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The adaptation of asexually reproducing organisms is determined by how they accrue beneficial mutations. In
large populations, multiple beneficial mutations may arise simultaneously on different genetic backgrounds and
interfere with the fixation trajectories of other competing mutations. Multiple mutations interference (MMI)
theory has proven useful for investigating these interference patterns. In MMI, beneficial mutations of equal
fitness effect arise on a genome with infinitely many loci. However, assuming infinite sites makes it difficult
to precisely predict the fates of individual mutations, complicating the detection of MMI in sequence data. In
addition, most short-term within-host adaptation of pathogens such as Human Immunodeficiency Virus (HIV)
occurs at a limited number of loci under strong selection. For these reasons, we investigate how MMI shapes
the genetic composition of a population with few sites under selection. Specifically, we explore the dynamics of
multilocus linkage disequilibrium (MLD), a measure of multi-way associations between alleles, in a finite-sites
MMI model inspired by early HIV infection. In this regime, MLD oscillates over time in a wavelet-like fashion,
a consequence of the sequential acquisition of beneficial mutations. We further show that the frequency of these
oscillations is proportional to the rate of adaptation. Together, these findings suggest that MLD oscillations
could be used as a signature of interference among multiple equally advantageous mutations.

Introduction
Many microorganisms, viruses, and cancer types repli-
cate asexually with large population sizes and under
strong selection [1–7]. This gives rise to pronounced in-
terference [2, 6, 8, 9], where beneficial mutations can
emerge on different haplotypes and compete, leading to
mutual growth impairment [10–16]. Since interference
determines how asexual organisms adapt, it is of particu-
lar relevance to understanding infectious disease agents.
The factors that govern the speed of this adaptation are
useful targets for intervention: for example, combination
drug therapy was proposed as a treatment for human
immunodeficiency virus (HIV) infection to diminish the
accrual rate of drug resistance mutations [17, 18].

A fundamental contribution to understanding inter-
ference is multiple mutations interference (MMI) [16].
MMI theory assumes that mutations of equal fitness ef-
fect s may emerge on an infinite number of sites [16].
This theory offered a new perspective on interference,
complementing classical ’one-by-one’ clonal interference
(CI) [4, 19], where recurring large-effect mutations tem-
porarily diminish genetic diversity by removing mu-
tations of lower fitness. Unlike CI, under MMI mu-
tations on less fit backgrounds are not automatically
doomed to extinction. Instead, such haplotypes can sur-
vive by acquiring additional beneficial mutations. This
leads to competitive interactions beyond individual mu-
tations, involving competition between ”coalitions”, or
”cohorts”, of mutations [4, 5, 20].
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The key advantage of MMI is that it can appropri-
ately describe more complex forms of interference, and
may thus serve as a null-model for interference in general
[4, 16]. In more realistic forms of interference (complete
interference [2]) a mutation’s effect size is drawn from a
distribution of fitness effects (DFE). Depending on the
DFE, such a system may show combined hallmarks of
CI and MMI [2]. Theoretical work shows that MMI can
also capture important features of complete interference
if mutations’ fitnesses, s, are rescaled [16, 21–23]. In
fact, MMI could appropriately predict how changes in
population parameter values affected the speed of adap-
tation of experimentally evolving yeast [4]. Crucially,
MMI could explain the observations, whereas CI theory
on its own could not [4].

However, it is hard to identify MMI in sequence data.
Because the infinite-sites assumption focuses on occur-
rence rather than localization of mutations [7], it is dif-
ficult to specify tell-tale genetic signatures of MMI or
CI [5]. While extensive sequencing can reveal individ-
ual mutation frequency trajectories usually associated
with CI, MMI or sweeps [20, 24], these trajectories are
of limited use in characterizing the system as a whole,
since they are not unique to their interference sub-type
[5]. This problem is exacerbated in the within-host evo-
lution of pathogens, such as human immunodeficiency
virus (HIV), where sequence data are sparse and alter-
native fitness measurements are infeasible. In fact, the
in vitro replication of the highly complex in vivo envi-
ronmental conditions shaped by the immune system is
imperfect or yields different fitness-related estimates of
mutations [25].
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The infinite-sites assumption is also hard to reconcile
with most short-term adaptation of pathogens to new
environments occurring in a limited number of known
sites [7]. Examples are drug resistance mutations or es-
cape mutations in viruses [26], such as HIV [8, 27]. Thus,
interference models that only consider a limited number
of loci might be more useful to detect MMI in these cases
than more coarse models with an infinite number of sites
under selection.

In this study, therefore, we investigate MMI in a finite-
sites context. We extend previous theory to the case
where interference is rare, and the number of interfering
mutations is small [19, 28–30]. In particular, we explore
the potential of multi-way associations between loci or
multilocus linkage disequilibrium (MLD) to serve as the
basis for a genetic signature of finite-sites MMI.

The motivation to use MLD to characterize MMI is
rooted in the tradition of the population genetics of in-
terference: For a system of two loci, a signature of inter-
ference is negative pairwise linkage disequilibrium (LD)
[12, 31–34] —the departure from random associations of
alleles at two loci [34]. Negative LD is expected when
two beneficial mutations transiently coexist on differ-
ent backgrounds, until they are combined into the same
haplotype. For this reason, strong LD accompanied by a
strong phylogenetic signal has been proposed as a defin-
ing hallmark of clonal reproduction in pathogens [35].

However, pairwise LD is insufficient to identify and
characterize interference in populations of microorgan-
isms. Since multiple beneficial mutations may segregate
simultaneously in microbial populations [2] and disequi-
libria between different pairs of alleles may not be inde-
pendent of one another [31, 36], pairwise linkage dise-
quilibria will be difficult to interpret.

MLD, a generalization of pairwise LD [37–40], has
the advantage that it accounts for deviations from ran-
dom association at more than two loci. MLD may thus
more appropriately reflect and characterize finite-sites
interference. To this end, we develop a recursive pro-
gramming method to compute MLD in systems of up to
seven loci. We compute MLD at multiple time points in
simulated systems evolving under finite-sites MMI, in a
model previously designed to capture relevant features
of early HIV infection [41].

We show that the evolution of MLD over time is inter-
pretable and largely robust to the evolutionary stochas-
ticity arising in our simulation model. We also show
that, under MMI with strong selection, MLD oscillates
a finite number of times. This wavelet-like behavior ul-
timately results from, and is a signature of, finite-sites
MMI.

Results

Partition based definition makes MLD computation-
ally tractable
To analyze how MLD is affected by multilocus inter-
ference during evolutionary dynamics, we first require
a method to compute MLD. MLD, as formulated by

Geiringer and Bennet, generalizes the notion of link-
age disequilibrium from two to multiple loci using the
principle that, due to the decay of allelic associations in
haplotypes as a result of recombination, MLD between
neutral genes should decrease exponentially over time
[37, 38].

Consider L loci with alleles i1, i2, i3, . . . , iL and al-
lele frequencies pi1 , pi2 , pi3 . Let pi1i2...iL , denote the
frequency of haplotype i = i1i2 . . . iL, in the popula-
tion. As introduced by Bennett [38], functions of allele
and haplotype (i.e. gamete) frequencies, which satisfy
the condition of exponential decrease over time for var-
ious numbers of loci are

Di1i2 =pi1i2 − pi1pi2 (1)

Di1i2i3 =pi1i2i3 − pi1Di2i3 (2)

− pi2Di1i3 − pi3Di1i2 − pi1pi2pi3
Di1i2i3i4 =pi1i2i3i4 − pi1Di2i3i4 − pi2Di1i3i4 (3)

− pi3Di1i2i4 − pi4Di1i2i3

−Di1i2Di3i4 −Di1i3Di2i4 −Di1i4Di2i3

− pi1pi2Di3i4 − pi1pi3Di2i4 − pi1pi4Di2i3

− pi2pi3Di1i4 − pi2pi4Di1i3 − pi3pi4Di1i2

− pi1pi2pi3pi4
Di1i2i3i4i5 =pi1i2i3i4i5 − . . . (4)

In equations (1–4), the terms (pi1...iL − pi1 . . . piL) are
called Dausset’s disequilibrium [42]. MLD, defined by
Di1...iL , measures how much of Dausset’s disequilibrium
cannot be attributed to lower-order associations of al-
leles. What remains is the unexplained over- or under-
representation of the Lth order haplotype i1 . . . iL only,
or the Lth order MLD [37, 38]. Equations (1–4) are valid
for multiple alleles at any locus j, but we will restrict our
analysis to bi-allelic loci, ij ∈ {0, 1}.

Equations (1–4) for MLD can be expressed in a more
concise fashion by means of partition theory, as shown by
Gorelick and Laubichler [43, 44]. We add a superscript L
to indicate the LD of Lth order, given L loci, and write:

DL
i1...iL = pi1...iL −

∑
c∈E

 |c|∏
u=1

Dcu
Iu

 , (5)

where E is the set of all compositions c of all partitions of
L except c = (L). A partition π of L is an unordered set
of positive integers lm, whose sum is L, that is

∑
m lm =

L [44]. For instance, the set of all partitions of L = 4 is
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}. Each partition
π can be represented by a number of ordered tuples,
or compositions, c. For example, the compositions –or
ordered triples– of the partition π = {2, 1, 1} are given
by (2, 1, 1), (1, 2, 1) and (1, 1, 2) [43, 44]. The uth entry
of composition c is cu, |c| is the number of entries in
c, and Iu is the sub-haplotype i(1+

∑u−1
k ck) . . . i(

∑u
k ck).

Thus, MLD involves all possible sub-haplotypes of the
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Lth-order haplotype i1 . . . iL. The disequilibrium of a
single locus, D1

ij
, is defined as the allelic frequency pij

at that locus j [43].
The partition-based definition (5) of MLD allows dis-

equilibria of higher order to be recursively defined in
terms of disequilibria of lower orders. Recursive pro-
gramming enabled us to computerize the algebra for
higher order linkage disequilibria [45, 46] (see Supporting
Information, section 1, (SI.1)). We obtained algebraic
expressions for MLD, which depend only on haplotype
and allele frequencies, for up to seven loci.

An alternative approach to MLD, due to Slatkin [47],
defines it as the covariance between multiple alleles at
multiple sites. The two approaches are not equivalent for
systems involving more than 3 loci; however, both cap-
ture the deviation from random associations of alleles.
The conclusions presented here apply to both definitions
of MLD, although our analyses focus on the Geiringer-
Bennet approach (see SI.2).

To study the dynamics of MLD in parallel to hap-
lotype dynamics under MMI, we applied the recursive
MLD algorithm described above to evolving haplotype
data simulated under two models; a simplified ‘travel-
ing wave’ model and the stochastic Wright-Fisher (WF)
model. Due to our interest in rapid adaptation of hu-
man pathogens, simulation parameters were chosen to
correspond to estimates from early HIV infection [41]
(see SI.3, and Figure S1 for examples), because it pro-
vides an ideal model for a system where the within-host
adaptation has been studied in terms of its genetic di-
versification.

Oscillations under the ‘traveling wave’ deterministic
approximation

The first simulation framework employed treats an
evolving population as a traveling fitness wave [16, 48–
50]. This model reflects that, over time, selection moves
the distribution of fitnesses of haplotypes steadily for-
ward; rapid growth of rare, fitter-than-average haplo-
types expands the front of the distribution, while grad-
ual loss of less-fit haplotypes contracts the distribution’s
tail [8, 10, 16].

Our ‘traveling wave’ simulations begin with a wildtype
ancestor having a limited number L of possible benefi-
cial mutations, which accumulate at a fixed rate; a rise
in frequency of haplotypes with k mutations (k-mutants)
is followed by a rise in frequency of k+ 1-mutants every
time period τinter (see SI.4 for definition), a constant in-
dependent of k. Within each k-mutant wave, we assume
that the relative haplotype frequencies are equal. This
assumption eliminates haplotype frequency imbalances
stemming from effects such as stochastically distributed
establishment times of beneficial mutations and genetic
drift, allowing us to examine the dynamics of MLD in the
absence of such complications. Moreover, it ensures that
all of the possible 2L haplotypes exist at some point in
the evolutionary trajectory of the simulation. These dy-
namics are therefore said to produce a full escape graph
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Fig. 1. Origin of oscillations in multilocus linkage dis-
equilibrium (MLD). A) The space of possible haplotypes
comprises disjunct layers of equal Hamming distance to the
wildtype with no mutations (all zeros). As evolution pushes
the fitness distribution to higher Hamming distances, it gen-
erates a signature of over-representation of the haplotypes
in the corresponding layer of equal Hamming distance. This
excess is captured by the MLD: When taken as a reference
haplotype, each haplotype within the same layer produces an
MLD of equal sign. B) Sequential rise and fall of k-mutant
waves, comprising all haplotypes with k mutations. C) Pair-
wise and three-locus Geiringer-Bennett linkage disequilibria,
measured with the wildtype 000 as reference, over the course
of the simulation (the pairwise disequilibria overlap).
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[51].
In each simulation, we allow a ‘traveling wave’ popu-

lation to evolve for roughly 300 generations, calculating
the Lth order MLD relative to the ancestral haplotype
at fixed time intervals (see Figure 1). Unless otherwise
noted, we subsequently refer to MLD relative to the an-
cestral haplotype, i.e. DL

01...0L , where ij = 0j denotes no

mutation in the jth allele.
In these deterministic, full escape dynamics, the high-

est
(
Lth
)

order MLD is originally zero. As single-mutant
haplotypes appear and grow, the ancestral haplotype
is outcompeted (Figs. 1A and B) and becomes under-
represented relative to the expectation from random al-
lelic associations. The MLD decreases during this pro-
cess (Fig. 1C). During the remainder of the dynam-
ics, the dominant k-mutants are replaced by successive
k+ 1 mutants (see Figs. 1B and 2A). The highest order
MLD correspondingly oscillates from negative to posi-
tive. Empirically, it appears that in general, the number
of oscillations in the highest order MLD, nO, increases
with the number of loci L simulated (Figs. 3A and C),
and follows the simple relationship:

nO =
L− 1

2
. (6)

These oscillations in MLD reflect the acquisition of sub-
sequent layers of beneficial mutations and eventual con-
vergence to the fittest haplotype.
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Fig. 2. Haplotype dynamics of symmetric ‘traveling
wave’ and Wright-Fisher (WF) simulations sequen-
tially accrue beneficial mutations A) Haplotype frequen-
cies over the course of a symmetric ‘traveling wave’ simula-
tion with selection, assuming L = 4 loci. Beneficial mu-
tations arise every τinter = 100 (see SI.4) days and begin
to sweep at a rate ε = 0.095 (see SI.4, eqn. (S9)). Col-
ors indicate haplotypes with an equal number of mutations
k = 0, 1, 2, 3, 4. B) Haplotype frequencies over the course
of a simulation of the WF model with selection, assuming
a system of L = 4 loci, selection coefficient per mutation
s = 0.1, population size N = 105 and beneficial mutation
rate µb = 10−4 per locus per generation. Colors of k-mutants
are as in A).

MLD oscillations reflect MMI dynamics
The oscillations in the highest order MLD can be ex-
plained by the temporal dominance of k-mutant haplo-
types in the population.

As shown in Figure 1B, at any point during the dy-
namics, the population will consist mainly of haplotypes
containing k mutants; i.e. k-mutant haplotypes will be
over-represented. Therefore, the MLD relative to all k-
mutant haplotypes will be positive. As mutation and
selection push the population to higher fitness levels,
k+ 1-mutants spread. Then, the MLD relative to k+ 1-
mutant haplotypes will increase until it becomes posi-
tive.

A useful property of MLD in bi-allelic systems allows
us to relate the MLD relative to a k mutant haplotype
to the MLD relative to the ancestral haplotype:
∀j: j ∈ {1, . . . , L};∑

ij∈{0,1}

DL
i1i2...ij ...iL = 0. (7)

This equation also holds for Slatkin’s linkage disequilib-
ria [47] (see SI.2), and multiway-associations in loglinear
analysis [52, 53] – the main approaches used to identify
inter-allelic associations in the literature, and the fol-
lowing arguments apply for both of these. Equation (7)
can be interpreted as follows: if a reference haplotype is
over-represented relative to our expectation, each haplo-
type with the opposite allele to the reference at a given
locus must be equally under-represented.

Therefore, at any point during the dynamics, MLD
relative to haplotypes containing a single beneficial al-
lele (that is, single mutants) will be of equal magnitude,
but opposite sign to MLD relative to the ancestral hap-
lotype. Further, MLD relative to double-mutant haplo-
types will be of equal magnitude, but opposite sign to
MLD relative to single-mutant haplotypes; this also im-
plies that MLD relative to double mutant haplotypes is
equal to MLD relative to the ancestral haplotype. We
conclude that when single or odd-k mutant haplotypes
are over-represented (i.e. positive MLD), the MLD rela-
tive to the ancestral haplotype will be negative. In the
same way, when double or even-k mutant haplotypes
are over-represented, the MLD relative to the ancestral
haplotype will be positive (see also SI.5).

Given the relationships described above between
MLDs relative to different haplotypes, as the ‘traveling
wave’ accrues subsequent beneficial mutations, and the
set of haplotypes that are over-represented (i.e. those
haplotypes with positive MLD) shifts, the sign of the
MLD relative to the ancestral haplotype also shifts. This
explains the observed oscillation in MLD. It also explains
the relationship between the number of possible benefi-
cial alleles among the L loci and the number of observed
oscillations in MLD; there exist L − 1 soft sweeps as
additional beneficial mutations appear, and each sweep
constitutes a half-oscillation in MLD.

To test whether there exist situations in which simi-
lar MLD patterns are generated, we varied τinter. With
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decreasing τinter, the MLD oscillations decrease in am-
plitude, until eventually, MLD is almost zero over the
whole time course. However, if τinter is decreased even
further, the system enters another regime. When τinter
is very small, a single L-mutant haplotype will sweep
through a population that consists largely of wildtype
haplotypes. If, additionally, L is odd, such an L-mutant
haplotype will generate an MLD signal that can be rem-
iniscent of the MMI-based one. However, if L is even,
the MLD pattern generated by an L-mutant differs from
the MMI-based one: the initial deviation of the MLD is
always positive, and the order of the sign changes is re-
versed. These L-mutant sweep patterns show strongly
asymmetrical half-oscillations. Also the mechanism for
these patterns is unrelated to the advance of the fitness
wave, but stems from the combined effect of strongly
positive pairwise disequilibria (see SI.6). This partic-
ular MLD pattern is expected to be rare, and can be
neglected when applying appropriate checks in data (see
Discussion).

Robustness of MLD oscillations to increased
stochasticity

Having characterized the behavior of highest-order MLD
under deterministic dynamics, we tested whether such
oscillations can be detected in the presence of drift, using
the WF model with selection.

As in the ‘traveling wave’ model, our WF framework
and parameters (see Materials and Methods) are chosen
to capture some features of early HIV within-host evo-
lution, when HIV is hypothesized to undergo very rapid
adaptation to the host environment [41]. Specifically, we
focus on regimes in which the population size isN = 105,
the beneficial mutation rate per locus per generation is
µb = 10−4 [41, 54–56], and each beneficial mutation car-
ries the same selective advantage s between 0.01 − 0.3
[27, 55, 57]. The simulations begin at a population size
N and selection acts on all loci from the start.

Unlike the ‘traveling wave’ model described above,
in the WF simulations the beneficial mutations estab-
lish stochastically, breaking the symmetry in k-mutant
haplotype frequencies (compare Fig.2 and Figs. 3A and
3C). Further, in the simulations, a full escape graph [51]
is not guaranteed. Despite the stochasticity, beneficial
mutations are still typically accrued in a sequential fash-
ion, with subsequent k-mutants rising and falling in fre-
quency. This can be observed by comparing an example
set of simulated haplotype dynamics under the ‘travel-
ing wave’ model to one simulated under this WF model,
as shown in Figure 2A and 2B.

Thus, despite the increased complexity of the WF
simulations, oscillations in the highest order MLD per-
sist (Fig. 3C). However, as expected, the oscillations
tend to be less precise. Specifically, as the dynamics
progress and some portions of genotypic space remain
unexplored, the signal is dampened. Hence, the preser-
vation of the oscillatory MLD pattern may be inter-
preted as a measure of the symmetry of escape graphs.

Speed of evolution and MLD dynamics
To measure oscillation frequencies in MLD, we computed
the periodograms of the simulated dynamics, which
mark the proportion of the input signal explained by
each frequency (see Materials and Methods, Fig. 3B
for deterministic, and 3D WF-dynamics). These peri-
odograms were smoothed to filter out noise introduced
by the stochasticity of the WF process as well as by
sampling a limited number of haplotypes at different
time intervals, which we implemented to mimic empir-
ical studies. Periodograms were subsequently used to
predict the frequency at which MLD oscillates through-
out the simulated dynamics. In the following, we restrict
our analysis to periodograms from MLD time series of
WF simulations only.

The signal processing first allows us to assess the ro-
bustness of the oscillatory signal in MLD to evolution-
ary stochasticity in WF simulations. Second, it suggests
that MLD patterns are connected to important evolu-
tionary parameters. Here, we demonstrate both using
the rate of evolution as an example.

The MLD oscillatory pattern is related to the speed of
evolution as follows: As half-oscillations in MLD reflect
partial sweeps of sequential layers of k-mutant haplo-
types, we expect the frequencies of the MLD wavelets to
correlate with the rate of evolution of the system. Specif-
ically, if beneficial mutations accumulate at a stable rate,
the population’s fitness wave proceeds at a well-defined
constant speed v through fitness space. The time for
the fitness wave to accumulate one beneficial mutation
corresponds to the time it takes for half an oscillation of
the highest order MLD, T/2. Thus, the speed of evolu-
tion of the fitness wave must be related to the oscillation
frequency of the MLD as follows:

ve =
s

(T/2)
= 2sf, (8)

where f is the frequency of the oscillations.
To further test the robustness of the MLD oscillations

to evolutionary stochasticity, we used equation (8) to
compare the MLD oscillation frequency in each WF-
simulation estimated by a periodogram to the rate of
evolution predicted by population genetic theory (see
SI.7). This comparison tells us how well observed MLD
oscillations capture the underlying haplotype dynamics,
and retain information about it.

Figure 4 shows that the rate of evolution inferred by
MLD dynamics from our simulated WF model and ve in
(8) is very close to the predicted rate of evolution in the
Crow-Kimura-Felsenstein (CKF) theory [58]. Some mis-
match between theory and inferred values is expected,
since the predictions of the theory are derived under as-
sumptions that are not satisfied in our WF model. Most
importantly, the supply of beneficial mutations in our
WF model is limited by the finite sites. Second, the
population in our simulations is probably undergoing a
short phase of acceleration in its evolutionary rates, bi-
asing speeds of evolution [16]. Furthermore, because the
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Fig. 3. MLD oscillation frequency estimated by the power spectrum. A) Oscillation of the fifth order LD in a
symmetric full escape graph. The blue line is the median of a set of 200 runs, and the upper and lower bounds of the light blue
area represent the 2.5 and 97.5 percentiles of all measured LDs. The MLD was calculated every 10 days using a sample size
of 20 haplotypes. The red trajectory represents the measured LD from one particular repeat. The green line is a smoothing
spline laid through the measured LD data, with green circles at the zeros. B) The periodogram of the fifth order MLD values
(blue, non-vertical line) obtained with the sampling points of the red line in A). The maximum spectral density (vertical thick
blue line) is attained exactly at the inverse of the simulated period of T = 200 days of the oscillations (thin vertical red line at
frequency 0.005 per day). The thin red line is on top of the thicker blue. C) The analogous situation to A) for 100 simulation
runs of the Wright-Fisher model with selection, run with parameters L = 4, N = 105, µb = 10−4 and s = 0.1. Samples are
taken every 5 generations or 10 days. D) Periodogram (non-vertical blue line) of one randomly chosen MLD trajectory in C)
(red line in C)). The vertical thin red line is the theoretical value from CKF theory [58], whereas the thick vertical blue line
goes through the maximum spectral density attained. The vertical black lines are ωlow and ωupp (see Materials and Methods).

stochasticity in the WF dynamics leads to a dampening
of the wavelet-like MLD patterns, the signal processing
is very likely to under-estimate the true frequency. Nev-
ertheless, the theoretical values are close to the median,
and always stay within boundaries that include 95% of
an analyzed signal (see Materials and Methods).

Implications for inference

To explore whether an MLD-based method for interfer-
ence identification could be applied in real systems, it is
important to understand the robustness of oscillations
in MLD not only to evolutionary stochasticity (as de-
scribed above), but also to randomness introduced by

sampling procedures that could apply in real systems.
Such sources of randomness include haplotype sample
size, the sampling frequency, and, if the evolutionary pa-
rameters of a system are consistent across populations,
the number of replicates examined.

We investigated the effects of sampling frequency on
MLD frequency inference. As a test for the detectabil-
ity of the MLD pattern, we analyzed how estimates of
the speed of evolution based on equation (8) compare to
CKF-theory predictions. The speeds of evolution were
estimated during simulation time periods with largely
non-zero genetic diversity to reduce computational over-
head (see SI.7 and SI.8).
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Fig. 4. Estimates of speed of evolution based on MLD-
oscillations versus theoretical predictions in the MMI
regime [58]. Estimates of the speed of evolution ve obtained
by spectral analysis for Wright-Fisher model simulations run
for L = 3, L = 4 and L = 5 loci, and selective coefficients
s ∈ {0.01, 0.05, 0.1, 0.3}. We use these s values to estimate
ve with equation (8), where for f we use the estimated oscil-
lation frequency derived from the spectral analysis of MLD
time series. The inter-sampling period was ∆t = 2. For each
parameter combination a set of one hundred simulation re-
peats was run. The colored open circles are the median speed
of evolution estimate per set. The medians of ωlow as well
as ωupp of each set –see Materials and Methods– are shown
as filled colored circles. For each L, the medians of ωlow

and ωupp values of each set with different s are connected
by dashed colored lines, and the median estimates are con-
nected by colored lines. The dashed black line is the line of
equality of x- and y-axis values. Perfect haplotype frequency
information is assumed.

As long as sampling is more frequent than the ex-
pected length of an MLD half-oscillation, the accuracy
of MLD-derived estimates of the rate of evolution appear
largely robust to sampling frequency (see Fig. S3). This
is because for simulations run with very high selection
coefficients, e.g. s = 0.3, the period T of an oscillation
is still of the order of 102 days. In the particular case of
HIV, sampling bi-weekly should still preserve much of
the signal. This should also hold for other pathogens
with smaller evolutionary rates. Such inter-sampling
periods lie within the means of modern empirical ap-
proaches [59–61].

To further examine the fidelity of the signal processing
approach, we performed a Fisher test for hidden period-
icities on all MLD time series [62, 63], where the null
hypothesis is that the time series is generated by Gaus-

sian White Noise (see SI.8). Since the strict assump-
tions for performing this test are invalid in our simu-
lations, the results can only serve as a conservative in-
dicator for the presence of wavelet-like oscillations. At
the lowest inter-sampling duration of 2 days, the null
was rejected at a 5% significance level in more than 95%
of cases (except L = 5). At larger between-sampling
periods of 10 days, the p-value medians of simulations
with s ∈ {0.01, 0.05, 0.1} increase, but are below or at
the significance level (see SI.8). As a further cautionary
measure, we therefore suggest applying signal process-
ing to genetic data only in those MLD time series where
Fisher’s test detects oscillations.

We also investigated the effects of haplotype sample
sizes on MLD frequency inference. Unlike for between-
sampling duration, the accuracy of the estimates rapidly
deteriorates with smaller sample sizes (see SI.9), and
requires rather accurate haplotype information in order
to obtain satisfactory median estimates and confidence
bounds. Samples of about 5-20 haplotypes, as obtained
in some early HIV infection studies [59], do not suffice
to reveal MLD oscillations.

Discussion

We have developed new computational tools to calcu-
late multilocus linkage disequilibrium (MLD), a statistic
that quantifies the nonrandomness of allelic associations
across loci, accounting for contributions to haplotype
structure stemming from subgroups of loci. We show
that, in simulated haplotype dynamics with (i) rapid
accrual of a finite number of strongly beneficial muta-
tions with similar fitness effects and (ii) tight linkage
between loci (i.e. a MMI regime), MLD dynamics can
display a wavelet-like temporal pattern. We find that
these oscillations can be explained by successive sweeps
by haplotypes containing increasing numbers of benefi-
cial mutations in combination with specific mathemat-
ical properties of MLD expressed in (7). Finally, we
demonstrate that these oscillations are robust to some
evolutionary stochasticity and their frequency is propor-
tional to the rate of evolution of a population in the MMI
regime. In essence, this indicates that MLD is an appro-
priately tuned statistic to assess interference effects in
short-term adaptation; it is robust enough to small hap-
lotype frequency changes to be unaffected by evolution-
ary stochasticity, but sensitive to more structural mod-
ifications in the genetic composition of the population.
We conclude that the wavelets in MLD over time are a
hallmark of the MMI –as opposed to one-by-one clonal
interference– regime. Thus, MLD dynamics may contain
information relevant to the study of the short-term evo-
lution of microorganisms, including human pathogens
like HIV, in which a finite number of loci experience
strong selection. Crucially, an MLD-wavelet based MMI
criterion does not require costly and time consuming
competition assays, but can establish the presence of
MMI in a system using haplotype information only.
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There remain several possible caveats when using os-
cillations in MLD to detect multiple mutations interfer-
ence in natural populations.

First, there is a non-interference edge case that can
generate MLD-wavelets similar to those studied here. In
particular, if odd-numbered L-mutant haplotypes sweep
through a large, mostly wildtype population, MLD may
briefly oscillate. This scenario may become relevant
whenN >> 1/(Lµb)

L; that is, the chance of pre-existing
L-mutants at the onset of selection is high (see SI.6).
Simple checks in data, such as the detection of L-mutant
sweeps or very low haplotype diversity, can differentiate
these MLD wavelets from evidence for interference.

Second, the detection of MLD oscillations depends on
accurate haplotype frequency estimates and to a lesser
degree on how frequently data are sampled. The contin-
uous improvement of sequencing technologies is likely to
allow for deep and dense sampling in the future, produc-
ing appropriate datasets. For example, in HIV, single
genome amplification (SGA) techniques are likely to be-
come more cost-effective over time. Moreover, method-
ology for the attainment of higher haplotype frequency
resolution is under development [64, 65].

Third, epistatic effects were ignored. The reason for
this choice is that in escape mutations of HIV, which in-
spired this work, we are unaware of evidence for epistatic
interactions. However, other intragenic mutations are
likely to give rise to epistasis [66–69]. More generally,
if selection dominates over epistasis (magnitude epista-
sis) [70], the population will preferentially evolve along
certain mutational pathways to the full escape geno-
type. This will break the symmetry in k-mutant rep-
resentations even more than expected by drift, further
dampening the oscillatory MLD signal. When epistasis
dominates (sign epistasis), the evolutionary dynamics
are likely to halt at a local or global fitness peak (i.e.
not the full escape haplotype) [70]. In such a scenario,
at mutation-selection balance, an MLD signal should be
maintained that is constant and not oscillatory. This
may serve to differentiate epistasis-dominated from weak
or no-epistasis scenarios. Our work may thus also help
to emphasize the consequences of linkage on epistatic
interactions, which are commonly overlooked [71].

Fourth, we assume that all beneficial alleles confer
the same selective advantage s. In natural populations
beneficial mutations confer a range of selective advan-
tages. Under one-by-one clonal interference [16, 19, 72]
a strongly beneficial mutations may appear while weakly
beneficial mutations are sweeping. The haplotype con-
taining the strongly selected mutation will come to
dominate the population. In the process, a large por-
tion of the haplotype diversity that would give rise to
MLD oscillations is destroyed. Thus, the broad under-
exponential distribution of fitness effects associated with
CI is likely to weaken or eliminate the oscillatory MLD
signal [2, 16, 21, 73]. This property of CI makes full
MLD oscillations an MMI-specific signature. MLD os-
cillations will therefore provide a conservative catego-

rization of the system as subject to MMI, rather than
CI.

Despite its limitations, our approach to the study of
interference has clear benefits. One advantage is that it
draws from an underexplored perspective on evolution
that considers the role of linkage disequilibria, and its
important statistical inference machinery. In fact, very
little use has been made of MLD in the context of pop-
ulation genetics, in particular the study of interference
[34]. This may be due to different definitions of link-
age disequilibrium at multiple loci [37, 38, 47, 74, 75].
The crucial advantage of the Geiringer-Bennet MLD is
that its maximum likelihood estimate always exists [76],
a very useful property for estimation. We did not in-
vestigate statistical issues of MLD inference [77] or vi-
sualization (see [78] for techniques of an MLD definition
similar to Slatkin’s).

The other central benefit is MLD’s capacity to char-
acterize a population as evolving under MMI. Most sim-
ply, the presence of MLD oscillations of the type here
described, suggests that the population under study is
evolving under a MMI regime. MMI occurs in popula-
tions with specific characteristics; namely (i) a large sup-
ply of beneficial mutations [16] (ii) beneficial mutations
that confer similar, strong selective advantages [16], and
(iii) low enough recombination rates that beneficial mu-
tations are likely to compete rather than recombine onto
a single haplotype. Therefore, observed MLD oscilla-
tions provide valuable information with respect to these
critical population genetic parameters. These parame-
ters, especially those regarding the distribution of fitness
effects of beneficial alleles, are relevant for the efficiency
with which the immune system or sets of drugs [8] are
able to target evolving haplotypes and clear infections.

A broad range of microorganisms may experience si-
multaneous strong selection at multiple loci [79] and,
more specifically, MMI. In this study, we have shown
that finite-sites MMI shows distinct MLD dynamics.
The tools and concepts used in this approach may help
elucidate the mode of adaptation of a wide array of mi-
croorganisms, particularly those that evolve in complex
environments, such as within human hosts.

Materials and Methods

Wright-Fisher Simulation Model
To study the behavior of multilocus LD in the MMI
regime we used a Wright-Fisher (WF) model with selec-
tion and mutation in a finite population, described in
detail in [41]. Our model was designed to simulate spe-
cific aspects of the within-host replication and genetic
diversification of HIV during early infection, in particu-
lar the changes in its genetic composition, and is rooted
in a well-established tradition of population genetic HIV
models [8, 50, 55, 80, 81]. The purpose of the model is
not to give a maximally accurate description of the pop-
ulation dynamics of HIV, as it does not incorporate viral
expansion and contraction phases. Nor is it intended to
perfectly replicate putative differences in selection bene-
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fits incurred from acquiring mutations, which are likely.
Instead, our goal is to focus on the changes in genetic
structure of a population under MMI in a widely used
model (WF) to identify aspects of HIV’s within host
evolution that might be translated to other, structurally
similar scenarios.

The model tracks the frequency dynamics of cells in-
fected by viral RNA haplotypes i, which are represented
as binary sequences of length L: i = i1i2 . . . iL, with
ij ∈ {0, 1}. Simulations begin with an ancestral wild-
type, represented by a sequence of zeros (the likely sit-
uation in most HIV infections after a population bot-
tleneck due to transmission [80–82]). Zeros can mutate
into ones at a rate µb = 10−4 per replication per cell,
the beneficial mutation rate, which corresponds to esti-
mates for the mutation rate of epitopes under selection
in HIV [55]. Epitopes are stretches of RNA of about 8-10
codons in length coding for immunogenic virion peptide
pieces, and are hypothesized to confer strong selective
advantages when altered in physical shape due to their
escape from recognition by the immune system. No back
mutations are considered. One replication is assumed to
take two days [83–86]. Simulations take a populations
size N , and proceed by resampling from the previous
generation while applying selection.

Selection alters genotype frequencies by affecting their
resampling probabilities, and acts from the beginning of
the simulation. The inter-generational growth factor of
a haplotype wi, is tied to its relative growth rate; si,
wi = esi . All mutations are assumed to confer equal
additive selective advantages s, which is multiplicative
in w, and thus a log-fitness. For example, a haplotype i
with k mutations would have a log-fitness ks, and cor-
respondingly, wi = eks. At each generation, after muta-
tions have been incorporated, haplotype i is resampled
from the last generation with probability pseli = esi

〈es〉pi
[87], where 〈es〉 =

∑
i e
sipi is the average fitness of the

population, and pi is the population frequency of i. Se-
lection starts in the first generation.

By default and if not otherwise stated, simulations
were run for 2000 generations. The program was written
in the C# programming language.

Oscillation estimation by means of signal processing
techniques

To identify oscillations of MLD in the simulation data,
we developed a detection scheme based on spectral anal-
ysis. For each run, we calculated the highest order link-
age disequilibrium at each of Ms sample points from
the sampled data, that is, Ms MLD-values {xn}, where
n ∈ {0, . . . ,Ms − 1}. Sample data xn are assumed to
have been obtained at constant inter-sampling periods,
and can be expressed as a vector x with entries xn. We
analyze the spectral density of the signal x. An oscillat-
ing LD measure of L loci will maximally generate L− 1
half-oscillations, starting with a negative half-oscillation.
Even if dampened, such wavelet-like oscillations should
leave traces in the frequency spectrum that are close to

the frequency of a full period, T .
The Fourier transform coefficients of the data xn are

defined by:

Xk
.
=

Ms−1∑
n=0

xn · e−i2πkn/Ms , k ∈ N, (9)

where N is the set of all natural numbers and the Xk are
complex valued numbers.

In signal processing, the energy of a signal refers to
the quantity

∑
n |xn|2, which is assumed to be finite in

time-limited data. Parseval’s theorem relates the energy
of the signal to the Fourier coefficients:

1

Ms

∑
k

|Xk|2 =
∑
n

|xn|2, (10)

implying that the energy of the signal is preserved by the
Fourier transform, except for a normalization factor 1

Ms
.

Thus, a suitable measure of how the signal is distributed
over Fourier space is the power spectral density or power
spectrum S(ω), a concept that defines how a signal is de-
composed into its frequency components [88]. The value
S(ω) may be interpreted as the fraction of the signal
that is explained per unit frequency at ω. The spectrum
may also be treated analogously to a probability density
function. In theory, the power spectrum is defined by an
infinite number of signal points. In practice, the power
spectrum is estimated by the periodogram [63, 88]:

I(ωk) =
∆t

Ms
|
Ms−1∑
n=0

xne
iωn|2, (11)

where ωk = 2πk/Ms is the frequency of the wave com-
ponent eiωn, ∆t is the inter-sampling period, and i is the
imaginary unit. I(ωk) can be interpolated between val-
ues of ωk, and we will therefore drop k in the following.
We thus assume S(ω) ≈ I(ω).

For each simulation, we obtained the frequency at
which the periodogram was maximal: ωmax = max

ω
S(ω),

providing the largest contribution to the signal repre-
sented as a sum of waves. This served as our frequency
estimate.

We then defined bounds for ωmax, by calculating the
two values ωlow and ωupp that enclose 95% of the den-
sity distribution of the periodogram. To do this, we also
calculated the analogue of the cumulative distribution
function of the periodogram, W (f) =

∑
ω<f S(ω) for

every simulation, where W (f) gives the area under the
function S(ω) from zero to f . We then used W (f) to
obtain its inverse, W−1(z) = f , where z gives the frac-
tion of the total area enclosed by S(ω) at smaller values
than f . With this, we define pw

.
= W (ωmax), which al-

lows us to find bounds: ωlow = W−1(pw − 2pw∆) and
ωupp = W−1(pw + 2(1 + pw)∆), where ∆ is the devi-
ation from pw. Defined in this way, these bounds ac-
count for the fact that ωmax is not the median, and de-
viates from pw in fractions of pw. Note that if ∆ = 0.5,
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pw − 2pw∆ = 0, placing ωlow at the lowest possible fre-
quency, and conversely, ωupp at the highest possible one.
By default, ∆ = 0.475.

For values between the discrete frequencies given by
the periodogram, we used the interpolation function ap-
proxfun from the stats package in R to approximate ωlow

at low values of z. As a backup, if this procedure failed,
we ran a regression line through the 5 lowest z values
in the inverse cumulative frequency distribution. The
value of ωlow could then be calculated by evaluating
the regression at w − 2w∆. If the extrapolation led
to fextrapolation = W−1extrapolation(w − 2w∆) < 0, then
fextrapolation was automatically set to zero.

Because the the periodogram was formed on the ad-
justed data xn−〈x〉, where 〈x〉 is the average of the data,
the periodogram value at frequency zero must necessar-
ily be zero, which is not given by default in the R func-
tion spectrum [45]. To perform our analyses, we thus
added it to improve the functioning of the interpolation
function.

The periodogram is not a consistent estimator [63,
88]. To address this problem, a smoothing function is
typically applied on the signal. We used the default
modified Daniell kernel in R [45], with m = 1. Further,
we applied the default split cosine bell taper to a 10%
proportion of the data at the beginning and end of the
signal series.
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