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Abstract  
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, 

such that participants preferentially take into account positive, as compared to negative, prediction 

errors. However, whether or not the prediction error valence also affects counterfactual learning, that 

is, learning from forgone outcomes, is unknown. To address this question, we analysed the 

performance of two cohorts of participants on reinforcement learning tasks using a computational 

model that was adapted to test if prediction error valance influences learning. Concerning factual 

learning, we replicated previous findings of a valence-induced bias, whereby participants learned 

preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual 

learning, we found the opposite valence-induced bias: negative prediction errors were preferentially 

taken into account relative to positive ones. When considering valence-induced bias in the context of 

both factual and counterfactual learning, it appears that people tend to preferentially take into account 

information that confirms their current choice 
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Introduction  

 

Goal-directed behaviour is composed of two core components(1): one component is the decision-

making process that starts from representing the available options and terminates in selecting the 

option with the highest expected value; the second component is reinforcement learning (RL), through 

which outcomes are used to refine value expectations in order to improve decision-making. Human 

decision-making has been shown to be subject to biases (i.e. deviations from the normative 

prescriptions), such as the framing effect(2). Whereas the investigation of decision-making biases has 

a long history in economics and psychology, learning biases have been much less systematically 

investigated(3). This is surprising as most of the decisions we deal with in everyday life are 

experience-based and choice contexts are often recurrent, thus allowing learning to occur and 

influence decision-making. In addition, it is important to investigate learning biases as RL processes 

might play an important role in psychiatric pathogenesis and economic maladaptive behaviour(4, 5).  

 

Standard RL algorithms learn action-outcome associations directly from obtained outcomes on a trial 

and error basis(6). We refer to this direct form of learning as “factual learning”. Despite the fact that 

standard models, built around the notion of computational and statistical optimality, prescribe that an 

agent should learn equally well from positive and negative obtained outcomes (7–9), previous studies 

have consistently shown that humans display a significant valence-induced bias. The bias generally 

goes in the direction of preferential learning from positive, compared to negative outcome prediction 

errors(10–14). This asymmetry in the effects of valence on RL could represent a “low-level” 

counterpart of the “good news/bad news” effect observed for “high-level” real life prospects, which has 

been suggested to contribute to maintaining an optimism bias(15).  

 

However, human RL cannot be reduced simply to learning from obtained outcomes. Other sources of 

information can be successfully integrated in order to improve performance and RL has a multi-

modular structure(16). Amongst the computational modules that have been demonstrated in humans 

is counterfactual learning. Counterfactual learning refers to the ability to learn from forgone outcomes 

(i.e. the outcomes of the option(s) that were not chosen)(17, 18). So far, whether or not a similar 

valance-induced bias also affects counterfactual remains unknown.  

 

To address this question, we ran two experiments implicating instrumental learning and computational 

model-based analyses. Two cohorts of healthy volunteers performed variants of a repeated two-armed 

bandit task involving probabilistic outcomes(19, 20) (Figure 1A and 1B). We analysed the data using 

a modified version Rescorla-Wagner model that assumes different learning rates for positive and 

negative, factual and counterfactual, prediction errors (Figure 1C)(21, 22). 

 

The first experiment aimed to replicate previous findings of a “positive valence bias” at the level of 

factual learning. In this first experiment, participants were presented only with the obtained outcome 

(chosen outcome: RC; Figure 1A)(10). In the second experiment, in order to investigate whether or not 
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counterfactual learning rates are also affected by the valence of prediction errors, we used a variant of 

the same instrumental learning task, in which participants were also presented with the forgone 

outcome (unchosen outcome: RU; Figure 1B). Our design allowed us to test competing hypotheses 

concerning the effect of valence on counterfactual learning (Figure 2A). A first hypothesis was that, as 

opposed to factual learning, counterfactual learning would be unbiased. The second hypothesis was 

that factual and counterfactual learning would present the same valence-induced bias, such that 

positive counterfactual prediction errors were more likely to be taken into account than negative 

counterfactual prediction errors. In this scenario the factual and counterfactual learning biases would 

be consequences of a more general “positive valence” bias, in which positive prediction errors have a 

greater impact on learning, regardless of whether the option was chosen or not. Finally, the third 

hypothesis was that valence would affect factual and counterfactual learning in opposing directions, 

such that negative unchosen prediction errors are more likely to be taken into account than positive 

unchosen prediction errors. In this last scenario the factual and counterfactual learning biases would 

be consequences of a more general “confirmation bias”, in which outcomes that support the current 

choice, are preferentially taken into account.  

 

Learning rate analysis, as a function of both outcome valence (positive and negative) and outcome 

type (factual and counterfactual), as well as model comparison results, were consistent with this last 

hypothesis. Behavioural analysis showed that the factual and counterfactual learning biases might be 

maladaptive, especially in situations involving changes in reward contingencies.   
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Results 

Behavioural task and full computational model  

To investigate both factual and counterfactual reinforcement learning biases we designed an 

instrumental task based on a previous design, in which we showed a significant optimistic bias in 

factual learning(10). The two experiments were different in that the task used in Experiment 1 (N=20) 

involved participants being shown only the outcome of their chosen option (Figure 1A), whereas in 

Experiment 2 (N=20) the outcome of the unchosen option was also displayed (Figure 1B). To test our 

hypotheses concerning valence-induced learning biases (Figure 2A) we fitted the data with a 

Rescorla-Wagner model assuming different learning rates for positive and negative outcomes, which 

respectively elicit positive and negative prediction errors (Figure 1C). The algorithm used to explain 

Experiment 1 data involved two learning rates for obtained outcomes  (𝛼!!and 𝛼!!- for positive and 

negative prediction errors of the obtained outcomes, respectively); in addition to the obtained 

outcomes learning rates, the algorithm used to explain Experiment 2 data also involved two learning 

rates for forgone outcomes (𝛼!! and 𝛼!!  for positive and negative prediction errors of the forgone 

outcomes, respectively). 

 

Learning rate analysis  

Replicating previous findings, in Experiment 1 we found that the positive factual learning rate (αC+) 

was significantly higher than the negative one (αC-; T(19)=2.4; P=0.03) (Figure 2B, left). Regarding 

Experiment 2, we submitted learning rates to a repeated-measure ANOVA with prediction error 

valence (positive or negative) and prediction error type (factual or counterfactual) as within-subjects 

factors. Falsifying the “positive valence bias” hypothesis the ANOVA revealed no main effect of 

prediction error valence (F(1,19)=0.5; P>0.4). We also did not find any effect of outcome type, 

indicating that, on average, factual and counterfactual learning were similar (F(1,19)=0.2; P>0.6). 

Consistent with the “confirmation bias” hypothesis we found a significant interaction between valence 

and type (F(1,19)=119.2; P=1.3e-9). Post-hoc tests indicated that the interaction was driven by effects 

of valence on both factual (αC+>αC-; T(19)=6.2; P=6.9e-6) and counterfactual learning rates (αU->αU+; 

T(19)=5.7; P=0.0002) (Figure 2B right). 

 

To verify the robustness of this result in the context of different reward contingencies, we analysed 

learning rates in each task condition separately (Figure S1A). We submitted Experiment 1 factual 

learning rates to a repeated-measure ANOVA with prediction error valence (positive and negative) and 

task condition as within-subjects factors (Figure S1B). Confirming the aggregate result, the ANOVA 

showed a significant main effect of valence (F(1,19)=26.4, P=5.8e-5), but no effect of condition 

(F(2,38)=0.7, P>0.5) and, crucially, no valence by condition interaction (F(2,38)=0.8, P>0.4). We 

submitted Experiment 2 factual and counterfactual learning rates to a repeated-measure ANOVA with 

prediction error valence (positive and negative), prediction error type (factual or counterfactual) and 

condition (Symmetric, Asymmetric and Reversal) as within-subjects factors (Figure S1C).  Confirming 

the aggregate result, the ANOVA showed no effect of valence (F(1,19)=0.0, P>0.9), no effect of type 

(F(1,19)=0.3, P>0.5), but a significant valence by type interaction (F(1,19)=162.9, P=9.1e-11). We also 
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found an effect of condition (F(2,38)=5.1, P=0.01), reflecting lower average learning rates in the 

Reversal compared to the Asymmetric condition (T(19)=2.99; P=0.007), which was not modulated by 

valence (F(2,38)=0.2, P>0.7), or type (F(2,38)=1.2, P>0.3). Crucially, the three-way interaction was 

not significant (F(2,38)=1.8, P>.1). These results indicate that learning biases were robust across 

different task contingencies. 

 

Dimensionality reduction with model comparison 

To further test our hypotheses and verify its parsimony, we ran a model comparison analysis including 

the ‘Full’ model (i.e., the model with four learning rates; Figure 1C) and reduced versions of it (Figure 

3A). The first alternative model was obtained by reducing the number of learning rates along the 

dimension of the outcome type (factional or counterfactual). This ‘Information’ model has only two 

learning rates: one for the obtained outcomes (αC) and another for the forgone outcomes (αU). The 

second alternative model was obtained by reducing the number of learning rates along the dimension 

of the outcome valence (positive or negative). This ‘Valence’ model has only two learning rates (one 

for the positive outcomes (α+) and another for the negative outcomes (α-)) and should win according to 

the “positive valence bias” hypothesis. Finally, the third alternative model was obtained by reducing 

the learning rate as a function of the outcome event being confirmatory (positive obtained or negative 

forgone) or disconfirmatory (negative obtained and positive forgone). This ‘Confirmation’ model has 

only two learning rates (one for confirmatory outcomes (αCON) and another for the disconfirmatory 

outcomes (αDIS)) and should win according to the “confirmation bias” hypothesis. 

 

BIC analysis indicated that the ‘Full’ model better accounted for the data compared to both the 

‘Information’ and the ‘Valence’ models (both comparisons: T(19)>4.2; P<0.0005; Table 1). However 

the ‘Confirmation’ model better accounted for the data compared to the ‘Full’ model (T(19)=9.9; 

P=6.4e-9). The posterior probability of the ‘Confirmation’ model was higher compared to the chance 

(.0.25 for a model space including 4 models; T(19)=13.5; P=	
  3.3e-11) and compared to that of all the 

other models (all comparison: T(19)>9.0; P<2.1e-8) and the learning rate for confirmative outcomes  

was significantly higher compared that for disconfirmatory events (αCON>αDIS; T(19)=11.7; P=3.9e-10) 

(Figure 3B and Figure 3C). These results support the “confirmation bias” hypothesis and further 

indicate that, at least at the behavioural level, chosen and unchosen outcomes may be processed by 

the same learning systems.  

 

Behavioural signatures of learning biases 
To investigate the behavioural consequences of the learning biases we median-split all participants 

according their normalised learning rate differences. We reasoned that the effects of learning biases 

on behavioural performance could be highlighted comparing participants who differed in the extent 

they expressed the bias itself. Experiment 1 participants were split according to their normalised 

factual learning rate bias: (𝛼!! - 𝛼!!)/(𝛼!! + 𝛼!!), from which we obtained a high (0.76±0.05) and a low 

bias (0.11±0.14) group. Experiment 2 participants were split according their normalised confirmation 
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learning rate bias: [(𝛼!! - 𝛼!!) - (𝛼!! + 𝛼!!)]/(𝛼!! + 𝛼!! + 𝛼!! + 𝛼!!), from which we also obtained a high 

(0.72±0.04) and a low bias (0.36±0.04) group.  

 

In both experiments, our task included three different conditions (Figure S1A): a “Symmetric” 

condition, in which both options were associated with a 50% chance of getting a reward; an 

“Asymmetric” condition, in which one option was associated with a 75% chance of getting a reward, 

whereas the other option was associated with only a 25% chance; a “Reversal” condition, in which one 

option was initially associated with a 83% chance of getting a reward and the other option was 

associated with a 17% chance of getting a reward,  but after 12 trials the contingency reversed. From 

the Symmetric condition we extracted preferred choice rate as a dependent variable, which was the 

choice rate of the most frequently chosen option (i.e. the option/symbol that was chosen more than 

>50%). We submitted the preferred choice rate to an ANOVA with experiment (1 or 2) and bias level 

(high and low) as between-subjects factors. The ANOVA showed a significant main effect of bias level 

(F(1,36)=8.8, P=0.006). There was no significant main effect of experiment (F(1,36)=0.6, P>0.6) and 

no significant interaction between experiment and bias level (F(1,36)=0.3, P>0.5). The main effect of 

bias level was driven by higher preferred choice rate in the high, compared to the low bias group in 

both Experiment 1 (T(18)=1.8 P=0.08) and Experiment 2 (T(18)=2.3 P=0.03). This result suggests that 

higher biases were associated with an increased tendency to develop a preferred choice, even in the 

absence of a “correct” option, which naturally emerges from overweighting positive outcomes(10).  

 

From the remaining conditions we extracted the correct choice rate, which was the choice rate of the 

most frequently rewarded option. In the Reversal condition, correct choice rate was split across the 

first (i.e., before the reversal of the contingencies) and second half (i.e., after the reversal of the 

contingencies) of the trial. We submitted the correct choice rate to a mixed ANOVA with experiment (1 

or 2) and Bias Group (high and low) as between-subjects factors, and condition (Asymmetric, 

Reversal: first half, and Reversal: second half) as a within-subjects factor. We found a main effect of 

experiment (F(1,36)=4.1, P=0.05), indicating that correct choice rate was higher in Experiment 2 than 

Experiment 1, which is consistent with previous studies showing that counterfactual feedback 

enhances learning(20, 23). We also found a significant effect of bias level (F(1,36)=10.8, P=0.002), a 

significant effect of condition (F(2,72)=99.5, P=2.0e-16), and a significant bias level by condition 

interaction (F(2,72)=9.6, P=0.0002). Indeed, in both experiments, the correct choice rate in the second 

half of the Reversal condition was lower in the high bias compared to the low bias group (Experiment 

1: T(18)=3.9 P=0.0003; Experiment 2: T(18)=2.5 P=0.02). This result derives from the fact that in the 

first half of the Reversal condition learning is primarily driven by positive factual prediction errors (and 

negative counterfactual prediction errors, where applicable), whereas in the second half of the 

Reversal condition correct performance depends on un-learning previous associations, based on 

negative factual prediction errors (and positive counterfactual prediction errors, in Experiment 2).  
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Discussion  

Two cohorts of healthy adult participants performed two variants of an instrumental learning task, 

involving factual (Experiment 1) and counterfactual (Experiments 1 & 2) reinforcement learning. We 

found that prediction error valence biased factual and counterfactual learning in opposite directions. 

When learning from obtained outcomes (factual learning), the learning rate for positive prediction 

errors was higher than the learning rate for negative prediction errors. When learning from forgone 

outcomes (counterfactual learning), the learning rate for positive prediction errors was lower than that 

of negative prediction errors. This result proved stable across different reward contingency conditions 

and was further supported by model comparison indicating that the most parsimonious model was a 

model with different learning rates for confirmatory and disconfirmatory events, regardless of outcome 

type (factual or counterfactual) and valence (positive or negative). Finally, model-free analysis showed 

that participants with a higher valence-induced learning bias displayed poorer learning performance, 

specifically when it was necessary to adjust their behaviour in response to a reversal of reward 

contingencies. 

 

Our results demonstrating a factual learning bias replicate previous findings showing that in simple 

instrumental learning tasks, participants preferentially learn from positive compared to negative 

prediction errors(11–13). However, in contrast to previous studies in which this learning bias had no 

negative impact on behavioural performance (i.e., correct choice rate and therefore final payoff), here 

we demonstrated that this learning bias is still present in situations where it has a negative impact on 

performance. In fact, whereas low and high bias participants performed equally well in conditions with 

stable reward contingencies, in conditions with unstable reward contingencies we found that high bias 

participants showed a relatively reduced correct choice rate. In the Reversal condition, learning to 

successfully reverse the response in the second half of the trials is mainly driven by negative factual 

(and positive counterfactual) prediction errors, however participants displaying higher biases 

presented a lower correct choice rate, specifically in the second half of the “Reversal” condition.  

 

In addition to reduced reversal learning, and in accordance with a previous study(10), another 

behavioural feature that distinguished higher and lower bias participants was the preferred response 

rate in the Symmetric condition. In the Symmetric condition, both cues had the same reward 

probabilities (50%), such that there was no intrinsic “correct” response, allowing us to calculate  a 

“preferred” response rate for each participant (defined as the choice rate of the option most frequently 

selected by a given participant, i.e. the option selected in > 50% of trials). The preferred response rate 

can therefore be taken as a measure of the tendency to overestimate the value of one cue compared 

to the other, in the absence of actual outcome-based, factual evidence. In both experiments, higher 

bias participants showed higher preferred response rates, a behavioural pattern that is consistent with 

an increased tendency to discount negative factual (and positive counterfactual) prediction errors, 

which can result in one considering a previously rewarded chosen option as better than it really is and 

an increased preference for this choice. 
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Previous studies have so far been unable to distinguish whether this valence-induced factual learning 

bias was a valuation or a confirmation bias. In other words, do participants preferentially learn from 

positive prediction errors because they are positively valenced or because the outcome “confirms” the 

choice they have just made? To address this question we designed Experiment 2, where, by the 

inclusion of counterfactual feedback, we were able to separate the influence of valence (positive vs. 

negative) from the influence of choice (chosen vs. unchosen). Crucially, whereas the two competing 

hypotheses (“valuation” vs. “confirmation”) predict the same result concerning factual leaning rates, 

they predict opposite effects of valence on counterfactual learning rates. The results from Experiment 

2 support the “confirmation” bias hypothesis: participants preferentially took into account the 

outcomes that “confirmed” their current behavioural policy (positive chosen and negative unchosen 

outcomes) and discounted the outcomes that contradicted it (negative chosen and positive unchosen 

outcomes). Our results therefore support the idea that confirmation biases are pervasive in human 

cognition(24).  

 

It should be noted that, from an orthodox Bayesian perspective, a “confirmation bias” would involve 

reinforcing one's own initial beliefs or preferences. Previous studies have investigated how prior 

information — in the form of explicit task instructions or advice — influences the learning of 

reinforcement statistics and have provided evidence of a confirmation bias(25–27). However, 

consistent with our study, their computational and neural results suggest that this instruction-induced 

confirmation bias operates at the level of outcome processing and not at the level of initial 

preferences nor at the level of the decision-making process(28, 29). Here, we take a slightly different 

perspective by extending the notion of confirmation to the implicit reinforcement of one's own current 

choice, independently from explicit prior information, by preferentially learning from desirable 

outcomes.  

 

We performed our learning rate analysis separately for each task condition and the results proved 

robust and not driven by any particular reward contingency condition.  While our results contrast with 

previous studies that have found learning rates adapted as a function of task contingencies, showing 

increases when task contingencies were unstable(30, 31), several differences between these tasks 

and ours may explain this discrepancy. First, in previous studies the stable and unstable phases were 

clearly separated, whereas in our design participants were simultaneously tested with the three reward 

contingency conditions. Second, in our experiments we did not explicitly tell participants to monitor the 

stability of the reward contingency. Finally, since in our task the Reversal condition represented only 

fourth quarter of the trials, participants may not have explicitly realized that changing learning rates 

were adaptive in some cases.  

 

To date, two different views of counterfactual learning have been proposed in the literature.  In one 

view, factual and counterfactual learning are underpinned by different systems that could be 

computationally and anatomically mapped into subcortical - model-free - and prefrontal - model-based 

- modules(17, 18, 32). In another view, factual and counterfactual outcomes are proposed to be 
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processed by the same learning system, involving the dopaminergic nuclei and their projections(33–

35). Our dimensionality reduction model comparison result sheds new light on this debate. According 

to the first view that factual and counterfactual learning are based on different systems, different 

learning rates for positive and negative prediction errors would have better accounted the data (the 

‘Information’ model). On the contrary, the winning model assumes the learning process is different 

across desirable and undesirable outcomes but shared across obtained and forgone outcomes (the 

‘Confirmation’ model), which supports the view that factual and counterfactual learning are different 

facets of the same system.  

 

Why do these learning biases have an overall maladaptive value? One possibility is that these 

learning biases are maladaptive, but they arise from neurobiological constraints, which limit human 

learning capacity. However, we believe this interpretation is unlikely because we see no clear reason 

why such limits would differentially affect learning from positive and negative prediction errors. In other 

words, we would predict that a neurobiological constraint on learning rate would limit all learning rates 

in a similar way and therefore not produce valence-induced learning asymmetries.  

 

A second possibility is that these learning biases are not maladaptive. For instance it has been shown 

that in certain reward conditions agents displaying valence-induced learning bias may outperform 

unbiased agents (9). Thus, a possible explanation for these learning biases is that they have been 

positively selected because they can be adaptive in the context of the natural environment in which 

the learning system evolved(36).  

 

Finally, a third, intermediate possibility is that these learning biases can be maladaptive in the context 

of learning performance, but due to their adaptive effects in other domains of cognition, overall they 

have a net adaptive value. For example, these biases may also manifest as “self-serving”, choice-

supportive biases, which result in individuals tending to ascribe success to their own abilities and 

efforts, but relatively tending to neglect failures(37). These psychological processes may help nourish 

self-esteem and confidence, both of which have been associated with overall favourable real life 

outcomes(38).  

 

To conclude, by showing that both factual and counterfactual learning are affected by valence-induced 

biases, our study highlights the importance of investigating reinforcement learning biases. Most of the 

decisions we face everyday are experience-based, therefore increasing our understanding of learning 

biases will likely enable the refinement of existing models of value-based decision-making, furthering 

our understanding of human cognition(3).  
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Methods 

Participants  

The study included two experiments. Each experiment involved N=20 participants (Experiment 1: 7 

males, mean age 23.9 ± 0.7; Experiment 2: 4 males, mean age 22.8 ± 0.7). The local ethics 

committee approved the study. All participants gave written informed consent before inclusion in the 

study, which was carried out in accordance with the declaration of Helsinki (1964, revised 2013). The 

inclusion criteria were being older than 18 years and reporting no history of neurological or psychiatric 

disorders.   

 

Behavioural tasks 

Participants performed a probabilistic instrumental learning task based on previous studies(19, 20) 

(Fig. 1A & 1B, Fig. 3A). Briefly, the task involved choosing between two cues that were presented in 

fixed pairs and therefore represented fixed choice contexts. Cues were associated with stationary 

outcome probability in three out of four contexts. In the remaining context outcome probability was 

non-stationary. The possible outcomes were either winning or losing a point. To allow learning, each 

context was presented 24 trials. Each session comprised the four learning contexts and therefore 

included 96 trials. The whole experiment involved two sessions, each including the same number of 

contexts and conditions, but a different set of stimuli. Thus, the total experiment included 192 trials. 

The four learning contexts (i.e. fixed pairs of cues) were divided in three conditions. In the “Symmetric” 

condition each cue was associated with a .50 probability of winning one point. In the “Asymmetric” 

condition one cue was associated with a .75 probability of winning a point and the other cue was 

associated with a .25 probability of winning a point. The Asymmetric condition was implemented in two 

choice contexts in each session. Finally, in the “Reversal” condition one cue was associated with a .83 

probability of winning a point and the other cue was associated with a .17 probability of winning a 

point, during the first 12 trials, and these contingencies were reversed thereafter. We chose a bigger 

probability difference in the Reversal compared to the Asymmetric condition in order to ensure that 

participants were able to reach a plateau within the first 12 trials. Participants were encouraged to 

accumulate as many points as possible and were informed that some cues would result in winning 

more often than others. Participants were given no explicit information regarding reward probabilities, 

which they had to learn through trial and error.  

 

At each trial, after a fixation cross, the choice context was presented. Participants made their choice 

by pressing left or right arrow keys with their right hand (the choice time was self-paced). The two 

experiments differed in the fact that in the Experiment 1 participants were only informed about the 

outcome of their own choice (chosen outcome), whereas in the Experiment 2 participants were 

informed about both the obtained and the forgone outcome (i.e. counterfactual feedback). In 

Experiment 1 positive outcomes were presented on the top and negative outcome of the bottom of the 

screen. The participant was required to press the key corresponding to the position of the outcome on 

the screen in order to move to the subsequent trial (top/bottom). In Experiment 2 the obtained 

outcomes were presented in the same place of the chosen cue and the forgone outcome in the same 
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place of the unchosen cue. To move to the subsequent trial, participants had to match the position of 

the outcome (right/left). Importantly for our computational analyses, outcome probabilities (although on 

average anti-correlated in the Asymmetric” and Reversal conditions) were truly independent across 

cues, so that in the Symmetric condition, in a given trial, the obtained and forgone outcomes were the 

same in the 50% of the trials; in the Asymmetric condition this was the case in the 37.5% of the trials; 

finally, in the Reversal condition this was the case in the 28.2% of the trials.  

 

Behavioural variables 

We extracted the correct response rate, that is, the rate of the trials in which the participants chose the 

most rewarding response, from the Asymmetric and the Reversal conditions. The correct response 

rate in the Reversal condition was calculated separately for the two phases: before (“first half”) and 

after (“second half”) the contingency reversal. In the Symmetric condition, we calculated the so-called 

“preferred” response rate. The preferred response was defined as the most frequently chosen option, 

i.e. that chosen by the participant on more than 50% of the trials. This quantity is therefore, by 

definition, greater than 0.5.   

 

Computational models 

We fitted the data with a standard Q-learning model, including different learning rates following 

positive and negative prediction errors and containing two different modules (Fig 1.C): a factual 

learning module to learn from chosen outcomes (Rc) and a counterfactual learning module to learn 

from unchosen outcomes (Ru) (note that counterfactual learning applies only to Experiment 2). For 

each pair of cues (choice context), the model estimates the expected values of the two options (Q-

values). These Q-values essentially represent the expected reward obtained by choosing a particular 

option in a given context. In both experiments, Q-values were set at 0 before learning, corresponding 

to the a priori expectation of 50% chance of winning 1 point, plus a 50% chance of losing 1 point. After 

every trial t, the value of the chosen option is updated according to the following rule (factual learning 

module):  

(1) 

  𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼!
!.𝑃𝐸! 𝑡                     𝑖𝑓  𝑃𝐸! 𝑡 > 0

𝛼!!.𝑃𝐸! 𝑡                     𝑖𝑓  𝑃𝐸! 𝑡 < 0 

In this first equation, 𝑃𝐸! 𝑡  is the prediction error of the chosen option, calculated as:  

(2) 

𝑃𝐸! 𝑡 = 𝑅! 𝑡 − 𝑄!(𝑡), 

where 𝑅! 𝑡  was the reward obtained as an outcome of choosing 𝑐 at trial 𝑡. In other words, the 

prediction error 𝑃𝐸! 𝑡  is the difference between the expected outcome 𝑄! 𝑡  and the actual outcome 

𝑅! 𝑡 . 

 

In Experiment 2 the unchosen option value was also updated according to following rule 

(counterfactual learning module): 

(3) 
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𝑄! 𝑡 + 1 = 𝑄! 𝑡 + 𝛼!
!.𝑃𝐸! 𝑡                     𝑖𝑓  𝑃𝐸! 𝑡 > 0

𝛼!!.𝑃𝐸! 𝑡                     𝑖𝑓  𝑃𝐸! 𝑡 < 0 

 

In this second equation, 𝑃𝐸! 𝑡  is the prediction error of the unchosen option, calculated as:  

 

(4) 

𝑃𝐸! 𝑡 = 𝑅! 𝑡 − 𝑄!(𝑡), 

where 𝑅! 𝑡  was the reward that could have been obtained as an outcome of having chosen 𝑢 at trial 

𝑡. In other words, the prediction error 𝑃𝐸! 𝑡  is the difference between the expected outcome 𝑄! 𝑡  

and the actual outcome 𝑅! 𝑡  of the unchosen option. 

 

The learning rates 𝛼!! and 𝛼!! are scaling parameters that adjust the amplitude of value changes from 

one trial to the next when prediction errors of chosen and unchosen option respectively are positive 

(when the actual reward 𝑅(𝑡) is better than the expected reward  𝑄(𝑡)) and the learning rates 𝛼!! and 

𝛼!! do the same when prediction errors are negative. Thus, our model allows for the amplitude of the 

update to be different following positive and negative prediction errors and for both chosen and 

unchosen options. It therefore allows for the existence of valence-dependent learning biases.  

 

Finally, the probability (or likelihood) of selecting the chosen option was estimated with a the soft-max 

rule as follow: 

(5) 

𝑃𝑐 𝑡 = 𝑒(!!(!)∗!) (𝑒(!!(!)∗!) + 𝑒(!!(!)∗!)). 

This is a standard stochastic decision rule that calculates the probability of selecting one of a set of 

options according to their associated values. The temperature, 𝛽, is another scaling parameter that 

adjusts the stochasticity of decision-making. 

 

In addition to this ‘Full’ model, we also considered versions with a reduced number of learning rates 

(Figure 3A): the ‘Information’ model, where 𝛼!! = 𝛼!!  and 𝛼!! = 𝛼!! ; the ‘Valence’ model, where  

𝛼!! = 𝛼!! and 𝛼!! = 𝛼!!; and the ‘Confirmation’ model, where  𝛼!! = 𝛼!! and 𝛼!! = 𝛼!!. For the model 

comparison, we also considered a very simple model (the ‘One’) model, with only one learning rate 

(𝛼!! = 𝛼!! = 𝛼!! = 𝛼!!), and a model where an additional parameter –Inf < π < +Inf biases the decision-

making process by increasing (positive values) or decreasing (negative values) the likelihood of 

repeating the same choice, regardless of the previous outcome (Table 1).  

 
Table 1: Model comparison. BIC: Bayesian Information Criterion; PP: posterior probability; XP: exceedance probability; df: 

degrees of freedom.  The “winning” model is the “Confirmation”, whose learning rates are displayed in Figure 3C.The second 

best model is the “Full” model, whose learning rates are displayed in Figure 2C.  
 

Model Full (5df) Information (3df) Valence (3df) Confirmation (3df) Perseveration (4df) One (2df) 

BIC 162.0±13.4 178.2±13.0 180.7±11.8 155.0±13.2 165.2±13.6 179.1±11.8 

PP 0.02±0.02 0.00±0.00 0.05±0.05 0.89±0.06 0.01±0.01 0.04±0.03 

XP 0.0 0.0 0.0 1.0 0.0 0.0 
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Parameter optimization and model comparison 

In a first analysis, we optimized model parameters by minimizing the negative log-likelihood of the 

data, given different parameter settings, using Matlab’s fmincon function (ranges: 0<β<Infinite, and  0< 

αn<1): 

(6) 

𝐿𝐿 = log 𝑃 𝐷𝑎𝑡𝑎 𝑀𝑜𝑑𝑒𝑙  

Negative log-likelihoods (LL) were used to compute at the individual level (random effects) for each 

model the Bayesian information criterion (BIC), as follows: 

(7) 

𝐵𝐼𝐶 = log 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 ∗ 𝑑𝑓 + 2 ∗ 𝐿𝐿 

BIC where compared between biased and unbiased models to verify that the utilization of the biased 

model is justified, even accounting for its extra-complexity. As an approximation of the model 

evidence, individual BICs were fed into the mbb-vb-toolbox(39), a procedure that estimates the 

expected frequencies and the exceedance probability for each model within a set of models, given the 

data gathered from all participants. Expected frequency is a quantification of the posterior probability 

of the model (denoted PP), i.e. the probability of the model generating the data obtained from any 

randomly selected participant. Exceedance probability (denoted XP) is the probability that a given 

model fits the data better than all other models in the set, i.e. has the highest PP (Table 1).  

 

In a second analysis, we optimized model parameters by minimizing the logarithm of the Laplace 

approximation to the model evidence (or log posterior probability: LPP): 

(8) 

𝐿𝑃𝑃 = log  (𝑃 𝐷𝑎𝑡𝑎 𝑀𝑜𝑑𝑒𝑙,𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ) 

 

Because LPP maximization includes priors over the parameters (temperature: gamma(1.2,5); learning 

rates beta(1.1,1.1)) (REF), it avoids degenerate parameter, estimates. Therefore, learning rates 

analyses have been performed on the values retrieved with this procedure. To avoid bias in learning 

rate comparison, the same priors were used for all learning rates. In the main analysis, a single set of 

parameters was used to fit all conditions. In a control analysis, different sets of parameters were used 

to fit each condition (“Symmetric”, “Asymmetric” and “Reversal”). 

 

 

Parameter recovery  

To validate our results, and more specifically to verify that valence-induced differences in learning 

rates reflect true differences in learning, as opposed to an artefact of the parameter optimization 

procedure, we checked the capacity of recovering the correct parameters in simulated datasets. To do 

so, we simulated performance on our behavioural task by virtual participants with different learning 

rates (Fig. S2 & Fig. S3). Concerning Experiment 1, we simulated unbiased (𝛼!!= 𝛼!!) and biased (𝛼!!> 

𝛼!!) participants. Concerning Experiment 2, we simulated unbiased (𝛼!!= 𝛼!! and 𝛼!!= 𝛼!!), semi-biased 
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(𝛼!!> 𝛼!!  and 𝛼!!= 𝛼!!) and biased (𝛼!!> 𝛼!!  and 𝛼!!> 𝛼!!) participants. We simulated N=100 virtual 

participants per set of parameter. The results of these analyses are presented in the supplementary 

materials and confirm the capacity of our parameter optimization procedure to correctly recover the 

true parameters, regardless to presence (or absence) of biases (Fig. S2 and Fig. S3).  
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Figure 1: Behavioural task variants and computational model. 

(A) In Experiment 1 (leftmost panel) participants were shown only the outcome of the chosen option. 

In Experiment 2 (rightmost panel) participants were shown the outcome of both the chosen and the 

unchosen options. (B) Computational models. The schematic summarizes the value update stage of 

our computational model.  The model contains two computational modules, a factual learning module 

(in red) to learn from chosen outcomes (RC) and a counterfactual learning module (in blue) to learn 

from unchosen outcomes (RU) (note that the counterfactual learning module does not apply to 

Experiment 1). Chosen (QC) and unchosen (QU) option values are updated with delta rules that use 

different learning rates for positive and negative factual (PEC) and counterfactual predictions errors 

(PEU).  
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Figure 2: Factual and counterfactual learning biases. 

(A) Predicted results. Based on previous studies we expected that in Experiment 1 factual learning 

would display a “positive valence” bias (i.e. the learning rate for the chosen positive outcomes would 

be relatively higher than higher than that of the chosen negative outcomes (𝛼!!>𝛼!!). In  Experiment 2, 

one possibility was that this “positive valence” bias would extend to counterfactual learning, whereby 

positive outcomes are over-weighted regardless of whether the outcome was chosen or unchosen 

(“valuation” bias) (𝛼!!>𝛼!!). Another possibility was that counterfactual learning would present an 

opposite bias, whereby the learning rate for the unchosen negative outcomes was higher than the 

learning rate of the unchosen positive outcomes (𝛼!!<𝛼!!) (“confirmation” bias). (B) Actual results. 

Learning rate analysis of Experiment 1 replicated previous findings, demonstrating that factual 

learning presents a “positive valence”, or “optimistic” bias. Learning rate analysis of Experiment 2 

indicated that counterfactual learning was also biased, in a direction that was consistent with a 

“confirmation” bias. ***P<0.001 and *P<0.05, two-tailed paired t-test. 
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Figure 3: dimensionality reduction with model comparison. 
(A) Model space. The figure represents how the number of parameters (learning rate) is reduced 

moving from the ‘Full’ model to more simple ones.   (B) Model Comparison. The panel represents the 

posterior probability (PP) of the models, whose calculation is based on the BIC that penalizes model 

complexity. The dashed line represents random posterior probability (0.25). (C) Model parameters. 

The panel represents the learning rate for the best fitting model (i.e., the ‘Confirmation’) model: αCON: 

learning rate for positive obtained and negative forgone outcomes; αDIS: learning rate for negative 

obtained and positive forgone outcomes.  ***P<0.001, two-tailed paired t-test. 
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Figure 4: Behavioral signatures distinguishing “low” and “high bias” participants. 

(A) Task conditions. The ‘Symmetric’ condition was characterized by a stable reward contingency 

and no correct option, because the two options have equal reward probabilities. The ‘Asymmetric 

conditions’ were also characterized by a stable reward contingency and a correct option, since one 

option had a higher reward probability than the other. The ‘Reversal’ condition was characterized by 

an instable reward contingency: after 12 trials the reward probability reversed across symbols, so that 

the former correct option became the incorrect one, and vice versa. Note that the number of trials 

refers to one session and participants performed two sessions, each involving new pairs of stimuli 

(192 trials in total).. (B) and (C) Behavioural results as a function of the task conditions in Experiment 

1 and Experiment 2, respectively. Each column presents the result of the corresponding condition 

presented in (A). In the Symmetric conditions, where there was no correct option, we calculated the 

“Preferred choice rate”, which was the choice rate of the most frequently chosen option (by definition, 

this was always greater than 0.5). In the Asymmetric and the Reversal conditions we calculated the 

correct choice rate. In the Reversal condition the correct choice rate was split between the two 

learning phases. ***P<0.001 and  *P<0.05, two-tailed paired t-test. 
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Figure S1: Stability of learning biases across task conditions. 

(A) Task conditions. The ‘Symmetric’ condition was characterized by a stable reward contingency 

and no correct option, because the two options have equal reward probabilities. The ‘Asymmetric 

conditions’ were also characterized by a stable reward contingency and a correct option, since one 

option had a higher reward probability than the other. The ‘Reversal’ condition was characterized by 

an instable reward contingency: after 12 trials the reward probability reversed across symbols, so that 

the former correct option became the incorrect one, and vice versa. Note that the number of trials 

refers to one session and participants performed two sessions, each involving new pairs of stimuli 

(192 trials in total). (B) and (C) Computational results as a function of the task conditions in 

Experiment 1 and Experiment 2, respectively. Each column presents the result of the corresponding 

condition presented in (A). ***P<0.001 and  **P<0.01, two-tailed paired t-test. 
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 Supplementary Figure 2: Parameter recovery in the Experiment 1 setting.  

“True values”: learning rates used to simulate the data. “Recovered values”: learning rates obtained 

from the simulations once the same parameter optimization was applied as for the experimental data. 

“Case: unbiased”: no learning rate bias. “Case: biased”: optimistic learning rate bias.  
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Supplementary Figure 3: parameter recovery in the Experiment 2 setting.  

“True values”: learning rates used to simulate the data. “Recovered values”: learning rates obtained 

from the simulations once applied the same parameter optimization as for the experimental data. 

“Case: unbiased”: no learning rate bias. “Case: semi-biased”: learning rate bias only concerning 

factual learning. “Case biased”: confirmation bias involving both factual and counterfactual learning.  
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