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Much of economics, psychology and neuroscience have focused on thought dynamics and how 
they control our behavior, from individual moral choices to the irrationality of market dynamics. 
However, how much of our thoughts we actually control when we feel we make deliberate choices 
remains unknown. Here we show that the content of thoughts can be decoded from activity 
patterns as early as 11 seconds before individuals report having formed the volitional thought. 
Participants freely chose which of two differently oriented and colored gratings to think about. 
Using functional magnetic resonance imaging (fMRI) and pattern classification methods, we 
consistently classified the contents of thoughts using activity patterns recorded before and after 
the thought was reported. We found that activity patterns were predictive as far as 11 seconds 
before the conscious thought, in visual, frontal and subcortical areas. These predictive patterns 
contained similar information to the responses evoked by unattended perceptual gratings and 
were evident in individual visual areas. Interestingly, neural information present before the 
decision was associated with the vividness of future thoughts, suggesting that preceding 
nonconscious sensory-like representations can impact the content and strength of future 
conscious thoughts. Our results suggest that thoughts and their strength can be biased by prior 
spontaneous nonconscious perception-like representations, advancing theories of free will and 
models of intrusive and repetitive thought production.  

 

 

A large amount of psychology and, more recently, neuroscience has been dedicated to examining 
the origins, dynamics and categories of thoughts (1–3). Sometimes thoughts feel spontaneous and 
even surprising, while other times they feel effortful, controlled and goal orientated. When we 
decide to think about something, how much of that thought do we actually control? 

To investigate this question, we crafted a thought-based mental imagery decision task, in which 
individuals could freely decide what to think about, while we recorded brain activation using fMRI. 
This paradigm enabled us to test whether the contents of our thoughts could be predicted from 
brain activation patterns before participants felt they had formed the actual thought, and if the 
thought content shared characteristics with perceptual content. We used multi-voxel pattern 
analysis (MVPA) to decode information contained in spatial patterns of brain activation recorded 
using fMRI (4–6). 

We found that activity patterns were predictive of thought content as far back as 11 seconds before 
the conscious decision of what to think of –in visual, frontal and subcortical areas. Importantly, 
predictive patterns in visual and frontal areas contained similar information (i.e., consistent spatial 
patterns of activation) to representations elicited by unattended sensory stimulation.  
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Our paradigm consisted of a mental decision leading to the formation of a visual thought or mental 
image. In every trial, participants had to choose to imagine one of two possible different colored and 
oriented gratings while we recorded brain blood-oxygen-level dependent (BOLD) using fMRI (Figure 
1, see Supplementary Methods for details). After the start of the trial, participants had a maximum 
of 20 seconds to freely decide which pattern to think of. As soon as they felt they had made the 
decision, they pressed a button (always the same button for both gratings) with the right hand, thus 
starting 10 seconds of imagery generation. During this time, participants imagined the chosen 
grating as vividly as they could. Subsequently, they were prompted with two questions: “what did 
you imagine?” and “how vivid was it”, to which they answered by pressing different buttons (Figure 
1). On average, participants took 5.48s (±0.15 SEM) to decide which grating to imagine, while the 
average trial time was 31.18s (see Figure S1 and Supplementary Methods for details). Each trial 
included a blank period of 10s at the end to avoid spillover effects from one trial to the next (7, 8). 
Participants chose to imagine each grating with similar probabilities (50.44% versus 49.56% for 
vertical and horizontal respectively, see Supplementary Methods for detailed behavioral results). 

 

 

Figure 1. fMRI task paradigm. Participants had to freely choose between two predefined gratings (horizontal 
green/vertical red or vertical green/horizontal red, counterbalanced across participants). Each trial started 
with the prompt: “take your time to choose – press right button” for 2 seconds. While the decision was made, 
a screen containing a fixation point inside a rectangle was shown. This period is referred as “pre-imagery time” 
and was limited to 20 seconds. Participants were instructed to press a button on the right hand as soon they 
decided which grating to imagine (always the same button independently of the chosen grating). During the 
imagery period (10 seconds), participants imagined the chosen grating as vividly as possible. At the end of the 
imagery period, a question appeared on the screen: “what did you imagine? – Left for vertical green/red – 
Right for horizontal red/green” (depending on the pre-assigned gratings for the participant). After giving the 
answer, a second question appeared: “how vivid was it? – 1 (low) to 4 (high)”. After each trial there was a 
blank interval of 10 seconds where we instructed the participants to relax and not to think about the gratings 
nor subsequent decisions. Gray hand drawings represent multiple possible button responses, while black 
drawing represents a unique button choice. 
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We first verified the suitability of our decoding approach to classify the contents of visual perception 
and imagery. We thus used SVM trained and tested (in a cross-validation scheme) on 10s of 
perception or imagery data and classified the perceptual or imagined stimuli (red/green 
horizontal/vertical gratings) on visual areas from V1 to V4 (see Supplementary Methods for details). 
Figure S2 shows the results of this sanity check. We found above chance decoding accuracy for 
perception (91.7, 91.7, 91.7 and 71.4%; one-tailed t-test p = 3.1·10-8, 1.2·10-9, 7·10-11 and 1.5·10-3; 
from V1 to V4) and imagery (66.9, 67, 69.1 and 63.7%; p = 8·10-4, 1.2·10-3, 1·10-4 and 8·10-3). These 
results are comparable to previous results on decoding perception and imagery (9–11) and thus 
validate our decoding approach. 

To investigate which brain areas contained information about the contents of imagery, we employed 
a searchlight decoding analysis on the fMRI data (6). We used two sources of information to decode 
the contents of imagery: brain activation patterns from imagery and patterns from perceptual 
stimuli without attention. For the imagery decoding, we trained classifiers using the imagery data; 
while in the imagery-perception generalization analysis we trained the classifiers using data from the 
perception scans and tested on imagery. This allowed us to explore shared information between 
perception and imagery, without the effects of attention (see Supplementary Methods for details & 
behavioral attention task during perception).  

We defined the areas bearing information about the contents of imagery as those revealing above 
chance decoding accuracy at any point in time during a trial, thus preventing biasing the results 
towards the pre-imagery period (cluster definition threshold p<0.001, cluster threshold p<0.05, see 
Supplementary Methods for details). We thus found a network of four areas: frontal, occipital, 
thalamus and pons (Figure 2, central panels, see Table S1 for cluster locations in MNI coordinates). 
We then examined the time course of these areas from -13 to +13 seconds from the reported 
imagery decision (time = 0). As expected, time-resolved (2s) decoding yielded lower (but statistically 
significant) accuracies than averaging over longer periods (see Figure S2 for comparison), 
presumably due to its lower signal-to-noise ratio. Importantly, in the context of neuroscience 
research, decoding accuracy scores are not the most relevant output of classification, but rather 
their statistical significance is (12). Time-resolved classification in the imagery condition reached 
above chance decoding accuracy up to 11 seconds before reported imagery onset in occipital, 
frontal, thalamus and -9 seconds in the pons (Fig. 2; black solid points, p<0.05, one-sample, one-
tailed t-test). The perception-imagery generalization decoding showed significant above chance 
accuracy as early as -9 seconds before the onset of imagery in occipital areas and -3 seconds in 
frontal areas, indicating that pre-volitional predictive information shares properties with perceptual 
representations in these cortical areas (Fig. 2; grey solid points). In subcortical areas, above-chance 
generalization decoding accuracy was only observed after the onset of imagery (+1 and +11 seconds 
in the thalamus and the pons respectively). Importantly, during the perceptual scans visual attention 
was diverted by a demanding fixation task (see Supplementary Methods), hence such generalization 
should not be due to high-level volitional or attentional mechanisms. Interestingly, decoding 
accuracy in occipital areas during the imagery period was lower than expected (see for example 
(13)). Previous studies have shown that prior decisions can impair subsequent cognitive tasks (14). 
Therefore, the cognitive load for the decision element of our task could impair imagery, which is 
consistent with the results of a behavioral control experiment showing that cued imagery (no-
decision) was stronger than decision+imagery (Figure S3B-C).  

To control for the multi testing problem across time points, we estimated the probability of 
obtaining above chance significant decoding on any number of time points by chance using 
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permutation tests (see Figure S4 and Supplementary Methods for details). For the imagery 
condition, the number of decoding time-points was significantly above chance for occipital, thalamus 
and pons (p<0.05, permutation test, see Figure S4 for details). For the generalization condition, the 
number of such time-points in frontal was above-chance. Thus, predictive information could be 
detected confidently with searchlight decoding in occipital, and subcortical areas; while perception-
like representations were found in frontal areas. 

 

Figure 2. Searchlight decoding of the contents of imagery. Using searchlight decoding we investigated which 
regions contained information about the contents of mental imagery (see Supplementary Methods for details). 
We defined these regions as those showing above chance accuracy at any point in time (Gaussian random field 
correction for multiple comparisons, see Supplementary Methods for details). We found 4 such regions 
(central panels): occipital (O), frontal (F), thalamus (T) and pons (P). Then, we investigated the temporal 
dynamics of each one of these regions (lateral plots), from -13 to +13 seconds from imagery onset (time = 0). 
We decoded imagery contents using the information from imagery runs (imagery, black line) and using 
information from perception (perception-imagery generalization, grey line). For the imagery decoding (black), 
all four regions showed significant above-chance accuracy both before and after imagery onset, indicating that 
information from imagery was predictive of the chosen grating before (up to -11 seconds) and after the 
imagery onset. On the other hand, the perception-imagery generalization (grey) showed significant above-
chance decoding before the onset of imagery only in occipital and frontal areas, indicating that perceptual-like 
information was predictive of the chosen grating before the imagery onset only in cortical areas (occipital and 
frontal) and after the imagery onset in both cortical and subcortical areas. Numbers on upper-right slices’ 
corners indicate MNI coordinates. Error bars represent SEM across participants. Full points represent above 
chance decoding (p<0.05, one-tailed t-test). 

 

We conducted a series of controls to test the reliability of our results. First, we ran an independent 
behavioral experiment to test whether participants might have begun imagining before they 
reported having done so, which could explain early above chance classification. Outside the scanner, 
we utilized a method that exploits binocular rivalry to objectively measure imagery strength (15, 16) 
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as a function of time in a free decision and a cued condition (i.e., imposing which stimuli to imagine 
and when, Figure S3A, See Supplementary Methods for details). We reasoned that if participants 
were reporting the onset of imagery a few seconds late, this would be detected as an increase in 
rivalry ‘priming’ compared to a condition where the onset of imagery is imposed, as such priming is 
known to be dependent on time (15). We found the inverse pattern: priming in the free decision 
condition was significantly lower than in the cued condition (ANOVA, F = 5.77, p = 0.021, Figure S3B), 
thus ruling out that participants started imagining before they reported imagery onset, and also 
potentially suggesting that sensory priming might be disrupted by the free decision task, perhaps 
due to increased cognitive load. Subjective imagery vividness showed a similar trend (Figure S3C, see 
Supplementary Methods for details). Importantly, we found that this behavioral task has a maximal 
temporal resolution comparable to that of fMRI (i.e., about 3 seconds). This control largely 
overcomes one of the limitations to prior free-choice paradigms, as it enables us to measure 
precision of thought-choice reporting (17).  

Further we employed a permutation test to check whether the decoding distributions contained any 
bias, in which case above chance decoding would be overestimated and the use of standard 
parametric statistical tests would be invalid (18) (see Supplementary Methods for details). 
Permutation tests yielded similar results to those using parametric tests (Figure S5), and, 
importantly, decoding accuracy distributions under the null hypothesis showed no bias, thus 
validating the use of standard parametric statistical tests (Table S2). We also conducted a control 
analysis to test whether the searchlight results could be explained by any spill over from the 
previous trial. We trained the classifiers on the previous trial (N-1 training) and tested on the 
subsequent trial (trial N). If there was spill over from the previous trial, this analysis should show 
similar or higher decoding accuracy in the pre-imagery period. We found no significant above chance 
classification for any of the regions, thus ruling out the possibility that these results are explained by 
any spill over (Figure S6).  

To investigate how the different regions (occipital, frontal, thalamus and pons) found in the 
searchlight analysis interact with each other, we used dynamic causal modelling (DCM). We tested 
whether the source of imagery switched from occipital to frontal during the pre-imagery and 
imagery periods, and, if the connectivity schemes changed. Specifically, whether occipital and 
subcortical coupling changes along with the connectivity between frontal and occipital. We thus 
tested 4 different candidate connectivity schemes (Figure S7.A, see Supplementary Methods for 
details). Data from before the decision was best explained by an occipital source of imagery, with 
feedforward connections to frontal and reciprocal connections between the visual and subcortical 
nodes (Model 4, Figure S7.A). In contrast, data from after the decision was best explained by a 
frontal source of imagery and occipital-subcortical disconnection scheme (Model 1, Figure S7.A  & 
B).  

We then explored the dynamics of the contents of visual imagery along the visual hierarchy. To this 
purpose, we employed a region-of-interest (ROI) analysis focusing on the first 4 visual cortical areas 
(V1, V2, V3 and V4) which were identified using standard functional retinotopic mapping (see 
Supplementary Methods for details). This analysis revealed similar temporal dynamics to the 
searchlight approach, showing earliest above-chance decoding accuracy -11 seconds from the 
reported imagery decision (Figure 3A). We found no evident hierarchical pattern in the involvement 
of visual areas as a function of time (i.e., lower visual areas recruited earlier than higher ones). In the 
imagery decoding, all visual ROIs showed above chance decoding accuracy before the imagery onset 
at different time points, however V1 was consistent across time points (from -11 to -5 seconds). The 
perception-imagery generalization showed more modest effects with above chance decoding 
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accuracy consistently found in V3 as early as 3s before imagery onset (Figure 3B). Permutation tests 
on the ROI decoding yielded similar results (Figure S8). We controlled for whether these results 
could be accounted by any spill over from previous trials by again conducting an N-1 analysis. This 
analysis did not show any above chance accuracy before the imagery onset, but we found a 
significant time point at t=5s in V4 for the imagery condition (Figure S9). We estimated the family-
wise error rate across time points. For the imagery decoding, the number of above-chance decoding 
time points was significantly above chance for V1 and V4 (p<0.05, permutation test, see Figure S4, 
for details); while for the generalization only V3 was significantly above chance (p<0.05, Figure S4).  

 

Figure 3. Decoding the contents of imagery in visual regions-of-interest (ROI). We examined the contents of 
imagery in visual areas using a ROI approach. Visual areas from V1 to V4 were functionally defined and 
restricted to the foveal representation (see Supplementary Methods for details). A. We found above-chance 
decoding accuracy for imagery decoding both before (from -11 seconds) and after imagery onset. Different 
visual ROI showed significant above-chance decoding accuracy at different time points, while V1 ROI was the 
most consistent across time points. B. The perception-imagery generalization showed consistent above chance 
decoding accuracy in V3. Error bars represent SEM across participants. Full points represent above chance 
decoding (p<0.05, one-tailed t-test). 

 

Next we investigated the effect of subjective imagery vividness on decoding accuracy for imagery. 
We divided the trials into low- and high-vividness (mean split, see Supplementary Methods for 
details). As expected, the decoding accuracy for imagery content was higher in high-vividness trials, 
but surprisingly the biggest differences were observed before the onset of imagery (Figure S10.A). 
The generalization analysis showed the same trend. We found above chance decoding only in high 
vividness trials (Figure S10.B), suggesting that in more vivid imagery trials, shared representations 
between perception and imagery emerge before volition. This result suggests that nonconscious 
sensory representations in visual areas are present before the onset of conscious thoughts and also 
that they affect the strength of subsequent conscious imagery.  

If the prior, pre-imagery sensory representations in early visual cortex do indeed dictate the strength 
of subsequent thoughts, then the pre-imagery data should predict the reported vividness from the 
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subsequent imagery period. Accordingly, we tested exactly this, we attempted to decode the 
subjective strength of the imagery (i.e., vividness) by using only the fMRI data from before the 
imagery period. Decoding accuracy was significantly above chance in V1 (62.2%, p=0.0035, one-
tailed t-test), but not in other visual ROIs (p>0.05, Figure 4), indicating that information contained in 
V1 predicted future subjective imagery strength. 

 

Figure 4. Pre-imagery brain activity predicts the strength of subsequent visual thoughts. We used pre-
imagery data to decode subsequent imagery vividness (see text for details). Information in V1 from before the 
imagery decision predicted how vivid the future imagery will be. Error bars represent SEM across participants. 
Full point represents above chance decoding (p<0.05, one-tailed t-test). 

 

To summarize, we found that brain patterns were predictive of the contents of imagery as far as -11 
seconds before the choice of what to imagine. These results indicate that the contents of future 
thoughts can be biased by nonconscious representations. Our results show predictive patterns in 
occipital, frontal and subcortical areas. While previous results highlight the role of frontal areas 
carrying information about subsequent decisions (19–21); to the best of our knowledge, visual and 
subcortical areas have not been reported. Interestingly, here we found that predictive information in 
visual and frontal areas shared similarities with representations elicited by sensory stimulation, 
suggesting that perception-like neural representations are present before the decision of what to 
imagine. In previous experiments applying MVPA to study decision processes, predictive information 
about choices has been interpreted as evidence for nonconscious decision making (19, 20, 22). Thus, 
our results could be interpreted as the imagery decision being made (at least partly) nonconsciously, 
supporting the idea that subjective sensation of making the decision emerges after the decision is 
already made (19, 20, 23, 24). However, an alternative hypothesis is that these results reflect 
decisional mechanisms that rely on spontaneously generated subliminal visual representations 
present before the decision. Since the goal of the task was to randomly choose and imagine a grating 
as vividly as possible, one strategy might be to choose the pattern that is already more strongly 
represented, albeit subliminally. In other words, spontaneous grating representations might 
stochastically fluctuate in strength while remaining weak enough to escape awareness. Thus, prior to 
the decision, one grating representation might dominate, hence being more prone to decisional 
thought-selection. A similar interpretation has been advanced to explain the buildup of neural 
activity prior to self-initiated movements (aka readiness potential) (25). Interestingly, it has been 
recently shown that self-initiated movements can be aborted even after the onset of predictive 
neural signals (26), suggesting that the decision can be somewhat dissociated from predictive neural 
signals. Therefore, our results can be explained by a conscious choice that relies on nonconscious 
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representations during the decision production; perhaps analogous to blindsight (27), subliminal 
priming studies (28, 29) or nonconscious decisional accumulation (30). Such a mechanism is 
intriguing in light of theories of mental imagery and thought generation that propose involuntary 
thought intrusion as both an everyday event, and, in extreme cases, a component of mental 
disorders like PTSD (31, 32).  

We found support for this hypothesis in our exploratory DCM analysis (Figure S7, see Supplementary 
Methods for details). Effective connectivity analysis results suggest, that during the pre-imagery 
period, non-conscious visual representations in occipital areas are read by frontal areas; while 
occipital cortex is coupled with subcortical regions, perhaps triggering the stochastic fluctuations in 
grating representation strength. This is consistent with the finding that the thalamus is functionally 
coupled with the visual cortex, especially in resting state mode (33, 34). While, anatomical 
connections between the pons and visual areas have been found in primates (35), its functional role 
is still unclear. On the other hand, during the subsequent imagery period, occipital and subcortical 
areas would be uncoupled, thus stabilizing the contents of imagery, volitionally led by frontal areas 
(Figure S7.B).  

Accordingly, our current study can be seen as the first to capture the possible origins and contents of 
involuntary thoughts and how they progress into or bias subsequent voluntary conscious thoughts. 
This is compatible with the finding that the most prominent differences between low and high 
vividness trials are seen for the pre-imagery period in visual areas, which can be interpreted as when 
one of the patterns is more strongly represented (subliminally) it will induce a more vivid 
subsequent volitional image.  

It is up to future research to dissociate between the two hypotheses of nonconscious decisions and 
nonconscious prior representations biasing subsequent fully conscious volitional decisions. 
Untangling these models will not only shed light on age-old questions of free will, but also provide a 
clear mechanism for pathological intrusive thoughts common across multiple mental disorders.  

 

Acknowledgements 

We would like to thank Johanna Bergmann for her input in the experimental design, useful 
comments and help with participant’s testing. Eugene Kwok for his help in the behavioral testing. 
Collin Clifford, Damien Mannion and Kiley Seymour for useful comments. This research was 
supported by Australian NHMRC grants GNT1046198 and GNT1085404 and JP was supported by a 
Career Development Fellowship GNT1049596 and ARC discovery projects DP140101560 and 
DP160103299.  

  

   

References 

 

1.  W. James, The principles of psychology (Henry Holt and Company, New York, 1890). 

2.  J. A. Fodor, The Modularity of Mind (MIT Press, 1983). 

3.  J.-D. Haynes, G. Rees, Decoding mental states from brain activity in humans. Nat. Rev. 
Neurosci. 7, 523–534 (2006). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/090712doi: bioRxiv preprint 

https://doi.org/10.1101/090712
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.  J. V Haxby et al., Distributed and overlapping representations of faces and objects in ventral 
temporal cortex. Science. 293, 2425–30 (2001). 

5.  Y. Kamitani, F. Tong, Decoding the visual and subjective contents of the human brain. Nat. 
Neurosci. 8, 679–685 (2005). 

6.  N. Kriegeskorte, R. Goebel, P. Bandettini, Information-based functional brain mapping. Proc. 
Natl. Acad. Sci. U. S. A. 103, 3863–8 (2006). 

7.  M. Lages, S. C. Boyle, K. Jaworska, Flipping a coin in your head without monitoring outcomes? 
Comments on predicting free choices and a demo program. Front. Psychol. 4, 535–540 
(2013). 

8.  C. Allefeld, C. Soon, C. Bogler, Sequential dependencies between trials in free choice tasks. 
arXiv Prepr. arXiv …, 1–15 (2013). 

9.  S. a Harrison, F. Tong, Decoding reveals the contents of visual working memory in early visual 
areas. Nature. 458, 632–635 (2009). 

10.  L. Reddy, N. Tsuchiya, T. Serre, Reading the mind’s eye: Decoding category information during 
mental imagery. Neuroimage. 50, 818–825 (2010). 

11.  S.-H. Lee, D. J. Kravitz, C. I. Baker, Disentangling visual imagery and perception of real-world 
objects. Neuroimage. 59, 4064–4073 (2012). 

12.  J. Stelzer, Y. Chen, R. Turner, Statistical inference and multiple testing correction in 
classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster 
size control. Neuroimage. 65, 69–82 (2013). 

13.  A. M. Albers, P. Kok, I. Toni, H. C. Dijkerman, F. P. De Lange, Shared representations for 
working memory and mental imagery in early visual cortex. Curr. Biol. 23, 1427–1431 (2013). 

14.  K. D. Vohs et al., Making choices impairs subsequent self-control: a limited-resource account 
of decision making, self-regulation, and active initiative. J. Pers. Soc. Psychol. 94, 883–898 
(2008). 

15.  J. Pearson, C. W. G. Clifford, F. Tong, The functional impact of mental imagery on conscious 
perception. Curr. Biol. 18, 982–6 (2008). 

16.  J. Pearson, New Directions in Mental-Imagery Research: The Binocular-Rivalry Technique and 
Decoding fMRI Patterns. Curr. Dir. Psychol. Sci. 23, 178–183 (2014). 

17.  A. N. Danquah, M. J. Farrell, D. J. O’Boyle, Biases in the subjective timing of perceptual 
events: Libet et al. (1983) revisited. Conscious. Cogn. 17, 616–627 (2008). 

18.  H. Jamalabadi, S. Alizadeh, M. Schönauer, C. Leibold, S. Gais, Classification based hypothesis 
testing in neuroscience: Below-chance level classification rates and overlooked statistical 
properties of linear parametric classifiers. Hum. Brain Mapp. 37, 1842–1855 (2016). 

19.  C. S. Soon, M. Brass, H.-J. Heinze, J.-D. Haynes, Unconscious determinants of free decisions in 
the human brain. Nat. Neurosci. 11, 543–545 (2008). 

20.  S. Bode et al., Tracking the Unconscious Generation of Free Decisions Using Uitra-High Field 
fMRI. PLoS One. 6 (2011), doi:10.1371/journal.pone.0021612. 

21.  S. Bode, J. D. Haynes, Decoding sequential stages of task preparation in the human brain. 
Neuroimage. 45, 606–613 (2009). 

22.  J. D. Haynes et al., Reading Hidden Intentions in the Human Brain. Curr. Biol. 17, 323–328 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/090712doi: bioRxiv preprint 

https://doi.org/10.1101/090712
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2007). 

23.  B. Libet, C. a. Gleason, E. W. Wright, D. K. Pearl, Time of Conscious Intention To Act in 
Relation To Onset of Cerebral Activity (Readiness-Potential). Brain. 106, 623–642 (1983). 

24.  B. Libet, Unconscious cerebral initiative and the role of conscious will in voluntary action. 
Behav. Brain Sci. 8, 529–539 (1985). 

25.  A. Schurger, J. D. Sitt, S. Dehaene, An accumulator model for spontaneous neural activity 
prior to self-initiated movement. Proc. Natl. Acad. Sci. 109, E2904–E2913 (2012). 

26.  M. Schultze-Kraft et al., The point of no return in vetoing self-initiated movements. Proc. 
Natl. Acad. Sci. 113, 1080–1085 (2015). 

27.  P. Stoerig,  a Cowey, Blindsight in man and monkey. Brain. 120 ( Pt 3, 535–59 (1997). 

28.  S. Dehaene et al., Imaging unconscious semantic priming. Nature. 395, 597–600 (1998). 

29.  R. Dell’Acqua, J. Grainger, Unconscious semantic priming from pictures. Cognition. 73, B1–
B15 (1999). 

30.  A. Vlassova, C. Donkin, J. Pearson, Unconscious information changes decision accuracy but 
not confidence. Proc. Natl. Acad. Sci. 111, 16214–16218 (2014). 

31.  C. Purdon, D. A. Clark, Obsessive intrusive thoughts in nonclinical subjects. Part I. Content and 
relation with depressive, anxious and obsessional symptoms. Behav. Res. Ther. 31, 713–720 
(1993). 

32.  C. R. Brewin, J. D. Gregory, M. Lipton, N. Burgess, Intrusive images in psychological disorders: 
Characteristics, neural mechanisms, and treatment implications. Psychol. Rev. 117, 210–232 
(2010). 

33.  M. McAvoy et al., Dissociated mean and functional connectivity BOLD signals in visual cortex 
during eyes closed and fixation. J. Neurophysiol. 108, 2363–2372 (2012). 

34.  Q. Zou et al., Functional connectivity between the thalamus and visual cortex under eyes 
closed and eyes open conditions: A resting-state fMRI study. Hum. Brain Mapp. 30, 3066–
3078 (2009). 

35.  D. Boussaoud, R. Desimone, L. G. Ungerleider, Subcortical connections of visual areas MST 
and FST in macaques. Vis. Neurosci. 9, 291–302. 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/090712doi: bioRxiv preprint 

https://doi.org/10.1101/090712
http://creativecommons.org/licenses/by-nc-nd/4.0/


Decoding the nonconscious dynamics of thought generation 

Roger Koenig-Robert and Joel Pearson  

 

Supplementary methods  

 

Participants. Experimental procedures were approved by the University of New South Wales Human 
Research Ethics Committee (HREC#: HC12030). All participants gave written consent to participate in 
the experiment. For the behavioral free decision and cued imagery priming task, we tested 8 
participants (4 females, aged 29.3±0.5 years old). For the fMRI experiment, we tested 14 participants 
(9 females, aged 29.1±1.1 years old). 

Behavioral imagery decision precision control experiment: Since self-report of the onset of decision 
has been criticized due to its unreliability (1), we developed an independent psychophysics 
experiment to test its reliability. We objectively measured imagery strength as a function of time for 
a subset of the participants of the fMRI experiment. We employed two conditions: free decision 
(freely chosen imagined stimulus and imagery onset) and cued (i.e., imposed imagined stimuli and 
imagery onset). We used binocular rivalry priming as a means to objectively measure sensory 
imagery strength (2–4). When imagining one of the competing stimuli prior to binocular rivalry, the 
rivalry perception is biased towards the imagined stimulus, with a stronger priming as the imagery 
time increases (2); see (2, 5) for discussion of why this is an objective measure. We asked 
participants to imagine one of the gratings for different durations and then measured rivalry priming 
as a function of the different durations. We reasoned that if participants reported the onset of 
imagery a few seconds after they actually started imagining, this would be detected as an increase in 
priming compared to the condition where the onset of imagery is imposed. Thus, in the free decision 
condition, participants had to freely choose to imagine one of the two predefined gratings 
(horizontal green/vertical red or vertical green/horizontal red, counterbalanced across participants). 
In the cued condition, participants were presented with a cue indicating which grating to imagine, 
thus imposing the onset of imagery as well as which grating needed to be imagined. Each trial 
started with the instruction “press space bar to start the trial” (Figure S3A). Then, either the 
instruction “CHOOSE” or a cue indicating which grating to imagine (i.e., “horizontal red”) was 
presented for 1 second. In the free decision condition, the imagery time started after the participant 
chose the grating to imagine, which was indicated by pressing a key on the computer keyboard 
(Figure S3A). For the cued imagery, the imagery time started right after the cue was gone (i.e., no 
decision time). We tested 3 imagery times (3.33, 6.67 and 10 seconds). After the imagery time, a 
high pitch sound was delivered (200ms) and both gratings were presented through red/green stereo 
glasses at fixation for 700ms. Then, participants had to report which grating was dominant (i.e., 
horizontal red, vertical green or mixed if no grating was dominant), by pressing different keys. After 
this, they had to answer which grating they imagined (for both free decision and cued trials). 
Participants then rated their imagery vividness from 1 (low) to 4 (high). Free decision and cued trials 
as well as imagery times were pseudo-randomized within a block of 30 trials. We added catch trials 
(20%) in which the gratings were physically fused and equally dominant to control the reliability of 
self-report (2, 6). We tested 120 trials for each free decision and cued imagery conditions (40 trials 
per time point), plus 48 catch trials evenly divided among time points. Priming and vividness were 
normalized as z-score within participants and across time-points and conditions, to account for 
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baseline differences across participants, but otherwise conserving relative differences amongst 
conditions and time-points.  

Figure S3B shows the effects of imagery time on sensory priming for both conditions. Imagery time 
showed a significant effect on priming for free decision and cued conditions (ANOVA, F = 7.15, p = 
0.002, Figure S3B), thus confirming the effect of imagery time on priming. Priming for the free 
decision condition was significantly lower than in the cued condition (ANOVA, F = 5.77, p = 0.021), 
indicating that participants were not starting imagining before they reported doing so (which would 
have resulted in the opposite pattern) and also suggesting that sensory priming is somehow 
disrupted by the decision task, perhaps due to cognitive load. Importantly, significant differences in 
priming between 3.33 and 6.67 seconds of imagery time were found for the free decision and cued 
conditions (one-tailed t-test, p<0.05), indicating that this behavioral task can resolve differences in 
priming spaced by 3.33 seconds, at least for these two first time points, thus providing a lower 
bound of temporal resolution of the accuracy of the reported imagery onset. For further information 
on why this method measures imagery strength and not visual attention, binocular rivalry control or 
response bias see (2, 5). Self-report reliability was verified with catch trials which were reported as 
mixed above chance level (83.8%, p=0.002).  

Figure S3C shows the effects of imagery time on subjective imagery vividness. Imagery time showed 
also a significant effect on vividness for free decision and cued conditions (ANOVA, F = 18.49, p < 10-

5, Figure S3C). However, differences between free decision and cued conditions were not significant 
(ANOVA, F = 2.42, p = 0.127). Again, significant differences in vividness between 3.33 and 6.67 
seconds of imagery time were found for the free decision and cued conditions (one-tailed t-test, p < 
0.01), setting thus a lower bound of 3.33 seconds for the temporal resolution on the behavioral task. 

We tested this independent behavioral experiment on 8 randomly chosen participants from the 
fMRI experiment, who had extensive experience as subjects in psychophysics experiments. We 
sought to test if these results would generalize to completely unexperienced participants in 
psychophysics experiments (N=10). We did not, however, find significant results (not shown), 
suggesting that this is a highly demanding task and experience in psychophysics might be important 
to perform the task properly. 

Functional and structural MRI parameters. Scans were performed at the Neuroscience Research 
Australia (NeuRA) facility, Sydney, Australia, in a Philips 3T Achieva TX MRI scanner using a 32-
channel head coil. Structural images were acquired using turbo field echo (TFE) sequence consisting 
in 256 T1-weighted sagittal slices covering the whole brain (flip angle 8 deg, matrix size = 256x256, 
voxel size = 1mm isotropic). Functional T2*-weighted images were acquired using echo planar 
imaging (EPI) sequence with 31 slices (flip angle = 90 deg, matrix size = 240x240, voxel size = 3mm 
isotropic, TR = 2000ms, TE = 40ms). 

fMRI free decision visual imagery task. We instructed participants to choose between two 
predefined gratings (horizontal green/vertical red or vertical green/horizontal red, counterbalanced 
across participants), which were previously familiar to the participants, through prior training 
sessions. We asked the participants to refrain from following preconceived decision schemes. In the 
scanner, participants were provided with two dual-button boxes, one held in each hand. Each trial 
started with a prompt reading: “take your time to choose – press right button” for 2 seconds (Figure 
1). After this, a screen containing a fixation point was shown while the decision as to what to think of 
was made. This period is referred as “pre-imagery time” and was limited to 20 seconds. Participants 
were instructed to press a button with the right hand as soon as they decided which grating to 
imagine. After pressing the button, the fixation point became brighter for 100ms to indicate the 
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participants that the imagery onset time was recorded. During the imagery period (10 seconds), 
participants were instructed to imagine the chosen pattern as vividly as possible trying, if possible, to 
project it onto the screen. At the end of the imagery period, a question appeared on the screen: 
“what did you imagine? – Left for vertical green/red – Right for horizontal red/green” (depending on 
the pre-assigned patterns for the participant). After giving the answer, a second question appeared: 
“how vivid was it? – 1 (low) to 4 (high)”. After each trial there was a blank interval of 10 seconds 
where we instructed the participants to just relax and try not to think about the gratings nor any 
subsequent decisions. Post-experiment interviews revealed that some participants (n=4) could not 
help thinking about gratings in some trials during the inter trial interval. They reported different 
strategies to avoid these thoughts such as ignoring them, replacing them for another image/thought, 
or choosing the other grating when the decision came. The remaining participants (n=10) reported 
not having any thoughts or mental images about gratings during the rest period. We tested if the 
effects we found could be explained by the former group of participants who could not refrain from 
thinking about gratings. We thus performed the analysis using only data from the participants who 
did not think/imagine gratings outside the imagery period (n=10). Figure S12 shows the results of 
this control. Results are comparable to those shown in Figure 2, thus ruling out the possibility that 
that the effects we report were driven by the 4 participants who had troubles dis-engaging from 
imagery in the rest period. We delivered the task in runs of 5 minutes during which the participants 
completed as many trials as possible. Participants chose to imagine horizontal and vertical grids with 
a similar probability (50.44% versus 49.56% for vertical and horizontal gratings respectively, mean 
Shannon entropy = 0.997±0.001 SEM) and showed an average probability of switching gratings from 
one trial to the next of 58.59% ±2.81 SEM. 

fMRI perception condition. We presented counter-phase flickering gratings at 4.167 Hz (70% 
contrast, ~0.5 degrees of visual angle per cycle). They were presented at their respective predefined 
colors and orientations (horizontal green/vertical red or vertical green/horizontal red). The gratings 
were convolved with a Gaussian-like 2D kernel to obtain smooth-edged circular gratings. Gratings 
were presented inside a rectangle (the same that was used in the imagery task, Figure 1) and a 
fixation point was drawn at the center (as for the imagery task). Within a run of 3 minutes, we 
presented the flickering patterns in a block manner, interleaved with fixation periods (15 seconds 
each). Importantly, an attention task was performed consisting of detecting a change in fixation 
point brightness (+70% for 200ms). Fixation changes were allocated randomly during a run, from 1 
to 4 instances. Participants were instructed to press any of the 4 buttons as soon as they detected 
the changes. Participants showed high performance in the detection task (d-prime=3.33 ±0.13 SEM). 

Functional mapping of retinotopic visual areas. To functionally determine the boundaries of visual 
areas from V1 to V4 independently for each participant, we used the phase-encoding method (7, 8). 
Double wedges containing dynamic colored patterns cycled through 10 rotations in 10min 
(retinotopic stimulation frequency = 0.033 Hz). To ensure deployment of attention to the stimulus 
during the mapping, participants performed a detection task: pressing a button upon seeing a gray 
dot anywhere on the wedges. The script for this experiment was downloaded from Samuel 
Schwarzkopf's tutorial (http://sampendu.wordpress.com/retinotopy-tutorial/).  

Experimental procedures. We performed the 3 experiments in a single scanning session lasting 
about 1.5h. Stimuli were delivered using an 18” MRI-compatible LCD screen (Philips ERD-2, 60Hz 
refresh rate) located at the end of the bore. All stimuli were delivered and responses gathered 
employing the Psychtoolbox 3 (9, 10) for MATLAB (The MathWorks Inc., Natick, MA, USA) using in-
house scripts. Participants’ heads were restrained using foam pads and adhesive tape. Each session 
followed the same structure: first the structural scanning followed by the retinotopic mapping. Then 
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the perception task was alternated with the imagery task until completing 3 runs of the perception 
task. Then the imagery task was repeated until completing 7 or 8 (depending on the participant) runs 
in total. Pauses were assigned in between the runs. The 4 first volumes of each functional runs were 
discarded to account for the equilibrium magnetization time and each functional run started with 10 
seconds of fixation. 

Phase-encoded retinotopic mapping analysis. fMRI retinotopic mapping data were analyzed using 
the Fast-Fourier Transform (FFT) in MATLAB. The FFT was applied voxel-wise across time points. The 
complex output of the FFT contained both the amplitude and phase information of sinusoidal 
components of the BOLD signal. Phase information at the frequency of stimulation (0.033Hz) was 
then extracted, using its amplitude as threshold (≥2 SNR) and overlaid them on each participant's 
cortical surface reconstruction obtained using Freesurfer (11, 12). We manually delineated 
boundaries between retinotopic areas on the flattened surface around the occipital pole by 
identifying voxels showing phase reversals in the polar angle map, representing the horizontal and 
vertical visual meridians. In all participants, we clearly defined five distinct visual areas: V1, V2, V3d, 
V3v and V4; throughout this paper, we merge V3d and V3v and label them as V3. All four retinotopic 
labels were then defined as the intersection with the perceptual blocks (grating>fixation, p<0.001, 
FDR corrected) thus restricting the ROI to the foveal representation of each visual area. 

fMRI signal processing. All data were analyzed using SPM12 (Statistical Parametric Mapping; 
Wellcome Trust Centre for Neuroimaging, London, UK). We realigned functional images to the first 
functional volume and high-pass filtered (128 seconds) to remove low-frequency drifts in the signal. 
To estimate the hemodynamic response function (HRF), we generated regressors for each grating 
(horizontal green/vertical red or vertical green/horizontal red) for each run and experiment 
(perception and imagery) independently. We used finite-impulse response (FIR) as the basis function 
that makes no assumptions about the shape of the HRF which is important for the analysis of the 
free decision imagery data (13). We employed a 14th order FIR basis function encompassing 28 
seconds from -13 to +13 seconds from the imagery onset, thus obtaining 14 bins representing each 
TR. For the perception condition, we employed a 1st order FIR basis function from the onset of each 
perceptual block to its end (15 seconds). For the vividness analysis, we split the trials into low-
vividness (ratings 1 and 2) and high-vividness (ratings 3 and 4), we then obtained the regressors for 
both gratings as explained above. 

Multi-voxel pattern analysis (MVPA). We used a well stablished decoding approach to extract 
information related to each grating contained in the pattern of activation across voxels of a given 
participant using the decoding toolbox (TDT) (14). Using a leave one-run out cross-validation 
scheme, we trained a linear supporting vector machine (SVM) on all runs but one and then tested on 
the remaining one. We repeated this procedure until all runs were used as test and then averaged 
the results across validations (7 or 8-fold, depending on the participant). We performed one-run 
leave out cross validation for every temporal bin independently. We also employed cross-
classification to generalize information between the perception and the imagery tasks. For the cross-
classification, we trained on the ensemble of the perception runs and tested on the ensemble of the 
imagery runs. We employed 2 different decoding approaches: searchlight and region-of-interest 
(ROI). We used a spherical searchlight of 3 voxels of radius and obtained volumes in which a value of 
decoding accuracy was assigned to each voxel. We normalized the decoding accuracy volumes into 
the MNI space and applied a spatial smoothing of 8mm FWHM. We then performed a one-tail one-
sample t-test against 50% (chance level) across participants for every voxel. We corrected for 
multiple comparisons using cluster-extent based thresholding employing Gaussian Random Field 
theory (15, 16), as implemented in FSL (17). We used a conservative primary threshold of p<0.001 at 
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the voxel level, as recommended in previous studies (18), and a cluster level threshold of p<0.05 in 
every time point volume independently. Importantly, these thresholds have been shown to be valid 
within the nominal false positive ratios (19). ROI decoding was used to test information content in 
visual areas specifically. We defined the boundaries of visual areas from V1 to V4 which volumes 
were used as ROI. Note that because visual ROI were defined on the cortical surface (see phase-
encoded retinotopic analysis for details), only gray-matter containing voxels were considered, as 
opposed to the searchlight approach which also considers non-gray matter containing voxels. We 
tested if there was a difference in the average BOLD response between stimuli (i.e., univariate 
difference). We did not find any significant differences (p>0.05, uncorrected) in the average BOLD 
response (Figure S11), thus ruling-out the possibility that the results would be explained by 
differences in the average level of activity across conditions.   

Permutation test. In order to validate the use of standard parametric statistics we performed a 
permutation test and thus empirically determined the distribution of decoding accuracies under the 
null hypothesis (20). Previous reports have highlighted the possibility of obtaining skewed decoding 
distributions, which would invalidate the use of standard parametric statistical tests (21). We thus 
randomly shuffled the labels (i.e., horizontal red/vertical green) among trials and within blocks (i.e., 
number of red/green imagined trials was conserved within a run but trial labels were shuffled) for 
each participant and condition (imagery and generalization) to generate empirical data under the 
null hypothesis. After reshuffling the labels, we generated regressors for each stimuli and performed 
decoding following the same procedure described in the previous paragraph. We repeated this 
procedure 1000 times and obtained the empirical distribution under the null hypothesis, from which 
we obtained confidence intervals for each decoding time point and area (Figure S5 and S8) using the 
percentile method (20). Our results show that the decoding null hypothesis followed a normal 
distribution (Table S2) and importantly, significant results using permutation test confidence 
intervals were comparable to the results using standard parametric tests (compare significant points 
on figures 2 and 3 with figures S5 and S8). This analysis thus validates the use of standard statistical 
tests to test significance on our dataset.    

Across time-points family-wise error estimation. We estimated the probability of obtaining an n 
number of significantly above-chance decoding time points (p<0.05, one tailed t-test) under the null 
hypothesis. To do this, we employed the data from the null distribution obtained with the 
permutation test (randomly shuffled labels, 1000 iterations; see previous paragraph for details). 
Figure S4 shows the result of such analysis. Insets show the family-wise error rate for the empirically 
observed number above-chance decoding time points for each area. 

Dynamic causal modelling (DCM). We conducted a dynamic causal modelling (DCM) analysis to 
obtain a putative effective connectivity architecture explaining our results (22) (Figure S7). We used 
2 variables to construct the candidate models: (1) imagery source and (2) connectivity among areas. 
For the imagery source, we tested 2 possibilities: frontal source (models 1 and 2) and occipital 
source (models 3 and 4). As for the connections, we tested either reciprocal occipital-frontal 
connection with frontal feedback to subcortical areas (models 1 and 3) or reciprocal occipital-
subcortical connections and feedforward from occipital to frontal. We chose these connectivity 
schemes to test a simple hypothesis: whether occipital and subcortical nodes were coupled in the 
pre-imagery period, which would explain the stochastic fluctuations in the grating representations 
strength. And whether this coupling was interrupted by the engagement of frontal areas in the 
imagery period. We feed independent models with data from before the decision (from -10 to 0 
seconds) and after the decision (from 0 to 10 seconds), pooling regressors from red and green 
gratings. We fitted the models assuming that the model’s structure is conserved across participants, 
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thus employing fixed effects inferences (23). Data from before the decision was best explained by an 
occipital source of imagery with reciprocal connections between occipital and subcortical nodes, and 
feedforward connection from occipital to frontal (Model 4, Figure S7). On the other hand, data from 
after the decision was best explained by a frontal source of imagery and occipital-subcortical 
disconnection scheme (Model 1, Figure S7). These results suggest that the flow of information 
changes between the periods before and after the decision. Note that DCM was originally 
implemented to test effective connectivity in systems receiving perceptual input, thus its validity at 
inferring connectivity schemes in absence of visual input is unclear—e.g., nonconscious thoughts, 
mental imagery (however see (24)). Note that our DCM architectures are undiscerning about the 
contents of imagery (e.g. vertical green and horizontal red) thus only allowing inferences about the 
global flow of information, as opposed to the contents of imagery (as resolved by decoding analysis). 
Due to computational and time limitations we did not perform a comprehensive search of all 
connectivity schemes, thus other models could be as or more suited to explain our data. All in all, we 
must be cautious at interpreting the connectivity results and they should be taken as an exploratory 
analysis that complements the decoding analyses.  

 

 

Supplementary Figures and Tables 

 

 

 

 

Figure S1. Distributions of the periods composing the free-decision task in the fMRI experiment. 
Pre-imagery time corresponds to the interval from the end of the trial-start instructions (“take your 
time to choose / press right button”, presented for 2s) to the button press, indicating the start of the 
imagery period. The Inter task period corresponds to the lapse between the end of the imagery 
period from one trial to the start of the pre-imagery period in the next trial. Total trial length was 
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defined from onset to onset of the trial instructions in consecutive trials. Vertical lines represent the 
mean of every period. Average times for pre-imagery, inter task and total trial length were 5.48s, 
15.62s and 31.18s, respectively. Note that these time intervals left enough time between trials to 
avoid activity spill over.      

 

 

 

 

Figure S2. Sanity check of the decoding of perception and imagery contents. We validated our 
classification approach by decoding perception (A) and imagery (B) on visual ROI. A leave-one-run 
cross validation scheme was used to train and test linear classifiers (SVM). Perception fMRI data was 
extracted from 10s of perception blocks. Imagery fMRI data were extracted from the 10s imagery 
time in the free decision task. Perception (91.7, 91.7, 91.7 and 71.4%; from V1 to V4) and imagery 
(66.9, 67, 69.1 and 63.7%) decoding accuracy was comparable to previous reports (25–27), thus 
validating our classification approach. Error bars represent SEM across participants. Dots represent 
above chance decoding (chance level=50%, p<0.01). 
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Figure S3. Testing the accuracy of the imagery onset report on a behavioral task. We tested 
perceptual priming and subjective imagery vividness a function of imagery time as a means to verify 
the accuracy of reporting the imagery onset. A. Paradigm. Free decision and cued trials were 
pseudo-randomized. Perceptual priming was measured as a function of imagery time (3.3, 6.7 and 
10s), as the dominance bias on binocular rivalry. B. Perceptual priming. Imagery time significantly 
increased perceptual priming on the free decision and cued conditions (ANOVA, F = 7.15, p = 0.002), 
and priming in the free decision condition was significantly lower than in the cued condition 
(ANOVA, F = 5.77, p = 0.021), thus ruling out that participants were reporting the imagery onset after 
starting imagining. C. Imagery vividness.  Imagery time also significantly increased subjective 
imagery vividness on the free decision and cued conditions (ANOVA, F = 18.49, p < 10-5). Stars show 
significant differences between the first two time points, thus setting a lower bound of temporal 
resolution on this behavioral task. Error bars show ±SEM.  
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Figure S4. Assessment of the family-wise error rate across time points. We estimated the 
probability of obtaining different number (n, from 1 to 9) of significantly above chance decoding 
across time points (p<0.05, one tailed t-test) under the null hypothesis using the null distribution 
from the permutation test (1000 iterations). Insets show the family-wise error rate for the 
empirically observed number above-chance decoding time points for each area. 

 

 

Figure S5. Searchlight confidence intervals (C.I.) from permutation test. We validated the statistical 
significance of the searchlight decoding accuracy by empirically determining the distribution of the 
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null hypothesis. We thus performed a permutation test (1000 iterations) for each participant and 
decoding method independently by randomizing the labels (horizontal/vertical, red/green) from 
trials prior the construction of regressors (see text for details). Confidence intervals (95%, right-
tailed) for imagery and generalization are shown in dark and light gray, respectively. Significant 
above-chance decoding time-points (p<0.05, right-tailed permutation test) are depicted as solid 
circles. Results are comparable to those shown in Figure 2 in which parametric tests were used (t-
test, one-sample, right-tailed), thus validating the use of parametric statistical tests.  

 

Figure S6. Searchlight spillover effect control. We conducted a control analysis to test whether our 
results could be explained by activity from the previous trial (spillover effect). We thus trained our 
classifiers on the previous trials (N-1) and tested on the subsequent one (N). If there was a spill over 
from previous trial, this analysis should show the same or higher decoding accuracy in the pre-
imagery period. We found no significant above chance classification for any of the regions (p>0.05, 
one-tailed t-test), thus ruling out the possibility that these results are explained by any spill over. 
Error bars represent ±SEM across participants.  
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Figure S7. Dynamic causal modelling (DCM) of the source of imagery and its effective connectivity. 
We used DCM to test different causal architectures accounting for our results. A. Clusters from the 
searchlight analysis were used as nodes: frontal, occipital, thalamus and pons. We tested 2 sources 
of imagery: frontal, occipital and 2 connectivity schemes. Data from before the decision was best 
explained by an occipital source of imagery with reciprocal connections between the visual and 
subcortical nodes (Model 4). Data from after the decision was best explained by a frontal source of 
imagery and occipital-subcortical disconnection (Model 1). B. Summary and functional 
interpretation. During the pre-imagery period, non-conscious visual representations in occipital 
areas are read by frontal areas; while occipital is coupled with subcortical regions, perhaps triggering 
the stochastic fluctuations in gratings representation strength. On the other hand, during the 
imagery period, occipital and subcortical areas would be uncoupled, thus stabilizing the contents of 
imagery, which are led by frontal areas.  
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Figure S8. ROI results from permutation test. We validated the statistical significance of the ROI 
decoding accuracy by empirically determining the distribution of the null hypothesis. We thus 
conducted a permutation test (1000 iterations) for each participant, decoding method and time-
point independently by randomizing the labels (horizontal/vertical, red/green) from trials prior the 
construction of regressors (see text for details). Significant above-chance decoding time-points 
(p<0.05, right-tailed permutation test) are depicted as solid circles. Results are comparable to those 
shown in Figure 3 in which parametric tests were used (t-test, one-sample, right-tailed), thus 
validating the use of parametric statistical tests.  
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Figure S9. ROI spillover effect control. We conducted a control analysis to test whether our results 
could be explained by activity from the previous trial (spillover effect). We thus trained our 
classifiers on the previous trials (N-1) and tested on the subsequent one (N). If there was a spill over 
from previous trial, this analysis should show the same or higher decoding accuracy in the pre-
imagery period. We found no significant above chance classification on the pre-imagery period but 
we did found significant decoding accuracy in V4 at +5s from imagery onset in the imagery condition. 
Nevertheless, this result indicates that effects in the pre-imagery time cannot be explained by 
activity spill over from previous trials. Error bars represent ±SEM across participants.  
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Figure S10. Imagery-content decoding for low- and high-vividness trials. We divided data into trials 
with low and high vividness (see text for details). High vividness trials showed higher decoding 
accuracy than low vividness trials. Greatest differences in decoding accuracy as a function of 
vividness were seen in the pre-imagery period, suggesting that subjective imagery vividness depends 
upon neural activity from before imagery. Error bars represent SEM across participants. Full points 
represent above chance decoding (p<0.05, one-tailed t-test). 
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Figure S11. BOLD amplitude change for different imagined gratings. We tested if our effects could 
be explained by an overall amplitude differences between imagines gratings (i.e., univariate 
difference). We thus calculated the signal change for every voxel. Dark and light gray represent 
horizontal and vertical gratings, respectively. BOLD signal changes from both imagined gratings are 
overlapped and no significant differences were found (p>0.05, t-test, uncorrected). Shade areas 
represent SEM.    
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Figure S12. Decoding on a subset of participants. Based in a post-experiment interview we pinpoint 
some participants (n=4) that could not help thinking about gratings in some trials during the inter 
trial interval. In order to test if the effects reported here could be explained by these subset of 
participants, we performed the analysis on the remaining participants (n=10) who reported not 
having any thoughts or mental images about gratings during the inter trial interval. The control 
analysis revealed similar results to those presented on Figure 2, thus indicating that our results 
cannot be explained by the participants who had troubles keeping their minds free from gratings in 
the inter-trial period. Solid circles represent significant above-chance decoding time-points (p<0.05, 
right-tailed t-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/090712doi: bioRxiv preprint 

https://doi.org/10.1101/090712
http://creativecommons.org/licenses/by-nc-nd/4.0/


 A. MNI x,y,z (mm) B. Atlas labelling 

Occipital -17,-95,2 

Middle occipital lobe (L) 36.1%  
 Calcarine (L) 27.9% 

Superior occipital lobe (L) 14.3% 
Inferior occipital lobe (L) 14.3% 

Frontal -36,32,18 
Inferior frontal gyrus, triangular (L) 57.5% 

Middle frontal gyrus (L) 6.6% 

Thalamus 1,-7,5 
Thalamus (R) 27.2% 
Thalamus (L) 11.2% 

Pons 7,-19,-24 
Brainstem 34.8% 

Cerebellum (R) 9.5% 
Parahippocampus (R) 5.7% 

 

Table S1. Searchlight clusters locations. A. Center of mass in MNI coordinates of the 4 clusters found 
in the searchlight analysis (occipital, frontal, thalamus and pons). B. Structure definitions according 
to the AAL atlas (28), except for the pons label which was defined using Freesurfer’s subcortical 
automatic segmentation (29). Note that Freesurfer’s subcortical segmentation does not define 
subdivisions within the brainstem. We thus identified the pons by visual inspection of activations 
within the brainstem, which were mostly located in the brainstem’s anterior protrusion rostral to 
the medulla, consistent with the pons location (30). Percentages represent atlases’ labels volume 
occupied by the clusters.  

 

 

 

   Searchlight ROI 
    F O P T V1 V2 V3  V4 

Imagery 
Decoding accuracy (%) 50.0092 50.0051 49.9879 49.9937 49.9861 49.9982 49.9646 49.9835 

Skewness 0.0658 0.0248 0.0439 0.0243 -0.05 -0.033 -0.0088 -0.0401 
Kurtosis 2.9579 2.9974 2.9668 2.9549 2.9106 2.9598 2.9714 2.9503 

Generalization 
Decoding accuracy (%) 49.9926 49.9985 50.0033 50.0079 50.0203 50.0457 49.9951 49.9533 

Skewness -0.0514 -0.0135 0.0039 -0.0212 -0.0251 -0.0162 -0.0237 0.0046 
Kurtosis 3.0005 2.9663 2.9476 3.0354 2.9661 2.9996 3.0071 2.9486 

 

Table S2. Distribution of the empirically-determined decoding null-hypothesis. We verified the 
normality of the null-hypothesis decoding distributions (determined using permutation tests, see 
text for details) by calculating the mean decoding accuracy, skewness and kurtosis. We calculated 
these values for each cluster in the searchlight analysis: fontal (F), occipital (O), pons (P) and 
thalamus (T) and each visual ROI: V1, V2, V3 and V4, for the imagery and generalization conditions. 
The expected decoding accuracy is 50% for the null hypothesis. Expected values of skewness are 
between -1 and 1; and kurtosis of 3 for normal distributions (31). Our results show that decoding 
null-hypothesis distributions for both conditions (imagery and generalization) and decoding methods 
(searchlight and ROI) are centered on 50% and fulfill normal distributions criterion, thus validating 
the use of standard parametric statistical tests. 
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