
Recurring functional interactions predict network architecture of interictal and ictal states
in neocortical epilepsy

Ankit N. Khambhatia,b,1, Danielle S. Bassetta,b,c, Brian S. Oommenb,d, Stephanie H. Chenb,d, Timothy H. Lucasb,e, Kathryn A.
Davisb,d, Brian Litta,b,d

aDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
bPenn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
cDepartment of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

dDepartment of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
eDepartment of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Human epilepsy patients suffer from spontaneous seizures, which originate in brain regions that also subserve normal function.
Prior studies demonstrate focal, neocortical epilepsy is associated with dysfunction, several hours before seizures. How does the
epileptic network perpetuate dysfunction during baseline periods? To address this question, we developed an unsupervised machine
learning technique to disentangle patterns of functional interactions between brain regions, or subgraphs, from dynamic functional
networks constructed from approximately 100 hours of intracranial recordings in each of 22 neocortical epilepsy patients. Using
this approach, we found: (i) subgraphs from ictal (seizure) and interictal (baseline) epochs are topologically similar, (ii) interictal
subgraph topology and dynamics can predict brain regions that generate seizures, and (iii) subgraphs undergo slower and more
coordinated fluctuations during ictal epochs compared to interictal epochs. Our observations suggest that the epileptic network
drives dysfunction by controlling dynamics of functional interactions between brain regions that generate seizures and those that
underlie normal function.

dynamic network neuroscience — epileptic network — non-negative matrix factorization — functional subgraphs — pre-
diction — interictal

1. Significance Statement

Localization-related epilepsy is a debilitating condition
where seizures begin in dysfunctional brain regions, and is of-
ten resistant to medication. The challenge for treating patients
is mapping dysfunction in brain networks that also subserve
normal function several hours before seizures. Localizing brain
regions that generate seizures is critical for improving seizure
freedom rates following invasive surgery. We develop new
methods to identify clusters of functionally interacting brain
regions from approximately 100-hour intracranial, neocortical
recordings per epilepsy patient. Our results indicate seizure-
generating brain regions: (i) can be predicted before seizures
and (ii) may kindle dysfunction through interactions with nor-
mal brain regions. These findings may have clinical implica-
tions for targeting specific brain regions to control seizures sev-
eral hours before they occur.

2. Introduction

For approximately 60 million epilepsy patients, recurring,
spontaneous seizures have a crippling impact on daily life. In
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approximately 26% of these patients, drivers of seizure activ-
ity have been linked to abnormal focal networks located in
neocortical or mesial temporal structures [59]. To map dys-
function, epileptologists monitor continuous intracranial elec-
trophysiology for biomarkers generated by the epileptic net-
work, a set of interacting brain regions that are believed to initi-
ate and spread seizure activity in the brain. To control seizures
in medication-resistant individuals, clinical practitioners have
traditionally prescribed resective surgery to remove brain tissue
containing the epileptic network. More recently, epilepsy spe-
cialists are employing laser ablation and implantable devices
to control dysfunction [60, 20, 49, 61, 47]. Novel neurotech-
nologies afford critical specificity in targeting brain circuits, but
the key question for clinicians remains: “Which brain region(s)
serve as the best target to control this patient’s seizures?”

Localizing epileptic brain regions based on abnormal elec-
trophysiological biomarkers is a difficult problem, as etiology,
seizure semiology, and frequency of events vary greatly be-
tween patients [39]. To reliably map the epileptic network, in-
vasive monitoring lasts several days to weeks, and the length
of the hospital stay increases the risks of infection, complica-
tions, and death. The extended monitoring period allows clini-
cians to describe a surgical target that accounts for variability in
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the seizure origin while minimizing expected impact on normal
brain function. Recently, sampling error during limited moni-
toring time with intracranial electrodes has called into question
the ability of traditional in-patient ictal recording to fully define
the epileptic network [34]. This suggests that methods to map
the epileptic network that do not rely on ictal recording may
have significant advantages over current approaches. Critically,
in localization-related epilepsy, brain regions that generate ic-
tal (seizure) events are thought to be fundamentally altered in
their structure and function, leading to the cognitive deficits ob-
served during interictal (baseline) epochs [1, 40, 18, 26, 30].
These observations imply that brain circuits underlying cog-
nitive functions are recruited by the epileptic network during
interictal (baseline) states. However, when abnormal electro-
physiology is not accompanied by discrete lesions evident on
brain imaging, only about 40% of patients attain seizure free-
dom following resective surgery [21]. Modest outcomes associ-
ated with localization of abnormal electrophysiology suggests a
fundamental gap in our understanding of how neurophysiologic
biomarkers relate to pathophysiology in these patients.

A mechanistic understanding of seizure generation and evo-
lution may be derived from spatial and temporal dynamics of
the epileptic network [67, 28, 57, 54, 58, 70, 37, 29, 52, 66,
12, 23, 32, 31]. In this framework, network nodes are intracra-
nial sensors measuring the electrocorticogram (ECoG) and net-
work connections are time-varying statistical relationships be-
tween sensors [22, 27]. The degree of connectivity between
brain regions is related to the synchronization of neural popu-
lations, a putative generator of dysfunction in epilepsy. Brain
regions that are topologically central to the epileptic network
tend to lie within [67, 28, 57, 58, 37, 29, 12, 32] and adjacent to
[54, 70, 52, 66, 23] clinically-defined seizure-onset zones dur-
ing interictal, preictal and ictal epochs [70, 65, 32]. In the con-
text of this line of evidence, it is interesting to ask the question:
“If network dysfunction persists over long time-scales, then (i)
how does network topology drive brain dynamics differently
during interictal and ictal epochs, and (ii) how might aberrant
brain regions disrupt functional interactions underlying normal
function?” Addressing these pressing questions about epileptic
network physiology is crucial for targeting novel neurotechnol-
ogy to dysfunctional brain circuits and minimizing impact on
network structures involved in normal function.

In this work, we apply an unsupervised machine learning
technique to examine how dynamic network architecture is dif-
ferentially organized between ictal and interictal epochs. Our
approach uncovers clusters of dynamic functional connections,
or subgraphs, whose connection strengths undergo similar pat-
terns of temporal variation, or expression, over several-day long
ECoG recordings. Based on persistent network topology at the
scale of ECoG [38], we first hypothesize that meso-scale func-
tional networks form a repertoire of subgraphs, mapping out
interactions between brain regions that recur through ictal and
interictal epochs. The existence of recurring subgraphs might
describe fundamental connections that guide network propaga-
tion of interictal epileptiform activity in trajectories similar to
seizures [2, 41, 55, 69, 68, 35, 15, 31]. Second, we predict that
functional subgraphs pinpoint connections specific to putative

regions of seizure generation from normal functional connec-
tivity within interictal epochs. Third, we hypothesize that func-
tional subgraphs undergo slower, coordinated fluctuations in ic-
tal epochs and faster, externally driven fluctuations in interictal
epochs [32]. Our results support these hypotheses, demonstrat-
ing that functional subgraphs recur through ictal and interictal
epochs, predict connectivity in the seizure-onset zone during
interictal epochs, and differentiate ictal and interictal epochs on
the basis of their time-varying expression.

3. Methods

3.1. Patient Data Sets
3.1.1. Ethics Statement

All patients included in this study gave written informed con-
sent in accordance with the Institutional Review Board of the
University of Pennsylvania.

3.1.2. Patient Demographics
3.1.3. Electrophysiology Recordings

Twenty-two human patients (12 male and 10 female) under-
going surgical treatment for medically refractory epilepsy be-
lieved to be of neocortical origin underwent implantation of
subdural electrodes to localize the seizure onset zone after non-
invasive monitoring was indeterminate. De-identified patient
data was retrieved from the online International Epilepsy Elec-
trophysiology Portal (IEEG Portal) [64]. ECoG signals were
recorded and digitized at either 512 Hz (Hospital of the Uni-
versity of Pennsylvania) or 500 Hz (Mayo Clinic) sampling
rate. Surface electrode (Ad Tech Medical Instruments, Racine,
WI) configurations, determined by a multidisciplinary team of
neurologists and neurosurgeons, consisted of linear and two-
dimensional arrays (2.3 mm diameter with 10 mm inter-contact
spacing) and sampled the neocortex for epileptic foci (depth
electrodes were first verified as being outside the seizure onset
zone and subsequently discarded from this analysis). Signals
were recorded using a referential montage with the reference
electrode, chosen by the clinical team, distant to the site of
seizure onset. Recordings spanned the duration of a patient’s
stay in the epilepsy monitoring unit.

3.1.4. Clinical Marking of the Seizure-Onset Zone
Seizure onset zone was marked on the Intracranial EEG

(IEEG) according to standard clinical protocol in the Penn
Epilepsy Center. Initial clinical markings are made on the
IEEG the day of each seizure by the attending physician, al-
ways a board certified, staff epileptologist responsible for that
inpatient’s care. Each week these IEEG markings are vetted in
detail, and then finalized at surgical conference according to a
consensus marking of 4 board certified epileptologists together.
These markings on the IEEG are then related to other multi-
modality testing, such as brain MRI, PET scan, neuropsycho-
logical testing, ictal SPECT scanning and magnetoenecephalo-
graphic findings to finalize surgical approach and planning.
This process is standard of clinical care at National Associa-
tion of Epilepsy Centers (NAEC) - certified Level-4 epilepsy
centers in the United States.
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Patient
(IEEG Portal)

Sex Age
(Onset/
Surgery)

Seizure Onset Etiology Seizure
Type

Ictal
Epochs

(N)

Interictal
Epochs

(N)

Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP+GTC 01 3228 L ENGEL-I
HUP65_phaseII M 02/36 Right temporal Auditory

reflex
CP+GTC 03 2986 N/A ENGEL-I

HUP68_phaseII F 15/26 Right temporal Meningitis CP,
CP+GTC

05 3020 NL ENGEL-I

HUP70_phaseII M 10/32 Left perirolandic Cryptogenic SP 08 1079 L NR
HUP72_phaseII F 11/27 Bilateral left Mesial

temporal
sclerosis

CP+GTC 01 2439 L NR

HUP73_phaseII M 11/39 Anterior right
frontal

Meningitis CP+GTC 05 1071 NL ENGEL-I

HUP78_phaseII M 00/54 Anterior left
temporal

Traumatic
injury

CP 05 1719 L ENGEL-III

HUP79_phaseII F 11/39 Occipital Meningitis CP 01 1775 L NR
HUP86_phaseII F 18/25 Left temporal Cryptogenic CP+GTC 02 2612 NL ENGEL-II
HUP87_phaseII M 21/24 Frontal Meningitis CP 02 1201 L ENGEL-I
Study 004-2 F 14/27 Right temporal

occipital
Unknown CP+GTC 01 638 NL ILAE-IV

Study 006 M 22/25 Left frontal Unknown CP 02 104 NL NR
Study 010 F 00/13 Left frontal Unknown CP 02 526 L NF
Study 011 F 10/34 Right frontal Unknown CP,

CP+GTC
02 283 NL NF

Study 016 F 05/36 Right temporal
orbitofrontal

Unknown CP+GTC 03 669 NL ILAE-IV

Study 019 F 31/33 Left temporal Unknown CP+GTC 15 403 NL ILAE-V
Study 020 M 05/10 Right frontal Unknown CP+GTC 04 412 NL ILAE-IV
Study 023 M 01/16 Left occipital Unknown CP 04 208 L ILAE-I
Study 026 M 09/09 Left frontal Unknown CP 10 539 NL ILAE-I
Study 031 M 05/05 Right frontal Unknown CP+GTC 05 730 NL NF
Study 033 M 00/03 Left frontal Unknown GA 07 1321 L ILAE-V
Study 037 F 45/NR Right temporal Unknown CP 02 1087 NL NR

Table 1: Patient information. Patient data sets accessed through IEEG Portal (http://www.ieeg.org). Age at seizure-onset and at
electrode implant surgery are noted. Location of seizure onset (lobe) and etiology are clinically-determined through medical history,
imaging, and long-term invasive monitoring. Seizure types are SP (simple-partial), CP (complex-partial), CP+GTC (complex-
partial with secondary generalization), or GA (generalized atonic). Counted seizures were recorded in the epilepsy monitoring unit.
Interictal epochs were 5 minutes in duration and at least two hours away from any seizure. Clinical imaging analysis concludes L,
Lesion; NL, non-lesion. Surgical outcome is reported by both Engel score and ILAE score (scale: I-IV/V, seizure freedom to no
improvement; NR, no-resection; NF, no follow-up). M, male; F, female.

3

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2016. ; https://doi.org/10.1101/090662doi: bioRxiv preprint 

https://doi.org/10.1101/090662
http://creativecommons.org/licenses/by-nd/4.0/


3.1.5. Description of Ictal and Interictal Epochs

Ictal epochs were identified by a team of neurologists as
a part of routine clinical work and spanned the period be-
tween clinically-marked earliest electrographic change (EEC)
[45] and termination. In this study, we disregarded sub-
clinical seizures and only considered ictal epochs from clini-
cal seizures that manifest seizure-related symptoms. Interictal
epochs spanned 5 minutes in duration and were at least two
hours removed from any ictal onset. We analyzed all possible
interictal epochs from patient recordings.

3.2. Extracting Time-Varying Functional Networks

Signals from each 5-minute interictal epoch and each ictal
epoch were divided into 1-second, non-overlapping, stationary
time windows (Fig 1A) in accord with other studies [37] and
subsequently pre-processed. In each time window, signals were
re-referenced to the common average reference [62, 37] to ac-
count for variation in reference location across patients and to
avoid broad field effects that may bias connectivity measure-
ments erroneously in the positive direction. Each window was
notch filtered at 60 Hz to remove line-noise, and low-pass and
high-pass filtered at 120 Hz and 4 Hz, respectively, to account
for noise, voltage drift, and δ frequency (0.5-4 Hz) contribution
between time windows. To limit sources of volume conduc-
tion from introducing spurious connectivity, we pre-whiten sig-
nals in each window using a first-order autoregressive model
to account for slow dynamics. Pre-whitening accomplishes
two goals: (i) flattening of the signal power spectrum to en-
hance higher-frequency content that contains local neural pop-
ulation dynamics that is less affected by volume conduction,
and (ii) decreasing the influence of independent node dynamics
when computing correlation-based connectivity measurements
[62, 10, 46, 3].

Time-varying functional networks were formed by applying
a normalized cross-correlation similarity function ρ between
the time series of two sensors in the same time window using

the formula, ρxy(k) = max
τ

∣∣∣∣∣ 1
T
∑

t
(xk(t)−x̄k)(yk(t+τ)−ȳk)

σxk
σyk

∣∣∣∣∣, where x
and y are signals from one of N sensors or network nodes, k is
one of K non-overlapping, one-second time windows, t is one
of T signal samples during the time window, τ = 1, 2, . . . ,T is
the time lag between signals, and ρ = 0 when node x is the same
as node y. The N × N × K similarity matrix is also known as
a time-varying adjacency matrix A (Fig. 1B). In our weighted
network analysis, we retain and analyze all possible connection
weights between nodes.

An alternate representation of the three-dimensional network
adjacency matrix A is a two-dimensional network configura-
tion matrix Â, which tabulates all N × N pairwise connection
strengths across K time windows (Fig. 1C). Due to symme-
try of Ak, we unravel the upper triangle of Ak, resulting in the
weights of N(N − 1)/2 connections. Thus, Â has dimensions
N(N − 1)/2× K. We constructed a separate network configura-
tion matrix for each ictal and interictal epoch.

3.3. Clustering Functional Connections into Subgraphs

To identify network subgraphs – sets of connections whose
variation in strength cluster over time – we applied an unsuper-
vised machine learning algorithm called non-negative matrix
factorization (NMF) [42] to the network configuration matrix
(Fig. 1D). This technique enabled us to pursue a parts-based de-
composition of the time-varying network configuration matrix
into subgraphs with time-varying expression coefficients [13].
Each subgraph is an additive component of the original network
– weighted by its associated time-varying expression coefficient
– and represents a pattern of functional interactions between
brain regions. The NMF-based subgraph learning paradigm is a
basis decomposition of a collection of dynamic graphs that sep-
arates co-varying network edges into subgraphs – or basis func-
tions – with associated temporal coefficients – or basis weights.
Unlike other graph clustering approaches that seek a hard par-
tition of nodes and edges into clusters [6], the temporal coeffi-
cients provide a soft partition of the network edges, such that
the original functional network of any time window can be re-
constructed through a linear combination of all the subgraphs
weighted by their associated temporal coefficient of that time
window [43, 44, 13]. This implies that at a specific time win-
dow, subgraphs with a high temporal coefficient contribute their
pattern of functional connections more than subgraphs with a
low temporal coefficient.

Mathematically, NMF approximates Â by two low-rank,
non-negative matrices, such that, Â ≈WH, where W is the sub-
graph connectivity matrix (with dimensions N(N − 1)/2 × m),
and H is the time-varying expression coefficients matrix (with
dimensions m×K), and m is the optimized number of subgraphs
learned. We applied NMF to the time-varying network config-
uration matrix using the alternating non-negative least squares
with block-pivoting method with 100 iterations for fast and ef-
ficient factorization of large matrices [33]. We initialized W
and H with non-negative weights drawn from a uniform random
distribution on the interval [0, 1]. Due to the non-deterministic
nature of this approach, we integrated subgraph estimates over
multiple runs of the algorithm using consensus clustering – a
general method of testing robustness and stability of clusters
over many runs of one or more non-deterministic clustering
algorithms [48]. Our adapted consensus clustering procedure
[25, 24] entailed the following steps: (i) run the NMF algo-
rithm R times per network configuration matrix, (ii) concate-
nate subgraph matrix W across R runs into an aggregate matrix
with dimensions N(N − 1)/2 × R ∗ m, and (iii) apply NMF to
the aggregate matrix to determine a final set of subgraphs and
expression coefficients.

In our study, we set R = 25 runs and separately repeated
the consensus procedure for each epoch of each subject. We
determined a subject-specific number of subgraphs m to learn
across epochs by the following procedure: (i) randomly sample
50 epochs from the ictal and interictal pool, (ii) apply NMF
for m = 2, 3, . . . , 20 subgraphs, independently for each epoch,
(iii) compute the Frobenius error between Â and WH for each
m, (iv) retain the value for m that occurs at the elbow of the
resulting Frobenius error curve for each patient, and (v) find
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the optimum number of subgraphs m̄ as the average m from the
50 epochs.

In sum, this subgraph learning procedure yielded p ∗ m̄ total
subgraphs per patient, where p is the total number of ictal and
interictal epochs.

3.3.1. Generating Surrogate Subgraphs
An important mathematical property of subgraphs is that they

form a basis set of the time-varying functional network from
which they were derived. In other words, there exists a lin-
ear combination of an epoch’s subgraphs that reconstruct the
original network, and any linear combination of the subgraphs
forms a new subgraph that is still a basis of the original net-
work. These properties allowed us to construct surrogate sub-
graphs with rewired network topology that maintain their basis
functionality and preserve the empirically observed distribution
of connection strengths.

We formed a set of surrogate subgraphs for each epoch by
calculating a linear combination of the original subgraphs with
weights pooled from a uniform random distribution on the in-
terval [0, 1] (Fig. 2A). The size of the surrogate subgraph set
remained equal to the size of the original subgraph set.

3.4. Clustering Subgraph Ensembles Across Epochs

In this work, we sought to describe subgraph topology from
the entirety of a patient’s data record by quantifying the simi-
larity of subgraph connectivity profiles between interictal and
ictal epochs. While several similarity and distance metrics are
capable of comparing statistical features across observations in
a data set (e.g. Pearson correlation, euclidean distance, cosine
similarity), recent work has shown that a probabilistic measure
of similarity derived from consensus clustering – by leverag-
ing the non-deterministic property of the random initialization
– may more accurately identify clusters in large data sets with
many features [48]. To quantify topological similarity of sub-
graphs across all of a patient’s epochs, we again employed an
NMF-based consensus clustering approach.

First, we compiled subgraphs across all of a patient’s epochs
and constructed a subgraph ensemble matrix E (with dimen-
sions N(N − 1)/2 × (p ∗ m̄)) (Fig. 2B). To cluster the collec-
tion of p ∗ m̄ subgraphs, we applied multiple runs of NMF to
E, such that, E ≈ VG, where V represents the subgraph for
each cluster centroid (with dimensions N(N − 1)/2 × j) and G
represents the likelihood cluster assignment for each subgraph
(with dimensions j× (p ∗ m̄)), where j is the number of patient-
wide clusters of subgraphs. After every NMF run, we retrieved
the cluster assignment with maximum likelihood for each sub-
graph and counted the number of times each possible pair of
subgraphs was assigned to the same cluster – and by extension
the probability that any two subgraphs co-cluster [9, 25, 24].
These probabilities are tabulated in a symmetric co-clustering
probability matrix S (with dimensions (p∗m̄)×(p∗m̄)) (Fig. 2C).

For every patient, we computed a co-clustering probability
matrix S over 100 NMF runs for each number of subgraph clus-
ters j = 2, 3, . . . , 20. To determine the optimum number of clus-
ters j, we computed the Frobenius error between E and VG for

each j and retained the value j̄ that occurs at the elbow of the
resulting Frobenius error curve for each patient. Finally, we as-
signed each subgraph to its consensus cluster by applying one
run of NMF, with j̄ clusters, to S.

To generate a surrogate co-clustering probability matrix, we
repeated our approach and replaced the original subgraphs in E
with surrogate subgraphs and set the number of subgraphs j to
the optimized number of subgraphs j̄ from the original ensem-
ble clustering.

3.4.1. Two-Dimensional Projection of Subgraph Similarity
To study the overall topological similarity between sub-

graphs, we employed a multi-dimensional scaling method [7]
that projects each of the p × m̄ subgraphs as a data point in
two-dimensional space and constrains the position of each data
point a distance away from all other data points based on their
relative similarities, as specified in S. In other words, more
topologically similar (dissimilar) subgraphs are closer (further)
in two-dimensional space (for example, see Fig. 3A). Formally,
MDS assigns each subgraph a two-dimensional coordinate
(xy) by minimizing the following stress function, StressS =(∑

i, j=1,...,p∗m̄(1 − S i j −
∥∥∥xyi − xy j

∥∥∥)2
)1/2

, where S is the proba-
bilistic subgraph co-clustering matrix, i and j are each different
indices for one of m̄ subgraphs of the p epochs. The MDS pro-
cedure assigns each subgraph a two-dimensional xy coordinate.

Using the two-dimensional subgraph projection, we studied
the proximity of a subgraph to its cluster centroid. Subgraphs
closer to the centroid of their assigned cluster were consid-
ered more integrated, while subgraphs closer to the centroid
of a non-assigned cluster (neighboring cluster) were considered
more promiscuous. Formally, we computed a normalized dis-
tance to centroid measure by, Distance(p,m, jassign, jneighbor) =
Dist[xyp,m,x̄y jneighbor

]−Dist[xyp,m,x̄y jassign
]

Dist[xyp,m,x̄y jneighbor
]+Dist[xyp,m,x̄y jassign

] , where Dist is the Euclidean dis-

tance function, xy are projected coordinates of the mth subgraph
of the pth epoch, and x̄y is the centroid coordinate of the as-
signed cluster for the subgraph jassign or the centroid coordinate
of the most proximal, non-assigned cluster jneighbor. Intuitively,
a subgraph closer to the centroid of its assigned cluster than
its neighboring cluster has normalized distance near +1, a sub-
graph closer to the centroid of its neighboring cluster than its
assigned cluster has normalized distance near −1, and a sub-
graph equally distant to its own cluster centroid and neighbor-
ing cluster centroid has normalized distance of 0 (for example,
see Fig. 3B,C).

3.5. Measures of Subgraph Topology and Dynamics

To quantify the topological and dynamic role of functional
subgraphs in the epileptic network, we describe several mea-
sures based on the distributions of subgraph connectivity and
expression coefficients.

To determine the degree to which a subgraph expressed func-
tional connectivity in the seizure-onset zone, we computed a
SOZ sensitivity measure of the relative strength of subgraph
connectivity within the seizure-onset zone (SOZ) and outside
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Figure 1: Clustering Functional Connections from Dynamic Epileptic Networks. (A) We identify ictal and interictal epochs from ECoG signals collected from
patients with drug-resistant neocortical epilepsy implanted with intracranial electrodes. An ictal epoch is the period between seizure-onset – as characterized by the
earliest electrographic change (EEC) [45] – and seizure termination. An interictal epoch is defined to be a continuous, 5 minute period at least 2 hours preceding or
following seizure-onset. To measure time-varying functional networks, we divide each epoch into 1s time windows and estimate functional connectivity in each time
window. In our model, each electrode sensor is a network node, and the weighted functional connectivity between sensors – interpreted as degree of synchrony – is
represented as a network connection. (B) For each epoch, we estimated functional connectivity by applying a magnitude normalized cross-correlation between each
pair of sensor time series in each time window. (C) For time-varying functional connectivity, we extract all pairwise connections between nodes and concatenate
them over time windows to generate a time-varying network configuration matrix. (D) We apply NMF to the time-varying configuration matrix from each epoch,
resulting in subgraphs that capture frequently repeating patterns of functional connections, and their expression over time.
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Figure 2: Clustering Subgraphs Based on Topological Similarity. (A) For
the set of original subgraphs learned from an epoch of data (left), we generated
an equally-sized set of surrogate subgraphs (right) by computing a weighted lin-
ear combination of the subgraphs with weights drawn from a uniform random
distribution on the interval [0, 1]. The surrogate subgraphs have rewired net-
work topology but maintain their functionality as a mathematical basis of the
original network. (B) For each patient, we constructed a subgraph ensemble
matrix, representing the N(N − 1)/2 functional connections for each subgraph
from all interictal and ictal epochs. The ensemble matrix aggregates functional
subgraphs expressed over approximately 100 hours of intracranial recording.
We also constructed a patient-specific surrogate ensemble matrix by aggregat-
ing surrogate subgraphs across all epochs. (C) We quantified the topological
similarity between all subgraphs in the ensemble matrix by applying a consen-
sus NMF algorithm that tracks the number of times every pair of subgraphs is
assigned to the same cluster over 100 runs of NMF. This procedure resulted in
a co-clustering probability matrix representing the frequency with which sub-
graphs from ictal and interictal epochs are clustered together – a measure of
similarity between the connectivity profiles of subgraph pairs. In the example,
the co-clustering probability matrix of real subgraphs demonstrates less am-
biguous similarity – matrix entries are near 0 or 1 – and greater clustering than
surrogate subgraphs – matrix entries closer to 0.5.

the seizure-onset zone (OUT). Mathematically, the SOZ sensi-
tivity is defined, SOZ Sensitivity(p,m) =

C̄p,mSOZ−C̄p,mOUT
C̄p,mSOZ +C̄p,mOUT

, where

C̄SOZ is the average subgraph connection strength of nodes
within the SOZ and C̄OUT is the average subgraph connection
strength of nodes outside the SOZ, of the mth subgraph of the pth

epoch. The SOZ sensitivity ranges from +1, maximally sensi-
tive to functional connections within the SOZ, to −1, maximally
sensitive to functional connections outside the SOZ (for exam-
ple, see Fig. 4). We also computed a surrogate distribution of
SOZ sensitivity by randomly permuting the SOZ label across
network nodes and re-computing SOZ sensitivity.

We compared subgraph dynamics between epochs by cal-
culating the energy, skew, and power spectral density of sub-
graph expression coefficients. To compare subgraph expres-
sion between different epochs, we normalize each subgraph’s
expression coefficients such that its maximum value is 1. The
subgraph expression energy [13] quantifies the overall magni-
tude expression of the subgraph during an epoch (for example,
see Fig. 5C) and was computed by, energy(p,m) = E[Hp,m

2],
where H are the temporal coefficients of the mth subgraph from
the pth epoch.

The skew of a distribution of subgraph expression coeffi-
cients quantifies how transiently or persistently subgraphs are
expressed [13]. Intuitively, transient subgraphs are expressed
in brief, infrequent bursts – resulting in a heavy-tailed distribu-
tion of temporal coefficients (i.e., more small coefficients, and
few large coefficients) – and persistent subgraphs are expressed
evenly in time – resulting in a more normal distribution of tem-
poral coefficients that fluctuate about the mean. The skew of
the distribution of temporal coefficients for a subgraph distin-
guishes whether it is transiently (skew is greater than zero) or
persistently (skew less than zero) expressed (for example, see
Fig. 5D). The skew of the subgraph expression coefficients dur-

ing an epoch, skew(p,m) =
E[(Hp,m−µHp,m

)3]

(E[(Hp,m−µHp,m
)2])3/2 , where H are the

temporal coefficients of the mth subgraph from the pth epoch,
and µH is the mean of the coefficients.

The power spectral density quantifies the modulation fre-
quency of a subgraph’s expression [43] during an epoch and
was computed using Welch’s Method with a sampling fre-
quency of 1 Hz (each time window represents 1 second of func-
tional connectivity) and a window size of 20 seconds (for exam-
ple, see Fig. 5D).

4. Results

To disentangle functional subgraphs and their time-varying
expression from epileptic brain, we retrieved ECoG recorded
during ictal and interictal epochs from 22 patients undergoing
routine pre-surgical evaluation of their neocortical epilepsy (see
Table 1 for patient-specific information) through the Interna-
tional Epilepsy Electrophysiology Portal (http://www.ieeg.org).
We defined an ictal epoch as the period of ECoG signal be-
tween seizure-onset – as characterized by the earliest electro-
graphic change (EEC) [45] – and seizure termination. Further,
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we defined an interictal epoch as a continuous 5 minute pe-
riod of ECoG signal at least 2 hours preceding or following
seizure-onset. We analyzed all possible interictal epochs, which
amounted to µ = 106 ± 17 hours of ECoG signal per patient.

For each epoch of each patient, we applied the following
steps: (i) estimated weighted functional connectivity using a
normalized cross-correlation metric and (ii) clustered patterns
of frequently expressed functional connections from the net-
work model by applying a machine learning technique called
non-negative matrix factorization (NMF) to the time-varying
network configuration matrix (see Methods for detailed pro-
cedure, and see Table 3 for number of subgraphs learned per
epoch for each patient). This technique enabled us to pursue a
parts-based decomposition of functional connections into sub-
graphs with time-varying expression coefficients [13]. Each
subgraph is an additive component of the original network and
represents a pattern of functional interactions between brain re-
gions. Subgraphs are accompanied by time-varying expression
coefficients, measuring the degree to which each subgraph is
expressed at a given point in time.

Importantly, our approach yields a collection of functional
subgraphs over the long-term clinical recording. We studied the
topology and dynamics of these learned subgraphs in greater
detail to understand and pinpoint drivers of epileptic network
dysfunction, interictally.

4.1. Ictal Network Architecture Emerges During Interictal
Epochs

We first ask “Do subgraphs of interacting brain regions re-
cur in their expression over the entire duration of a patient’s
intracranial recordings?” We expected that if the same set of
brain regions interact frequently, as described by a subgraph,
then similar patterns of subgraph connectivity should emerge
over the long-term recording. To test our hypothesis, we took
the following probabilistic approach (Fig. 2): (i) constructed a
subgraph ensemble matrix by aggregating functional connec-
tions over all subgraphs of a patient, (ii) quantified topological
similarity between subgraphs by applying a consensus NMF al-
gorithm to separate ensemble matrices for real and surrogate
subgraphs, (iii) populated a real and a surrogate co-clustering
probability matrix based on pairwise similarity of subgraphs
from all epochs, and (iv) projected the co-clustering probabil-
ity matrix on a two-dimensional Euclidean space using MDS.
See Table 3 for number of subgraph ensemble clusters for each
patient.

In the two-dimensional projection space, topologically sim-
ilar subgraphs are geographically closer and topologically
dissimilar subgraphs are geographically farther from one an-
other. We expected that interactions between brain regions pre-
scribed by subgraphs within a cluster would be highly distinct
from interactions between brain regions of other clusters. We
visually confirmed this hypothesis in an sample patient, observ-
ing that geographically closer subgraphs were more likely as-
signed to the same cluster (Fig. 3A). In contrast, surrogate sub-
graphs, with randomized connectivity, of the same patient did
not exhibit geographical clustering corresponding to the clus-
tering assignment. To test whether clustering of topologically

similar subgraphs is significantly greater in the true data than in
the surrogate model, we quantified the degree of clustering by
computing a normalized distance to centroid index for each sub-
graph that compares the Euclidean distance from a subgraph to
its assigned cluster’s centroid and the same subgraph to its near-
est neighboring cluster centroid (Fig. 3B). A cluster centroid is
the mean two-dimensional, geographical location over all sub-
graphs in the cluster. Using a paired t-test, we found that the
normalized distance to centroid, averaged over all subgraphs
for each patient, was significantly greater for real subgraphs
(µ = 0.71 ± 0.03) than surrogate subgraphs (µ = 0.24 ± 0.02;
t21 = 12.09, p < 7×10−11; Table 2a). These results suggest that
subgraphs assigned to the same cluster exhibit greater topolog-
ical similarity than expected by chance. In other words, the
functional architecture of meso-scale brain circuits is organized
by recurring subgraphs of connectivity, in which the same sets
of brain regions functionally interact, repeatedly, over several
hours.

Based on our result of recurring functional subgraphs in
epileptic brain, we next asked “Are ictal subgraphs topologi-
cally distinct from interictal subgraphs?” Visualizing the two-
dimensional projection of the subgraph co-clustering probabil-
ity matrix from an example patient (Fig. 3A), we observed sev-
eral bridge-like extensions between subgraph clusters, repre-
senting putative transition graphs between clusters. We hy-
pothesized that ictal subgraphs lie closer to the cluster pe-
riphery, at the junction of subgraph transitions, than interic-
tal subgraphs. Moreover, we expected subgraphs of seizures
that undergo more complex stages of spreading dynamics –
secondarily-generalized, complex partial seizures (CP+GTC) –
would be closer to these junctions (i.e. further from cluster cen-
troid) than focal seizures whose dynamics minimally spread –
complex partial seizures (CP). To test our hypothesis, we com-
puted the normalized distance to centroid index, separately, for
ictal and interictal subgraphs of each patient with CP seizures
and with CP+GTC seizures (Fig. 3C). Using a paired t-test and
Bonferroni multiple comparisons correction, we found: (i) for
patients with CP seizures, ictal subgraphs were significantly
more distant (µ = 0.70 ± 0.04) from their cluster centroid than
interictal subgraphs (µ = 0.76 ± 0.03; t7 = −3.29, p = 0.013;
Table 2b), and (ii) for patients with CP+GTC seizures, ictal sub-
graphs were significantly more distant (µ = 0.57 ± 0.06) from
their cluster centroid than interictal subgraphs (µ = 0.71±0.04;
t9 = −4.26, p = 0.002; Table 2c). These results suggest that
ictal subgraphs are less integrated within their clusters than
interictal subgraphs and that ictal subgraphs of patients with
CP+GTC seizures (t9 = −4.26) lie further from cluster centroid
than ictal subgraphs of patients with CP seizures (t7 = −3.29).
Importantly, ictal subgraphs are not topologically distinct from
interictal subgraphs, and may, in fact, represent functional con-
nections that lie at the transition between interictal subgraphs.
Furthermore, seizures with complex patterns of spreading dy-
namics (CP+GTC) may express functional connections closer
to junctions between subgraph clusters than seizures with more
focal dynamics (CP).

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2016. ; https://doi.org/10.1101/090662doi: bioRxiv preprint 

https://doi.org/10.1101/090662
http://creativecommons.org/licenses/by-nd/4.0/


Example of Two-Dimensional Subgraph Projection

Real Subgraphs Surrogate Subgraphs

Ictal Subgraph

Interictal Subgraph

Subgraph Cluster Assignment

A

Real 

Subgraphs

Surrogate

Subgraphs

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

 t
o

 C
e

n
tr

o
id

-1.0

-0.5

0.0

0.5

1.0

B

***

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

 t
o

 C
e

n
tr

o
id

-1.0

-0.5

0.0

0.5

1.0

Patients w/

CP sz

Patients w/

CP+GTC sz

C
Cluster Cohesion Integration within Cluster

* **

A
s
s
ig

n
e

d
 C

lu
s
te

r
N

e
ig

h
b

o
r C

lu
s
te

r

Ictal Subgraphs

Interictal Subgraphs

Figure 3: Ictal Subgraphs Are Recapitulated During Interictal Epochs.
(A) Example two-dimensional projection of a patient’s subgraph co-clustering
probability matrix. Each marker represents a subgraph from a single epoch
and the distance between a subgraph pair indicates their topological similarity
(i.e. closer subgraphs are more similar); circles represent interictal subgraphs
and bolded stars represent ictal subgraphs; colors represent cluster assignment
based on consensus clustering of the subgraph ensemble. The projections of
real subgraphs (left) of the same cluster (color) tend to be closer to one an-
other than to subgraphs of other clusters. In contrast, the projections of sur-
rogate subgraphs from the same cluster tend to be as close to one another as
surrogate subgraphs from other clusters. (B) Normalized, projected distance
of a subgraph to its assigned cluster’s centroid – the mean geographical loca-
tion of subgraphs in a cluster – relative to its neighboring cluster’s centroid
(most proximal, non-assigned cluster centroid), averaged over all subgraphs
of each patient (N = 22). Real subgraphs were significantly closer to their
cluster centroid compared to surrogate subgraphs (paired t-test; t21 = 12.09,
p < 7 × 10−11), suggesting the same set of brain regions functionally interact
repeatedly over several hours. (C) Normalized, projected distance of ictal and
interictal subgraphs to their cluster centroid, averaged over all ictal or interic-
tal subgraphs of each patient with complex partial (CP) seizures (N = 8) and
with secondarily-generalized complex partial (CP+GTC) seizures (N = 10).
Both groups of patients expressed ictal subgraphs that were significantly fur-
ther away from their cluster centroid than interictal subgraphs (paired t-test;
CP: t7 = −3.29, p = 0.013; CP+GTC: t9 = −4.26, p = 0.002), suggesting
ictal subgraphs may represent functional connections that lie at the transition
between interictal subgraphs. (* p < 0.05, ** p < 0.01, *** p < 0.001; Bon-
ferroni corrected)

4.2. Interictal Subgraphs Predict Seizure-Onset Regions

In the preceding analyses, we observed that: (i) ictal and
interictal subgraphs that are more topologically similar are
grouped in the same cluster and (ii) ictal subgraphs are topo-
logically similar to interictal subgraphs and may capture transi-
tions between clusters. If similar patterns of functional connec-
tivity are expressed during ictal and interictal epochs, then we
logically ask “Can interictal subgraphs predict which functional
interactions drive seizure-onset?” To address this question, we
compared interictal subgraph topology within and outside of
clinically-defined seizure-onset brain regions. In accord with
routine clinical evaluation of patients’ epilepsy, a team of neu-
rologists successfully identified the sensors in the seizure-onset
zone based on visual inspection of the intracranial recordings.

To determine the degree to which a subgraph expressed func-
tional connectivity in the seizure-onset zone, we quantified the
relative strength of brain regions within the seizure-onset zone
(SOZ) and outside the seizure-onset zone (OUT) for each sub-
graph by computing the SOZ sensitivity measure.

We first asked, “Are all interictal subgraphs equally sensi-
tive to connections in the SOZ, or are some interictal subgraphs
more sensitive than others?” We hypothesized that connectiv-
ity in the SOZ would be expressed in a few interacting brain
regions, rather than homogenously over many functional sub-
graphs. To test this hypothesis, we ranked subgraph clusters
in decreasing order of their average SOZ sensitivity over inter-
ictal subgraphs, for each patient. We expected cluster ranking
to reveal potential hetereogeneity in the SOZ sensitivity of in-
terictal subgraphs. Across the patient cohort, we generated a
distribution of the average SOZ sensitivity for each of the top
6 ranked clusters – the minimum number of subgraph clusters
identified for the 22 patients (Fig. 4A). Using a paired t-test
and Bonferroni multiple comparisons correction, we compared
the SOZ sensitivity distribution of each cluster to a null model
in which brain regions within the SOZ are randomly permuted
for every interictal subgraph. Compared to the null distribu-
tion, we found significantly greater SOZ sensitivity for cluster
1 (µ = 0.31 ± 0.04; t21 = 8.19, p < 2 × 10−7; Table 2d), cluster
2 (µ = 0.15 ± 0.03; t21 = 5.58, p < 3 × 10−5; Table 2e), and
cluster 3 (µ = 0.08±0.02; t21 = 3.75, p < 0.005; Table 2f), sig-
nificantly lower SOZ sensitivity for cluster 6 (µ = −0.10±0.02;
t21 = −3.97, p < 0.001; Table 2g), and no significant difference
for cluster 4 (µ = 0.01 ± 0.02; t21 = 1.86, p = 0.08; Table 2h)
and cluster 5 (µ = −0.05 ± 0.02; t21 = −1.47, p = 0.16; Ta-
ble 2i). These results suggest interictal subgraphs exhibit a het-
erogeneous sensitivity to brain regions within and outside the
seizure-onset zone, with subgraphs in cluster 1 demonstrating
the presence of network hubs localized to the SOZ and sub-
graphs in cluster 6 demonstrating the presence of network hubs
localized outside the SOZ (Fig. 4B). Thus, interictal subgraphs
express topological features that coincide with regions of dys-
function, for both strong connectivity and disconnectivity.

Next, we examine how these various functional subgraph
topologies differentially behave in their pattern of time-varying
expression – subgraph dynamics.
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Figure 4: Interictal Subgraphs are Selectively Sensitive to the Seizure-
Onset Zone. (A) Distribution of average SOZ sensitivity of subgraphs in each
cluster, ranked in decreasing order, from each patient (N = 22). SOZ sensitivity
of true SOZ labels in blue and of permuted SOZ labels in gray. We observed a
significant effect of SOZ sensitivity for real SOZ labels compared to permuted
SOZ labels for clusters 1, 2, 3, and 6 (* p < 0.05, ** p < 0.01, *** p < 0.001;
Bonferroni corrected). These results demonstrate that functional interactions
between brain regions are heterogeneously sensitive to dysfunction in the SOZ
– depending on cluster-specific subgraph stereotypes. (B) Importantly, we ob-
served that subgraphs of cluster 1 were significantly sensitive to connections
within the SOZ, while subgraphs of cluster 6 were significantly sensitive to con-
nections outside the SOZ. An example of subgraphs from cluster 1 (left) and
cluster 6 (right) are shown here. Connections between SOZ nodes are shown
in the top-left box, and connections between non-SOZ nodes are shown in the
bottom-right box.

4.3. Temporal Dynamics Differentiate Subgraphs of Interictal
and Ictal Epochs

We have presented evidence that ictal subgraphs are topolog-
ically similar to interictal subgraphs, and further that interic-
tal subgraph topology can predict where seizures begin. Log-
ically, we finally ask “If ictal and interictal subgraphs express
similar network architecture, how is functional connectivity of
the epileptic network differentially expressed between ictal and
interictal epochs?” To answer this question, we analyzed the
time-varying expression coefficients of each subgraph, which
represent the degree to which a subgraph is expressed as a func-
tion of time. These coefficients are naturally provided by the
NMF subgraph detection technique. From these data, we for-
mulated two hypotheses: (i) that functional subgraphs express
a variety of dynamical modes that predict subgraph topolo-
gies with heightened sensitivity for epileptic brain regions, and
(ii) that expression of ictal subgraphs is modulated at slower
time-scales than interictal subgraphs, supporting the notion that
seizures are internally driven processes with coordinated dy-
namics.

To test our first hypothesis, we computed subgraph expres-
sion energy – a measure of overall dynamical activity – and
subgraph expression skew – a measure of transient or persistent
dynamics – and identified a sample of subgraphs that exhibit
high/low energy and transient/persistence dynamics (Fig. 5A).
We expected that expression energy would be predictably lower
for interictal subgraphs with high SOZ sensitivity (cluster 1)
compared to interictal subgraphs with lower SOZ sensitivity
(cluster 2-6), accounting for more normal network dynamics
during the seizure-free period. Using a paired t-test and Bon-
ferroni multiple comparisons correction, we compared the dis-
tribution of expression energy, averaged over all interictal sub-
graph of each cluster, across patients to the distribution of ex-
pression energy, averaged over all interictal subgraphs outside
that cluster, across patients (Fig. 5B). We found that interic-
tal subgraphs of cluster 1 exhibit significantly lower expression
energy (µ = 0.17 ± 0.01) than interictal subgraphs outside of
cluster 1 (µ = 0.20 ± 0.004; t21 = −3.21, p = 0.004; Table 2j),
suggesting that, indeed, subgraphs with high sensitivity to SOZ
brain regions exhibit significantly attenuated activity during in-
terictal epochs. Importantly, our results imply that expression
energy is specific in its ability to predict the subgraph cluster
that exhibits strong functional connections in the seizure-onset
zone.

Next, we asked whether interictal subgraphs with pro-
nounced connectivity in the SOZ (cluster 1) differ in their pat-
tern of expression compared to interictal subgraphs with pro-
nounced disconnectivity in the SOZ (cluster 6). We expected
that subgraphs of cluster 1 may express their pattern of func-
tional connections more intermittently, with greater transience,
than subgraphs of cluster 6 (Fig. 5C). Using a paired t-test, we
found that expression skew, averaged over all interictal sub-
graphs, across patients was greater for cluster 1 (µ = 1.25 ±
0.24) than cluster 6 (µ = 0.75 ± 0.20; t21 = 2.12, p = 0.04;
Table 2k). These results suggest interictal subgraphs with high
connectivity within the SOZ are expressed transiently, and in-
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terictal subgraphs with high connectivity outside the SOZ are
expressed persistently.

Lastly, we tested our second hypothesis that topologically
similar subgraphs differ in their expression frequency between
ictal and interictal epochs. To test this hypothesis, we computed
power spectral density (PSD) for each subgraph, averaged the
PSD curves over all ictal or interictal subgraphs of each patient,
and analyzed the resulting ictal and interictal PSD distribution
(Fig. 5A). Using a statistical technique called functional data
analysis (see [51] for technique, and [5] for illustrative applica-
tion), we compared whether the area between ictal and interictal
PSD curves were significantly different by comparing the true
area to a null model in which ictal and interictal labels across
subjects were permuted 1,000,000 times and the area between
the curves was recomputed for each permutation. We found that
the ictal and interictal PSD curves were significantly separated
(area between curves = 0.014; p = 2.2 × 10−5; Table 2l), sug-
gesting ictal and interictal functional subgraph expression oper-
ates at different characteristic frequencies. Specifically, expres-
sion of ictal subgraphs modulates at slower frequencies and ex-
pression of interictal subgraphs modulates at higher frequencies
– implying that similar patterns of functional connections of ic-
tal and interictal subgraphs differ in their temporal dynamics.
More generally, these results demonstrate that seizures mark a
critical shift in network dynamics that is driven by slower and
more coordinated expression of frequently interacting brain re-
gions.

5. Discussion

In this work we asked, “Does interictal functional architec-
ture of the epileptic brain perpetuate network dysfunction sev-
eral hours between seizures?” To answer this question, we de-
signed and applied a novel tool to disentangle subgraphs and
their time-varying expression from dynamic functional connec-
tivity. Our work supports the notion that ictal and interictal
epochs traverse a similar set of functional subgraphs, but differ
in the temporal pattern of subgraph expression – that is, sub-
graph dynamics.

5.1. Subgraphs Disentangle Regions of the Epileptic Network

A common notion in epilepsy is that dysfunctional corti-
cal regions produce epileptiform activity, capable of generat-
ing seizures. However, network theorists posit that dysfunc-
tion may, in part, arise when neural activity between cortical
regions hypersynchronize [63, 29]. Previous studies have iden-
tified discrete network states that describe shifts in global net-
work topology, such as magnitude of functional connectivity
[52, 12, 32]. However, these approaches are unable to pinpoint
specific functional connections that drive changes in brain state
across a seizure.

Building on prior work [17, 43, 44], in this study we dis-
entangle functional networks into additive subgraphs, patterns
of functional interactions between brain regions, that vary in

expression over time. Logically, different subgraphs may be si-
multaneously or sequentially expressed to meet functional de-
mand [4, 16, 11, 53, 13]. Our results demonstrate that the dy-
namic epileptic network expresses functional subgraphs that re-
cur during ictal and interictal epochs. It is intuitively plausi-
ble that the epileptic network is actually composed of a small
set of subgraphs that underlie normal function during interictal
epochs, but are co-opted to support seizure dynamics during ic-
tal epochs [56, 36, 50, 35, 32]. Such a theory is corroborated
by our finding that subgraphs of ictal epochs are more likely
to lie at the transition between clusters representing different
gross topological architecture and exhibit slower and more co-
ordinated dynamics than during interictal epochs.

Importantly, the geography of the subgraph projection space
points to a core-periphery organization [8] of ictal and interic-
tal subgraphs – in which more densely clustered interictal sub-
graphs form a core set of highly similar topologies and more
loosely clustered ictal subgraphs form a network periphery of
more variable topologies. The existence of core-periphery or-
ganization in dynamical brain networks related to language
[19, 14] and learning [6], supports the idea that temporally-
variable network architectures help navigate different cognitive
states. In the epileptic network, ictal subgraphs of the clus-
ter periphery may be more likely to facilitate dynamical transi-
tions between clusters of different subgraph topologies than in-
terictal subgraphs. Furthermore, our finding that subgraphs of
seizures with pronounced spatial spread (CP+GTC) lie closer to
their cluster periphery than focal seizures (CP) may contribute
to global properties of network topology that have been used
to predict seizure type in prior work [31]. Neurophysiologi-
cally, the epileptic network demonstrates a weakened regula-
tory, push-pull control in constraining CP+GTC seizures [31]
and might contribute to the ability of CP+GTC subgraphs to
more flexibly transition between subgraph clusters than CP sub-
graphs.

5.2. Predicting Seizure Origin in the Network

We observed that functional interactions specific to the
seizure-onset zone are highly predicted by the magnitude of
functional connectivity and cluster assignments of topolog-
ically similar, interictal subgraphs. Our results agree with
prior studies demonstrating increased network connectivity in
seizure onset regions during interictal epochs [65, 35]. Our
finding that topologically similar subgraphs form clusters over
the long data record suggests that the pattern of functional inter-
actions is critical to differentiate regions that drive seizure onset
from the surrounding network.

Importantly, our results demonstrate that the site of seizure
origin in the epileptic network exhibits dysfunction that recurs
transiently over long periods of time. Furthermore, our novel
subgraph clustering approach reliably pinpoints this target sev-
eral hours before seizures occur and reveals that the region is
overall more “silent” or dormant relative to more normal brain
networks. However, we witnessed that these dysfunctioned and
attenuated subgraphs can transiently disrupt functional interac-
tions underlying more normal and persistent brain processes.
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Figure 5: Expression Energy and Transience Differentiate Ictal and Interictal Epochs. (A) We computed subgraph expression energy – the overall activity of a
subgraph – and subgraph expression skew – the temporal transience or persistence of a subgraph’s activity. Shown here are four examples of subgraph expression
from a single patient – chosen by identifying subgraphs whose expression energy and expression skew were in the bottom and top third of all epochs – that
demonstrate high energy and transience (red), high energy and persistence (blue), low energy and persistence (yellow), and low energy and transience (green). (B)
Distribution of subgraph expression energy, averaged across interictal epochs of each cluster (ranked by SOZ sensitivity) for each patient (N = 22). For each cluster,
we compared the distribution of expression energy for subgraphs of that cluster to expression energy for subgraphs of all other clusters and found significantly lower
expression energy of subgraphs within cluster 1 – most sensitive to nodes in the SOZ – than outside cluster 1 (paired t-test; t21 = −3.21, p = 0.004; Bonferroni
corrected for multiple comparisons). (C) Distribution of subgraph expression skew, averaged across interictal epochs of clusters 1 and 6 for each patient (N = 22).
We observed subgraphs of cluster 1 – most sensitive to nodes in the SOZ – exhibited significantly greater skew, and therefore greater temporal transience, than
subgraphs of cluster 6 – most sensitive to nodes outside the SOZ (paired t-test; t21 = 2.12, p = 0.04). These findings suggest that subgraphs with strongly
connected SOZ nodes exhibit more transient, burst-like, dynamics than subgraphs with strongly connected non-SOZ nodes. (D) Power spectral density distribution
of ictal and interictal subgraph expression, averaged over patients (N = 22). We observed a significant difference between ictal and interictal subgraph expression –
ictal subgraphs modulate their expression at lower frequencies and interictal subgraphs modulate their expression at higher frequencies (Functional Data Analysis;
p < 3 × 10−5). These findings suggest that subgraph expression is more gradual and coordinated during ictal epochs than interictal epochs.

Line Data structure Type of test Power

a Normal paired t-test 1
b Normal paired t-test 0.21
c Normal paired t-test 0.57
d Normal paired t-test (Bonferroni corrected) 1
e Normal paired t-test (Bonferroni corrected) 0.99
f Normal paired t-test (Bonferroni corrected) 0.97
g Normal paired t-test (Bonferroni corrected) 0.85
h Normal paired t-test (Bonferroni corrected) 0.10
i Normal paired t-test (Bonferroni corrected) 0.10
j Normal paired t-test (Bonferroni corrected) 0.55
k Normal paired t-test 0.58
l Nonparametric Permutation test 1 × 106 permutes

Table 2: Statistical Table.
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Patient
(IEEG Portal)

Electrode
Sensors

(N)

Electrode Configuration Ictal
Epochs

(N)

Interictal
Epochs

(N)

Total
Epochs

(p)

Subgraphs per
Epoch (m̄)

Subgraph
Ensemble

Clusters ( j̄)

HUP64_phaseII 88 Grid: 8x8; Strip: 1x6 (4) 01 3228 3229 8 8
HUP65_phaseII 80 Grid: 8x8; Strip: 1x6 (3) 03 2986 2989 8 9
HUP68_phaseII 79 Grid: 8x8; Strip: 1x8 (2), 1x4 (2) 05 3020 3025 8 7
HUP70_phaseII 78 Grid: 8x8; Strip: 1x6, 1x4 (2) 08 1079 1087 7 8
HUP72_phaseII 62 Strip: 1x8 (3), 1x6 (5), 1x4 (2) 01 2439 2440 8 9
HUP73_phaseII 56 Strip: 1x8 (4), 1x6 (4) 05 1071 1076 8 7
HUP78_phaseII 100 Grid: 8x8; Strip: 1x6 (2), 1x4 (3);

Depth: 1x4 (3)
05 1719 1724 6 8

HUP79_phaseII 84 Grid: 6x8; Strip: 1x8, 1x6 (4), 1x4 01 1775 1776 8 8
HUP86_phaseII 118 Grid: 8x8; Strip: 1x6 (5), 1x4 (4);

Depth: 1x4 (2)
02 2612 2614 7 8

HUP87_phaseII 88 Grid: 8x8; Strip: 1x4 (3); Depth: 1x4
(3)

02 1201 1203 8 8

Study 004-2 64 Grid: 6x6; Strip: 1x4 (5); Depth: 1x4
(2)

01 638 639 8 7

Study 006 56 Grid: 6x8; Strip: 1x8 02 104 106 8 8
Study 010 56 Grid: 6x8; Strip: 1x4 (2) 02 526 528 8 10
Study 011 84 Grid: 6x8; Strip: 1x8 (2), 1x4 (5) 02 283 285 7 7
Study 016 64 Grid: 4x6 (2); Strip: 1x4 (4) 03 669 672 8 6
Study 019 80 Grid: 3x8, 6x6; Strip: 1x8 (2), 1x4 (3);

Depth: 1x4 (2)
15 403 418 7 8

Study 020 56 Grid: 4x4, 4x6; Strip: 1x4 (4) 04 412 416 8 9
Study 023 92 Grid: 8x8; Strip: 1x8, 1x4 (3); Depth:

1x4 (2)
04 208 212 8 8

Study 026 96 Grid: 8x8; Strip: 1x8 (3), 1x4 (2) 10 539 549 7 6
Study 031 116 Grid: 8x8, 4x6; Strip: 1x8 (2), 1x4 (3) 05 730 735 7 7
Study 033 124 Grid: 8x8, 3x8; Strip: 1x8 (3), 1x4 (3) 07 1321 1328 8 7
Study 037 80 Grid: 8x8; Strip: 1x8 (2) 02 1087 1089 8 9

Table 3: Subgraph Learning and Ensemble Clustering Table. Summary of number of ictal and interictal epochs, total number of
epochs, optimized number of subgraphs learned per epoch, and optimized number of subgraph ensemble clusters for each patient.

Prior work has shown that focal, left-sided epileptiform ac-
tivity is associated with decreased short-term verbal memory
and focal, right-sided epileptiform activity is associated with
decreased short-term memory in non-verbal or spatial tasks
[1, 26]. Further studies demonstrate that seizures originating in
the temporal lobe result in decreased cognitive performance on
tasks often associated with activation of frontal and prefrontal
lobe, such as performance IQ, verbal IQ, and word list learn-
ing [30], suggesting that cognitive functions are impacted over
long distances through network interactions. The approach we
developed can be used to study pressing questions regarding
secondary deficits caused by interactions between epileptic and
normal brain regions.

5.3. Methodological Limitations and Extensions
The first important clinical consideration related to this work

is the sampling error inherent in any intracranial implantation
procedure. Any of the techniques used to map epileptic brain
usually yield incomplete representations of the epileptic net-
work. As a consequence, the subgraphs we measured may rep-
resent just a portion of more distributed functional circuits that
extend further throughout the brain.

Secondly, our methods of predicting epileptic network archi-
tecture from interictal epochs relies on accurate delineation of
seizure-onset regions. Because of sampling error and variabil-
ity in clinical decision-making, the seizure-onset region may
be under- or over-sampled. However, the goodness-of-fit of
our statistical model in predicting seizure-onset regions based
on functional connectivity suggests that our model reasonably
agrees with a consensus definition of the seizure-onset zone
formed by a team of practicing neurologists.

5.4. Clinical Impact

Mapping architecture of the epileptic network presents sig-
nificant challenges for clinicians. In patients with neocortical
epilepsy, we showed that functional network topology is highly
similar between ictal and interictal epochs. These findings are
relevant for (i) optimizing treatment strategies to reduce dys-
function and preserve normal function, and (ii) reducing mor-
bidity and mortality associated with extended duration of in-
vasive intracranial electrode implantation, which according to
recent studies, may actually require months of outpatient in-
tracranial recording with implantable devices [34]. By predict-
ing seizure-onset regions from interictal epochs, clinical moni-
toring may be shortened, or potentially even conducted intraop-
eratively. In this setting, one might imagine epilepsy surgery or
device placement taking place in one procedure, relying on in-
terictal brain network mapping, delivered similarly to ablations
performed by cardiac electrophysiologists. Furthermore, our
finding that complex patterns of functional connectivity corre-
late with sources of dysfunction supports the use of novel in-
terventional strategies, such as laser ablation or implantable de-
vices, to affect functional circuits at finer spatial scales than is
currently possible with large resective surgery.

Acknowledgments

AK and BL acknowledge support from the National Insti-
tutes of Health through awards #R01-NS063039, #1U24 NS
63930-01A1, the Citizens United for Research in Epilepsy
(CURE) through Julie’s Hope Award, and the Mirowski Foun-
dation. DSB acknowledge support from the John D. and

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2016. ; https://doi.org/10.1101/090662doi: bioRxiv preprint 

https://doi.org/10.1101/090662
http://creativecommons.org/licenses/by-nd/4.0/


Catherine T. MacArthur Foundation, the Alfred P. Sloan Foun-
dation, the Army Research Laboratory and the Army Re-
search Office through contract numbers W911NF-10-2-0022
and W911NF-14-1-0679, the National Institute of Mental
Health (2-R01-DC-009209-11), the National Institute of Child
Health and Human Development (1R01HD086888-01), the Of-
fice of Naval Research, and the National Science Foundation
(BCS-1441502, BCS-1430087, and PHY-1554488). The con-
tent is solely the responsibility of the authors and does not nec-
essarily represent the official views of any of the funding agen-
cies.

References

[1] Aarts, J. H., Binnie, C. D., Smit, A. M., Wilkins, A. J., 1984. Selective
cognitive impairment during focal and generalized epileptiform EEG ac-
tivity. Brain 107 ( Pt 1, 293–308.

[2] Alarcon, G., Seoane, J. G., Binnie, C. D., Miguel, M. M., Juler, J.,
Polkey, C. E., Elwes, R. D., Blasco, J. O., 1997. Origin and propagation
of interictal discharges in the acute electrocorticogram. Implications for
pathophysiology and surgical treatment of temporal lobe epilepsy. Brain
120 (12), 2259–2282.

[3] Arbabshirani, M. R., Damaraju, E., Phlypo, R., Plis, S., Allen, E., Ma,
S., Mathalon, D., Preda, A., Vaidya, J. G., Adali, T., Calhoun, V. D., nov
2014. Impact of autocorrelation on functional connectivity. NeuroImage
102, 294–308.

[4] Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore,
E., 2006. Adaptive reconfiguration of fractal small-world human brain
functional networks. Proceedings of the National Academy of Sciences
103 (51), 19518–19523.

[5] Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., Lim, K. O.,
feb 2012. Altered resting state complexity in schizophrenia. NeuroImage
59 (3), 2196–2207.

[6] Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M.,
Mucha, P. J., 2013. Robust detection of dynamic community structure in
networks. Chaos (Woodbury, N.Y.) 23 (1), 013142.

[7] Borg, I., Groenen, P. J. F., 2nd, 2005. Modern multidimensional scaling:
Theory and applications. Springer Science & Business Media.

[8] Borgatti, S. P., Everett, M. G., 1999. Models of core/periphery structures.
Social Networks 21, 375–395.

[9] Brunet, J. P., Tamayo, P., Golub, T. R., Mesirov, J. P., 2004. Metagenes
and molecular pattern discovery using matrix factorization. Proc Natl
Acad Sci U S A 101 (12), 4164–4169.

[10] Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F.,
Carpenter, T. A., Brammer, M., 2001. Colored noise and computational
inference in neurophysiological (fMRI) time series analysis: resampling
methods in time and wavelet domains. Human Brain Mapping 12 (2), 61–
78.

[11] Bullmore, E., Sporns, O., apr 2012. The economy of brain network orga-
nization. Nature Reviews Neuroscience 13 (MAY), 336–349.

[12] Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C., Crone, N. E.,
nov 2014. Network dynamics of the brain and influence of the epileptic
seizure onset zone. Proceedings of the National Academy of Sciences of
the United States of America 111 (49), E5321–5330.

[13] Chai, L. R., Khambhati, A. N., Gur, R. C., Gur, R. E., Satterthwaite,
T. D., Bassett, D. S., 2016. Evolution of Brain Network Dynamics in
Neurodevelopment. Biomedical Engineering Society Meeting.

[14] Chai, L. R., Mattar, M. G., Blank, I. A., Fedorenko, E., Bassett, D. S.,
2016. Functional Network Dynamics of the Language System. Cerebral
Cortex (August), 112.

[15] Davis, K. A., Ung, H., Wulsin, D., Wagenaar, J., Fox, E., Patterson,
N., Vite, C., Worrell, G., Litt, B., 2015. Mining continuous intracranial
EEG in focal canine epilepsy: Relating interictal bursts to seizure onsets.
Epilepsia, 89–98.

[16] Deco, G., Jirsa, V. K., McIntosh, A. R., jan 2011. Emerging concepts for
the dynamical organization of resting-state activity in the brain. Nature
reviews. Neuroscience 12 (1), 43–56.

[17] Eavani, H., Satterthwaite, T. D., Gur, R. E. R. C. E., Gur, R. E. R. C. E.,
Davatzikos, C., 2013. Unsupervised learning of functional network dy-
namics in resting state fMRI. Inf Process Med Imaging 23, 426–437.

[18] Elger, C. E., Helmstaedter, C., Kurthen, M., 2004. Review Chronic
epilepsy and cognition. Neurology 3 (November), 663–672.

[19] Federenko, E., Thompson-Schill, S. L., 2014. Reworking the language
network. Trends in Cognitive Sciences 18 (3), 120–126.

[20] Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., Oom-
men, K., Osorio, I., Nazzaro, J., Labar, D., Kaplitt, M., Sperling, M., San-
dok, E., Neal, J., Handforth, A., Stern, J., DeSalles, A., Chung, S., Shetter,
A., Bergen, D., Bakay, R., Henderson, J., French, J., Baltuch, G., Rosen-
feld, W., Youkilis, A., Marks, W., Garcia, P., Barbaro, N., Fountain, N.,
Bazil, C., Goodman, R., McKhann, G., Krishnamurthy, K. B., Papavassil-
iou, S., Epstein, C., Pollard, J., Tonder, L., Grebin, J., Coffey, R., Graves,
N., Dichter, M., Elias, W., Francel, P., Frysinger, R., Graber, K., Grant,
J., Heit, G., Herman, S., Kandula, P., Kanner, A., King, J. A., Koby-
larz, E., Lapp, K., LaRoche, S., Lippmann, S., Maganti, R., Mapstone,
T., Sabau, D., Schrader, L., Sharan, A., Smith, M., Treiman, D., Wilkin-
son, S., Wong, S., Zangaladze, A., Adderley, S., Bridges, B., Callanan,
M., Cordero, D., Fields, C., Johnson, M., Kavalir, M., Kretschmar, P.,
Macpherson, C., Mancl, K., Manley, M., Marsh, S., Montgomery, J.,
Mundt, P., Nekkalapu, P. P., Nikolov, B., Palmer, B., Perdue, L., Randall,
A., Smith, D., Smith, L., Strybing, K., Stott, L., Taylor, R., Thompson, S.,
Timenova, Z., Vogelsong, B., Balbona, V., Broshek, D., Cahn-Weiner, D.,
Clift, L., Davidson, M., Drake, E., Frutiger, S., Featherstone, L., Grote,
C., Han, D., Henry, D., Horsfall, J., Hovick, A., Gray, J., Kareken, D.,
Kirlin, K., Livingood, D., Meyer, M., Minniti, N., Strupinsky, J. M.,
Schultz, W., Scott, J., Tracy, J., Waltonen, S., Ziefert, P., Van Amburg,
C., Burdelle, M., Clements, S., Cox, R., Dolin, R., Fulk, M., Kaur, H. R.,
Hirsch, L., Hoeppner, T., Hurt, A., Komosa, M., Krahl, S., Ponticello, L.,
Quigg, M., Quinn, H., Rossi, M., Schaefer, P., Skidmore, C., Sundstrom,
D., Trudeau, P., Volz, M., Wang, N., Will, L., Young, C., 2010. Electrical
stimulation of the anterior nucleus of thalamus for treatment of refractory
epilepsy. Epilepsia 51 (5), 899–908.

[21] French, J. A., mar 2007. Refractory epilepsy: Clinical overview. Epilep-
sia 48 (SUPPL. 1), 3–7.

[22] Friston, K. J. K., jan 2011. Functional and effective connectivity: a review.
Brain Connectivity 1 (1), 13–36.

[23] Geier, C., Bialonski, S., Elger, C. E., Lehnertz, K., feb 2015. How impor-
tant is the seizure onset zone for seizure dynamics? Seizure 25, 160–6.

[24] Greene, D., 2009. A Matrix Factorization Approach for Integrating Mul-
tiple Data Views. In: Heidelberg, S. B. (Ed.), Joint European Conference
on Machine Learning and Knowledge Discovery in Databases.

[25] Greene, D., Cagney, G., Krogan, N., Cunningham, P., 2008. Ensemble
non-negative matrix factorization methods for clustering protein-protein
interactions. Bioinformatics 24 (15), 1722–1728.

[26] Holmes, G. L., Lenck-Santini, P. P., 2006. Role of interictal epileptiform
abnormalities in cognitive impairment. Epilepsy and Behavior 8 (3), 504–
515.

[27] Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Cal-
houn, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H.,
Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V.,
Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., Chang, C., oct
2013. Dynamic functional connectivity: Promise, issues, and interpreta-
tions. NeuroImage 80, 360–378.

[28] Jerger, K. K., Weinstein, S. L., Sauer, T., Schiff, S. J., mar 2005.
Multivariate linear discrimination of seizures. Clinical Neurophysiology
116 (3), 545–551.

[29] Jiruska, P., de Curtis, M., Jefferys, J. G. R., Schevon, C. A., Schiff,
S. J., Schindler, K., nov 2013. Synchronization and desynchronization
in epilepsy: controversies and hypotheses. The Journal of physiology
591 (Pt 4), 787–97.

[30] Jokeit, H., Seitz, R. J., Markowitsch, H. J., Neumann, N., Witte,
O. W., Ebner, A., 1997. Prefrontal asymmetric interictal glucose hy-
pometabolism and cognitive impairment in patients with temporal lobe
epilepsy. Brain 120 (12), 2283–2294.

[31] Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B., Bassett, D. S.,
2016. Virtual Cortical Resection Reveals Push-Pull Network Control Pre-
ceding Seizure Evolution. Neuron 91 (5), 1170–1182.

[32] Khambhati, A. N., Davis, K. A., Oommen, B. S., Chen, S. H., Lucas,
T. H., Litt, B., Bassett, D. S., dec 2015. Dynamic Network Drivers of

14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2016. ; https://doi.org/10.1101/090662doi: bioRxiv preprint 

https://doi.org/10.1101/090662
http://creativecommons.org/licenses/by-nd/4.0/


Seizure Generation, Propagation and Termination in Human Neocortical
Epilepsy. PLOS Computational Biology 11 (12), e1004608.

[33] Kim, J., Park, H., 2011. Fast Nonnegative Matrix Factorization: An
Active-Set-Like Method and Comparisons. SIAM Journal on Scientific
Computing 33 (6), 3261–3281.

[34] King-Stephens, D., Mirro, E., Weber, P. B., Laxer, K. D., Van Ness,
P. C., Salanova, V., Spencer, D. C., Heck, C. N., Goldman, A., Jobst,
B., Shields, D. C., Bergey, G. K., Eisenschenk, S., Worrell, G. A., Rossi,
M. A., Gross, R. E., Cole, A. J., Sperling, M. R., Nair, D. R., Gwinn,
R. P., Park, Y. D., Rutecki, P. A., Fountain, N. B., Wharen, R. E., Hirsch,
L. J., Miller, I. O., Barkley, G. L., Edwards, J. C., Geller, E. B., Berg,
M. J., Sadler, T. L., Sun, F. T., Morrell, M. J., 2015. Lateralization of
mesial temporal lobe epilepsy with chronic ambulatory electrocorticogra-
phy. Epilepsia 56 (6), 959–967.

[35] Korzeniewska, A., Cervenka, M. C., Jouny, C. C., Perilla, J. R., Harezlak,
J., Bergey, G. K., Franaszczuk, P. J., Crone, N. E., nov 2014. Ictal propa-
gation of high frequency activity is recapitulated in interictal recordings:
Effective connectivity of epileptogenic networks recorded with intracra-
nial EEG. NeuroImage 101, 96–113.

[36] Kramer, M. A., Cash, S. S., aug 2012. Epilepsy as a Disorder of Cortical
Network Organization. The Neuroscientist 18 (4), 360–372.

[37] Kramer, M. A., Eden, U. T., Kolaczyk, E. D., Zepeda, R., Eskandar, E. N.,
Cash, S. S., jul 2010. Coalescence and fragmentation of cortical networks
during focal seizures. The Journal of neuroscience : the official journal of
the Society for Neuroscience 30 (30), 10076–10085.

[38] Kramer, M. A., Eden, U. T., Lepage, K. Q., Kolaczyk, E. D., Bianchi,
M. T., Cash, S. S., nov 2011. Emergence of Persistent Networks in Long-
Term Intracranial EEG Recordings. Journal of Neuroscience 31 (44),
15757–15767.

[39] Kutsy, R. L., Farrell, D. F., Ojemann, G. A., 1999. Ictal patterns of neo-
cortical seizures monitored with intracranial electrodes: correlation with
surgical outcome. Epilepsia 40 (3), 257–266.

[40] Kwan, P., Brodie, M. J., 2001. Neuropsychological effects of epilepsy and
antiepileptic drugs. Lancet 357 (9251), 216–222.

[41] Lai, Y., Van Drongelen, W., Hecox, K., Frim, D., Kohrman, M., He,
B., feb 2007. Cortical activation mapping of epileptiform activity derived
from interictal ECoG spikes. Epilepsia 48 (2), 305–314.

[42] Lee, D. D., Seung, H. S., Seung, S., 1999. Learning the parts of objects
by non-negative matrix factorization. Nature 401 (6755), 788–91.

[43] Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M.,
Schluep, M., Vuilleumier, P., Ville, D. V. D., dec 2013. Principal compo-
nents of functional connectivity : A new approach to study dynamic brain
connectivity during rest. NeuroImage 83, 937–950.

[44] Leonardi, N., Shirer, W. R., Greicius, M. D., Van De Ville, D., jul
2014. Disentangling dynamic networks: Separated and joint expressions
of functional connectivity patterns in time. Human Brain Mapping 5995,
5984–5995.

[45] Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T.,
Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G., 2001.
Epileptic seizures may begin hours in advance of clinical onset: A report
of five patients. Neuron 30 (1), 51–64.

[46] Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W.-L., Nichols, T. E., jan
2006. Non-white noise in fMRI: does modelling have an impact? Neu-
roImage 29 (1), 54–66.

[47] Medvid, R., Ruiz, A., Komotar, R. J., Jagid, J. R., Ivan, M. E., Quencer,
R. M., Desai, M. B., 2015. Current Applications of MRI-Guided Laser
Interstitial Thermal Therapy in the Treatment of Brain Neoplasms and
Epilepsy: A Radiologic and Neurosurgical Overview. American Journal
of Neuroradiology.

[48] Monti, S., Tamayo, P., Mesirov, J., Golub, T., Sebastiani, P., Kohane,
I. S., Ramoni, M. F., 2003. Consensus Clustering: A Resampling-Based
Method for Class Discovery and Visualization of Gene Expression Mi-
croarray Data. Machine Learning 52 (1-2), 91–118.

[49] Morrell, M. J., 2011. Responsive cortical stimulation for the treatment of
medically intractable partial epilepsy. Neurology 77 (13), 1295–1304.

[50] Petkov, G., Goodfellow, M., Richardson, M. P., Terry, J. R., 2014. A criti-
cal role for network structure in seizure onset: A computational modeling
approach. Frontiers in Neurology 5 (DEC), 1–7.

[51] Ramsay, J., Silverman, B. W., 2005. Functional Data Analysis, 2nd Edi-
tion. Springer-Verlag New York.

[52] Rummel, C., Goodfellow, M., Gast, H., Hauf, M., Amor, F., Stibal, A.,

Mariani, L., Wiest, R., Schindler, K., apr 2013. A systems-level approach
to human epileptic seizures. Neuroinformatics 11 (2), 159–73.

[53] Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., Rossi, S., feb
2014. Efficiency of weak brain connections support general cognitive
functioning. Human Brain Mapping 35 (9), 4566–4582.

[54] Schevon, C. A., Cappell, J., Emerson, R., Isler, J., Grieve, P., Goodman,
R., Mckhann, G., Weiner, H., Doyle, W., Kuzniecky, R., Devinsky, O.,
Gilliam, F., 2007. Cortical abnormalities in epilepsy revealed by local
EEG synchrony. NeuroImage 35 (1), 140–148.

[55] Schevon, C. A., Trevelyan, A. J., Schroeder, C. E., Goodman, R. R.,
McKhann, G., Emerson, R. G., nov 2009. Spatial characterization of in-
terictal high frequency oscillations in epileptic neocortex. Brain 132 (11),
3047–3059.

[56] Schevon, C. A., Weiss, S. A., McKhann, G., Goodman, R. R., Yuste, R.,
Emerson, R. G., Trevelyan, A. J., 2012. Evidence of an inhibitory restraint
of seizure activity in humans. Nature Communications 3, 1060.

[57] Schindler, K., Leung, H., Elger, C. E., Lehnertz, K., nov 2007. Assessing
seizure dynamics by analysing the correlation structure of multichannel
intracranial EEG. Brain 130 (1), 65–77.

[58] Schindler, K. A., Bialonski, S., Horstmann, M.-T., Elger, C. E., Lehnertz,
K., 2008. Evolving functional network properties and synchronizability
during human epileptic seizures. Chaos (Woodbury, N.Y.) 18 (3), 033119.

[59] Siegel, A. M., Jobst, B. C., Thadani, V. M., Rhodes, C. H., Lewis,
P. J., Roberts, D. W., Williamson, P. D., 2001. Medically intractable,
localization-related epilepsy with normal MRI: presurgical evaluation and
surgical outcome in 43 patients. Epilepsia 42 (7), 883–8.

[60] Stacey, W. C., Litt, B., 2008. Technology insight: neuroengineering and
epilepsy-designing devices for seizure control. Nature clinical practice.
Neurology 4 (4), 190–201.

[61] Tovar-Spinoza, Z., Carter, D., Ferrone, D., Eksioglu, Y., Huckins, S.,
2013. The use of MRI-guided laser-induced thermal ablation for epilepsy.
Child’s Nervous System 29 (11), 2089–2094.

[62] Towle, V. L., Carder, R. K., Khorasani, L., Lindberg, D., 1999. Electro-
corticographic coherence patterns.

[63] Uhlhaas, P. J., Singer, W., oct 2006. Neural Synchrony in Brain Disor-
ders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neu-
ron 52 (1), 155–168.

[64] Wagenaar, J. B., Brinkmann, B. H., Ives, Z., Worrell, A., Litt, B., Mem-
ber, S., 2013. A Multimodal Platform for Cloud - based Collaborative
Research. In: 6th Annual International IEEE EMBS Conference on Neu-
ral Engineering. IEEE, pp. 6–8.

[65] Warren, C. P., Hu, S., Stead, M., Brinkmann, B. H., Bower, M. R., Wor-
rell, G. A., dec 2010. Synchrony in normal and focal epileptic brain: the
seizure onset zone is functionally disconnected. Journal of neurophysiol-
ogy 104 (6), 3530–3539.

[66] Weiss, S. A., Banks, G. P., McKhann, G. M., Goodman, R. R., Emerson,
R. G., Trevelyan, A. J., Schevon, C. A., 2013. Ictal high frequency os-
cillations distinguish two types of seizure territories in humans. Brain : a
journal of neurology 136 (Pt 12), 3796–808.

[67] Wendling, F., Bartolomei, F., Bellanger, J. J., Bourien, J., Chauvel, P.,
2003. Epileptic fast intracerebral EEG activity: Evidence for spatial
decorrelation at seizure onset. Brain 126 (6), 1449–1459.

[68] Wilke, C., van Drongelen, W., Kohrman, M., He, B., van Drongelen, W.,
Kohrman, M., He, B., aug 2009. Identification of epileptogenic foci from
causal analysis of ECoG interictal spike activity. Clinical neurophysiol-
ogy : official journal of the International Federation of Clinical Neuro-
physiology 120 (8), 1449–56.

[69] Wu, J. Y., Sankar, R., Lerner, J. T., Matsumoto, J. H., Vinters, H. V., Math-
ern, G. W., 2010. Removing interictal fast ripples on electrocorticography
linked with seizure freedom in children. Neurology 75 (19), 1686–1694.

[70] Zaveri, H. P., Pincus, S. M., Goncharova, I. I., Duckrow, R. B., Spencer,
D. D., Spencer, S. S., jun 2009. Localization-related epilepsy exhibits
significant connectivity away from the seizure-onset area. Neuroreport
20 (9), 891–895.

15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2016. ; https://doi.org/10.1101/090662doi: bioRxiv preprint 

https://doi.org/10.1101/090662
http://creativecommons.org/licenses/by-nd/4.0/

