

origin of the CUP, the consideration of selecting the biomarkers who have 

a differential expression level among the different normal tissues would 

be necessary to help us identify tissue-specific miRNAs or CpGs. Those 

miRNAs/CpGs with FDR adjusted 𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.01 were extracted as 

candidates that have significant differential expression or methylation. For 

a given tissue dataset which includes both tumor samples and correspond-

ing normal tissue, we also need to assure that the tissue-specific biomarker 

we select should not have a differentially expressed or methylated value 

among the different samples (between the normal and cancer samples) 

which are in the same tissue. So the 2nd step guaranteed that the features 

we select have no abnormally expression or methylated value in the same 

tissue. The threshold we set here is 0.5, which means miRNAs/CpGs with 

FDR adjusted 𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≥ 0.5 would be considered a normal miRNA 

expression or DNA methylation. The 3rd step was used to identify the miR-

NAs or CpGs who are differentially expressed/methylated among the dif-

ferent tumor tissue types and in order to enable us discriminate cancer 

types from each other. The threshold we set here was same with the 1st 

step. And we called this these three steps to select the tissue-specific bi-

omarkers as the 1st-level Feature Selection. The interaction of miRNAs 

and the CpGs which were selected from these three steps would be re-

garded as preliminary features of 1st-level feature selection. 

2.4.2. 2nd-level Feature Selection 

For the miRNA-based datasets, the number of selected miRNAs from the 

1st-level feature selection vary around 10-17. Our subsequent miRNA-

based classifier had demonstrated these selected miRNAs are truly tissue-
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specific biomarkers and are sufficient to enable a high prediction accuracy 

of CUP. So we don’t need to apply a 2nd-level feature selection on the 

miRNAs selected from the 1st-level. However, the DNAm-based datasets 

sequenced by the platform Infinium HumanMethylation450 have the as-

sessment for the methylation status of more than 480,000 cytosines dis-

tributed over the entire genome. Thus, for a certain sample of DNAm pro-

files, it contains more than 400K CpGs even after the preprocessing pro-

cedure. Consequently, due to the extremely large amounts CpGs, the num-

ber of the selected CpGs after the 1st-level feature selection were still very 

large and redundant, varying from 10K to more than 20K CpGs for each 

tissue. Those large feature are still difficult to be used to train the classifier 

since there must be existing data redundancy. Therefore, we also proposed 

a 2nd-level feature selection to identify much more tissue-specific CpGs.  

Feature selection method has two main part of the decision: (a) Pearson's 

correlation coefficient (PCC) is utilized to measure the relevance between 

features in a subset; (b) Euclidean distance (ED), Cosine distance (CD) 

and Tanimoto (TO) is utilized to calculate the redundancy among features 

in a subset. The Pearson correlation coefficient shows the closely relation-

ship between features and labels, while the distance between features is 

used to present the data redundancy. Thus, we also adopted a java-based 

method called Maximum-Relevance-Maximum-Distance (MRMD, 

http://lab.malab.cn/soft/MRMD/index_en.html) (Zou, et al., 2016) which 

can select features that have strong correlation with labeled and lowest 

redundancy features subset Pearson. Another commonly used feature se-

lection method is Principal Component Analysis (PCA, embedded in the 

Dimensionality Reduction part of scikit-learn, http://scikit-learn.org/sta-

ble/index.html) (Pedregosa, et al., 2011), which is a statistical procedure, 

using orthogonal transformation to get the set of values of linearly uncor-

related variables called principal components from observations of possi-

bly correlated variables. Considering the time complexity and whether it 

is need to do functional annotation of selected CpGs after the feature se-

lection, both these two methods were respectively employed to conduct 

the 2nd-level feature selection. Both processing of MRMD and PCA have 

the automatic searching model for the best optimum dimensionality of fea-

tures. Since the CpGs was selected by MRMD were a set of top optimal 

number ranked CpGs, which enabled us not only use this feature to con-

struct the classifier, but also try to find out the hided gene information by 

applying a functional annotation on these CpGs. Whereas, the features se-

lected by the PCA cannot represent the original CpGs since they have been 

converted to the principle components by an orthogonal transformation, 

which means we cannot directly adopt a functional analysis for the fea-

tures of the PCA. 

2.4.3. Classifier Construction 

The miRNA selected from the 1st-level feature selection and the CpGs se-

lected from the 2nd-level feature selection was used for the tissue-specific 

biomarkers of every class, which is every tissue as well. All of classes 

were combined for the further construction of a random forest model. 

Since selection of relevant biomarkers (e.g., genes, miRNAs, CpG) for 

sample classification (e.g., to differentiate between patients with and with-

out cancer) is a common research in most genomics studies, another main 

objective is the identification of small biomarker sets that could be used 

for diagnostic purposes in clinical practice, which involves obtaining the 

smallest possible set of biomarkers that can still achieve high prediction 

performance, in other words, the "redundant" biomarkers should not be 

selected (Díaz-Uriarte and De Andres, 2006). Therefore, considering the 

unique characteristics of these research and the properties of genomics 

data, classification algorithms that be used both for two-class and multi-

class problems of more than two classes, or when there are many more 

variables than observations, and avoid overfit as far as possible would be 

of great interest for biomarkers classification. Random forest is such an 

algorithm which has been demonstrated with a high performance on many 

classification cases of gene microarray (Breiman, 2001; Statnikov, et al., 

2008). So here we adopted random forest after the miRNAs and CpGs 

were selected by the feature selection.  

Since the number of the minority class samples (a given tissue class) are 

very small compared with number of the majority class samples (other 

tissue classes), it would cause an imbalance problem. To address the im-

balanced dataset problem, which may have a serious impact on the perfor-

mance of classifiers, we adopted a undersampling (Al-Shahib, et al., 2005) 

method to randomly sample a subset from the majority class to form a 

balanced dataset with corresponding minority class. Each tissue as well as 

individual model, which would have a balanced dataset, was trained for 

the the goal of discrimination of a given tissue from all other tissues (one 

versus all). For example, in miRNA expression profiles, there are total 425 

bladder samples including 19 normal controls and 406 bladder urothelial 

carcinomas and there are total 6177 other tissue samples, we randomly 

selected 425 samples from those 6177 samples to construct a balanced da-

taset via a combination with the 425 bladder samples. The remaining sam-

ples from other tissues, as well as the 5752 samples, would be used to test 

the classifier (see the column 7 or column 12 in Table 1). 

Each individual model will be tested by fivefold cross-validation to ensure 

no over-fitting problem arouse. As a result, there would be a m (m: the 

number of the types of total tissues) class classifier which included m in-

dividual class models. For the classifier testing, we used the remaining 

datasets via splitting the imbalanced datasets as the testing datasets. So in 

summary, we proposed a 1-level feature selection + random forest to con-

struct the miRNA-based classifier, while we have 2 options for the 

DNAm-based classifier: 2-level feature selection (2nd level is MRMD) + 

random forest or 2-level feature selection (2nd level is PCA) + random for-

est. A webserver (MMCOP) based on java was also developed to help the 

users to predict the origin site of tumors by uploading either miRNA ex-

pression or DNA methylation profiling. 

3 Results 

3.1 Sample Selection 

To decide which class of tissues should be included to construct the 

classifier, we turned to those most metastatic cancers which are most 

found under a light microscope. The majority CUP, about 90%, are 

adenocarcinomas, with 60% appearing as moderately to well-

differentiated adenocarcinoma, whereas about 30% are poorly 

differentiated adenocarcinoma. Common adenocarcinoma origins can be 

found in lung, pancreas, breast, prostate, stomach, liver, and colon tissues 

(Greco and Hainsworth, 2006; Gupta and Massagué, 2006). About the 

remaining 10% of CUP can also be found either in squamous cell 

carcinoma, most of which arise from head and neck tumors, or neoplasms, 

which are often poorly or even undifferentiated (Greco and Hainsworth, 

2006). To ensure a comprehensive representation of the major carcinoma 

types, defined by their anatomic origin tissue or organ, we selected the 

major carcinoma (bladder, breast, colon, lung, stomach, kidney, liver, 

uterus, etc.) and germ cell tumors (clear cell carcinoma). Thus, for 
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miRNA-based and DNAm-based samples, we respectively selected 6602 

miRNA samples and 5379 DNAm samples for 14 tissue types which can 

cover most metastases. Table 1 respectively lists the 14 tissues and 

histologies (columns 1 and 2). 

3.2 Feature Selection and Tissue-specific miRNAs expression 

and CpGs methylation 

Table 2.  The Number of selected miRNAs and CpGs That Can Be Used 

for Identification of Tumor Origin, as well as the detailed information of 

selected miRNAs 

 

Note: FS: feature selection; *This tissue has not corresponding dataset; All the miR-

NAs documented above have omitted the prefix”has-”; The details of CpGs selected 

by the MRMD are available in the Supplementary Information. 

The key to construct the classifier which has a high performance on 

predicting origin site of CUP is to use those truly tissue-specific features. 

So in order to select highly tissue-specific biomarkers, we adopted 

different strategies for different dataset types. Another consideration of 

feature selection is the features size for different datasets. For miRNAs-

based datasets, which has only about 1800 common miRNAs at first (only 

419 miRNAs were left after the data preprocessing procedure), we 

adopted a 1-level feature which could not only ensure the best quality of 

identification of tissue-specific miRNAs, but also select appropriate 

amounts of miRNAs, about 10-17 miRNAs for each tissues with the total 

of 153 miRNAs selected from the 1st feature selection (see the column 3 

in Table 2). However, considering the DNA methylation datasets whose 

methylation status covers almost all CpGs over the whole genome, which 

consequently caused the number of CpGs from the 1st feature selection 

was still large, therefore, we need to adopt a 2nd feature selection to further 

filter the redundant useless CpGs. Specifically designed for different 

subsequent processing analysis, we used the MRMD and PCA to 

respectively process the 2nd feature selection. The optimal number of 

features selected out for each tissue was determined to by the 

automatically searching optimum model of MRMD and PCA, since more 

complex models would include more features without a corresponding 

increase in subsequent classifier performance. The selected miRNAs with 

high tissue-specific discriminatory potential from 1st feature selection 

were listed in the Table 2, also including the number of automatically 

searching optimal features from both 2-level feature selection. The 

detailed information of selected CpGs after the 2nd feature selection is 

available in supplementary materials. 

 

In order to verify the rationality of our feature selection method, we draw 

a heat-map (Figure 2) of selected tissue-specific miRNAs for the miRNA-

based profiles and a box plot (Figure 3) for every top 1 CpGs of 14 DNAm 

tissues. We can clearly see that some tissues are easy to distinguish from 

the rest because of a strong and differentially expressed tissue-specific 

miRNA signature or differentially methylated CpGs. 

Figure. 2.  Heatmap of Expression of tumor tissue-specific miRNAs 

(rows) across 660 samples (columns) that represent the 14 histologies in 

the training set. These 660 samples were minified in equal proportion from 

the total 6602 samples. The heatmap shows median normalized log2 data 

for every miRNA selected in each tissue. 

 

Note: HeNe: Head and Neck; KiCh: Kidney Chromophobe; KRCC: Kidney Renal 

Clear Cell. 

Figure. 3.  Boxplot of Expression of 14 top 1 tissue-specific CpG site of 

14 histologies in the training set. These 14 sites were the top ranking 1st 

sites after the 2nd-level feature selection; since the boxplot is showing the 

comparison of a single CpG site, so the p-value between two boxes was 

calculated by the t-test. 

 

Note: HeNe: Head and Neck; KRCC: Kidney Renal Clear Cell; KRPC: Kidney Re-

nal Papillary Cell; LSC: Lingual squamous cell; NT: normal tissue sample; TN: tu-

mor tissue sample. 

3.3 Performance of Classifier on Predicting the Origin of Tu-

mors 

In practice, the performance of predictor depends much on the the number 

of features selected from the feature selection. The optimal number of tis-

sue-specific miRNAs are obtained from the 1st feature selection, while the 
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best performance of DNAm-based classifier obtained using the CpGs se-

lected by the automatically searching optimum model of MRMD and PCA. 

Specifically, due to the large sample size we selected, we also proposed 

undersampling method to avoid the potential imbalanced problem. We 

randomly split the majority class (other tissue samples) into the same sam-

ple size as the minority class (the given tissue) to combine a balanced da-

taset. Then a random forest algorithm would be adopted on this balanced 

dataset to train the classifier with the optimal selection of tissue-specific 

biomarkers, an individual model would be consequently generated. The 5-

fold cross-validation training accuracy and the testing accuracy on the re-

maining data (column 7 and column 12 in Table 1) was displayed on Table 

3. The tissues which were correctly predicted by either miRNA-based or 

DNAm-based classifier account for the majority of all cases with respec-

tive an overall testing accuracy of 87.78% (miRNA-based, CI, 72.55%-

97.54%), 96.43% (DNAm-based by MRMD, CI, 87.85%-99.50%) and 

97.06% (DNAm-based by PCA, CI, 92.44%-100%). Specifically, it’s ev-

ident that the performance of DNAm-based classifier by PCA is better 

than the other two classifiers (Table 3). 

Table. 3.  The Performance of Three Classifiers for the miRNA expres-

sion and DNA methylation profiles 

Note: ACC: accuracy; *This tissue has not corresponding dataset. 

4 Conclusion 

Due to the rapid development of NGS, extremely large amounts of se-

quencing data such as miRNA expression data, methylation sequencing 

data have been generated and are also becoming more easily available, 

which also facilitate the development of cancer genomics. Additionally, 

miRNA expression, as well as CpGs methylation, have been found to 

show a great association with the origin site of tumor (Hurd and Nelson, 

2009; Kim, et al., 2011). Since the efficient treatment of CUP depends 

critically on the correct identification of the original site, various ways 

including microscopic techniques (i.e. CT scan), immunohistochemical 

testing have been proposed to developed to improve the diagnosis of CUP 

(Kim, et al., 2005). In additional to those techniques, the method based on 

gene expression profiling which has tissue-specific characteristics may 

also enable a highly accurate identification of origin of tumor. Though 

many different algorithms based on machine learning are available for 

multiclass cancer classification, such as K nearest neighbor, linear discri-

minant analysis, support vector machine, recursive feature elimination, 

decision trees, and artificial neural networks have also been proposed from 

the gene expression profiling (Dudoit, et al., 2002; Guyon, et al., 2002; 

Khan, et al., 2001; Nutt, et al., 2003; Qu, et al., 2002; Zhu and Hastie, 

2004), the characteristic of DNA methylation strong associated with tissue 

site should also be included to consider constructing the classifier. The 

beadchip we used here to analyze is the Infinium HumanMethylation450, 

which is a hybrid of two different chemical assays, the Infinium I and In-

finium II assays, called Infinium II, approximately a third of the cytosines 

are interrogated with Infinium I, but roughly twothirds are interrogated 

with Infinium II, a chemical assay unavailable in Infinium 27K. Infinium 

450K array covers 96% of the CpG islands (CGIs) and also highly presents 

multiple CGI shores and CpG sites located far from islands 

(Dedeurwaerder, et al., 2011). Therefore, these methylation profiles, as 

well as the miRNA expression profiling, especially generated from pa-

tients with common disease or cancers, has enabled much potential multi-

tude of information mining which hided in complex human diseases.  

In this study, we developed three comprehensive classifier types which 

include different levels of feature selection direct for different biology data 

types, including miRNA expression and DNA methylation profiles. Our 

classifiers for miRNA-based and DNAm-based datasets were both demon-

strated with higher prediction accuracy on a spectrum of diagnostically 

challenging samples compared with other developed classifiers. The 

miRNA expression and DNA methylation profiles were used to success-

fully develop three different classification scheme, based on the random 

forest algorithm, which integrates the consequences of feature selection 

within the classifier construction.  

Mainly in terms of the biology bias, the 1st-level feature selection is based 

on the miRNA differential expression and DNA differential methylation 

analysis. The 2nd-feature selection, either by PCA or MRMD, however, is 

mainly based on the algorithm from the mathematic methods. Actually, 

the datasets for detailed analyzed here represents two main data regimes: 

the first one is that the dimension (D) of data smaller than the samples size 

(n) (miRNA expression profiles: D=419, n=6602); the second one is the 

high-dimensional dataset which the ambient dimension of the dimension 

(D) may be of the same as, or substantially larger than the sample size (n) 

(DNA methylation profiles: D=395515, n=5379). For the first data regime 

(D < n), many machine learning-based classifier had been developed to 

predict the site of tumor origin. Our algorithm which combine the 1st-level 

feature selection (miRNA differential expression analysis) and random 

forest to construct the miRNA-based classifier has an approximately the 

same sensitivity as other cancer classification methods. The miRNA-

based classifier was evaluated firstly with also a high prediction accuracy 

87.08% (CI, 72.48%-96.70%) by five-fold cross-validation on the initial 

training datasets, and also a high testing accuracy of 87.78% (CI, 72.55%-

98.07%). The classifier based on least absolute shrinkage and selection 

operator (LASSO) algorithm proposed by Rolf et al (Søkilde, et al., 2014) 

has relative lower prediction accuracy on colorectal class (76.47%, 13 cor-

rected in 17 cases) when it’s compared either with our miRNA-based clas-

sifier (80%). Another example is our miRNA-based classifier has an ac-

curacy of 88.62% on predicting bladder tissue, while the K nearest neigh-
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bor-based miRNA classifier reported by Rosenfeld et al has zero sensitiv-

ity to bladder cancer. However, there are still several tissues such as Bile 

Duct, Esophagus and Uterus, are inherently hard to classify correctly and 

are often poorly differentiated or dedifferentiated, these three tissues were 

also reported with a quite low prediction accuracy in other machine-learn-

ing methods, such as the method proposed by Rolf et el (Søkilde, et al., 

2014). The testing accuracy of these three tissues in our miRNA-based 

classifier reach respectively about 80.86%, 79.66% and 72.55%, which 

are not good as other tissues but still better than some other methods, such 

as the IHC markers method Park et al (Park, et al., 2007) proposed which 

can be used to identify the cholangiocarcinoma (Bile Duct) wich a quite 

low accuracy (28%).  

The second data regime (D ≥ n) has been much witnessed with the rapid 

development of data collection technology, which enables more observa-

tions to be collected (larger n), and also more variables, as well as the 

dimensions to be measured (larger D) (Negahban, et al., 2009). Typically, 

DNA methylation intensity data collected from Infinium 450K array are 

such data regime. To process this high-dimension data more efficiently, 

we adopted two widely-used methods (MRMD and PCA) as the 2nd-level 

feature selection to further select the tissue-specific CpGs from the results 

in the 1st-level selection (DNA differential methylation analysis). The 

overall accuracy has demonstrated that our two DNAm-based classifiers 

could have a much higher accuracy than miRNA-based classifier (Table 

3). The accuracy of five-fold cross-validation on the initial training da-

tasets achieved 96.73% (DNAm-based by MRMD, CI, 91.61%-99.39%) 

and 95.43% (DNAm-based by PCA, CI, 90.07%-99.25%) and also a very 

high testing accuracy of 96.43% (DNAm-based by MRMD, CI, 87.85%-

99.50%) and 97.06% (DNAm-based by PCA, CI, 92.44%-100%) (see in 

the Table 3). In addition, almost all of tissues have a very high accuracy 

more than 90%, also including those tissue with more difficulty to be iden-

tified by miRNA expression profiling, such as Uterus, Lung and Esopha-

gus tissues with testing accuracy (98.49%, 98.69% and 92.44%). We can 

also clearly see that the overall performance of DNAm-based classifier 

(2nd level is PCA) is better than the DNAm-based classifier (2nd level is 

MRMD), also much higher than the miRNA-based classifier (except the 

Liver tissue). However, there’s a drawback for the DNAm-based classifier 

(by PCA), this classifier could not directly tell us which CpGs were se-

lected out according to the 2nd feature selection.  

One of the main challenges in machine learning based classifier develop-

ment is the effective identification of an appropriate set of features on 

which a classifier is trained to identify each class accurately. Our two lev-

els feature selection ensure an adequate volume of selected biomarkers to 

construct an accurate classifier. From Figures 2-3, we could clearly see 

those biomarkers we selected from the 1st or 2nd-level feature selection 

have strong heterogeneous tissue-specific signatures. Another worthwhile 

perspective of this study should be highlight is that we actually proposed 

another novel way to identify those biomarkers selected from the same 

tissue would have a strong potential association with each other. In other 

words, we could examine the functional effects of our selected biomarkers 

through miRNA expression microarray along with methylation profiling. 

A Gene Set Enrichment Analysis (GSEA) could be applied on the top m 

ranked CpG loci selected from the MRMD method according to the rele-

vance between features and redundancy among features in a subset. It has 

been reported there exists a strong association between miRNAs and DNA 

methylation, such as DNA methylation-associated silencing of tumor sup-

pressor miRNAs contributes to the development of human cancer metas-

tasis (Lujambio, et al., 2008; Subramanian, et al., 2005). So one of the 

major tasks of our future work is that we will try to find out how those 

potential relationships work between CpGs, miRNAs, targeted genes and 

the tissue where found them. Through our webserver (MMCOP), users 

may find the corresponding potential associated miRNAs, CpG loci or tar-

geted gene by submitting their interested biomarkers. 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique 

has several advantages than over miRNA expression microarray and DNA 

methylation array, such as its access to using Formalin-Fixed Paraffin-

Embedded (FFPE) tissue (Giulietti, et al., 2001). The ability to accurately 

predict tumors origin site using a refined number of biomarkers suggests 

that translation of a miRNA-based or DNAm-based classifier from micro-

array to quantitative PCR is possible. Therefore, another our future work 

will select several biomarkers identified by our method to see whether it 

would be validated by using existing FFPE tissue. 

Taken together, our study suggests that our three classifier types (miRNA-

based:  DNAm-based by MRMD and DNAm-based by PCA) can effi-

ciently predict the primary origin of tumors, which may help the 

pathologists to improve the diagnosis and treatment of patients. For most 

patients with advanced stage CUP, treatments are becoming increasingly 

specific since treatment trial varies significantly depending on the origin 

of the tumor. An adjunct genomics diagnostic regimen could enable a 

more directed clinical evaluation of patients. We believe our classifiers, as 

well as other classifiers based on relevant biomarkers, such as mRNA and 

proteins, in combination with clinical investigation will greatly advance 

and promote rational, specific therapy of patients with CUP through much 

more focused testing, resulting in reduced patient morbidity, and im-

proved median survivals of patients. 
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