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Abstract

Motivation: The NCBI’s Sequence Read Archive (SRA) promises
great biological insight if one could analyze the data in the aggregate;
however, the data remain largely underutilized, in part, due to the poor
structure of the metadata associated with each sample. The rules govern-
ing submissions to the SRA do not dictate a standardized set of terms that
should be used to describe the biological samples from which the sequenc-
ing data are derived. As a result, the metadata include many synonyms,
spelling variants, and references to outside sources of information. Fur-
thermore, manual annotation of the data remains intractable due to the
large number of samples in the archive. For these reasons, it has been dif-
ficult to perform large-scale analyses that study the relationships between
biomolecular processes and phenotype across diverse diseases, tissues, and
cell types present in the SRA.
Results: We present MetaSRA, a database of normalized SRA sample-
specific metadata following a schema inspired by the metadata organiza-
tion of the ENCODE project. This schema involves mapping samples to
terms in biomedical ontologies, labeling each sample with a sample-type
category, and extracting real-valued properties. We automated these tasks
via a novel computational pipeline.
Availability: The MetaSRA database is available at http://deweylab.

biostat.wisc.edu/metasra. Software implementing our computational
pipeline is available at https://github.com/deweylab/metasra-pipeline.
Contact: cdewey@biostat.wisc.edu

1 Introduction

The NCBI’s Sequence Read Archive (SRA) (Leinonen et al., 2011) is a
public database that stores raw next generation sequencing reads from

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2016. ; https://doi.org/10.1101/090506doi: bioRxiv preprint 

http://deweylab.biostat.wisc.edu/metasra
http://deweylab.biostat.wisc.edu/metasra
https://github.com/deweylab/metasra-pipeline
cdewey@biostat.wisc.edu
https://doi.org/10.1101/090506


over 1.5 million samples belonging to over 75,000 studies. The size and
diversity of these samples offers unprecedented opportunity to study the
relationships between biomolecular processes and phenotypes across di-
verse conditions, cell types, and diseases. For example, by focusing on
RNA-seq data sets in the SRA, one can study the relationships between
gene expression and phenotype. However, such analysis is difficult due
to the poor structure of the metadata associated with each sample. The
metadata for the biological samples are centrally stored at the BioSam-
ple database (Barrett et al., 2012). Each sequencing experiment in the
SRA references a sample-specific metadata record within this database.
The BioSample database organizes each sample’s metadata as sets of key-
value pairs where the key is a property of the sample and the value is a
property-value of the sample. Figure 1A and Figure 1B display the meta-
data for two representative samples. Unfortunately, both the properties
and property-values are non-standardized and are created at the discre-
tion of the submitter. For this reason, both keys and values consist of
synonyms, misspellings, abbreviations, and references to outside sources
of information. Furthermore, despite the imposed structure of a key-value
description, many of the values are complex, natural language text. For
these reasons, aggregate analysis of the data across phenotypes has been
difficult. Phenotype-specific studies also remain challenging due to the
difficulty in querying for samples that exhibit a phenotype of interest.

Our goal in this work is to provide structured descriptions of the bi-
ological samples used in the SRA. This task is challenging because it
requires discriminating between information that describes the biological
sample from information that describes other entities such as the sample’s
study, sequencing protocol, and lab. A solution to structuring the sample-
specific information must address the metadata’s semantics. In this work,
we normalize samples belonging to human RNA-seq experiments; how-
ever, the goals and methodologies of this work can be extended to other
assays and species. In total, we provide normalized metadata for 73404
samples.

Existing methods for normalizing biomedical text focus on annotating
the text with terms in a controlled vocabulary, usually in the form of a
biomedical ontology. One can approach the task of annotating metadata
using either a manual or automated approach. Manual annotation al-
lows for high accuracy at the cost of low throughput. For example, the
RNASeqMetaDB provides a database of manually annotated terms asso-
ciated with a set of mouse RNA-seq experiments (Zhengyu et al., 2015).
This database describes only 306 RNA-seq experiments, which represents
a small subset of all experiments in the SRA.

In contrast, automated annotation allows higher throughput at the
cost of lower accuracy. Methods for automating the normalization of
biomedical metadata frame the task as that of entity recognition. En-
tity recognition is the process of automatically recognizing and linking
entities in natural language text to their corresponding entries in a con-
trolled vocabulary. Tools that take this approach include ConceptMapper
(Tanenblatt et al., 2010), SORTA (Pang et al., 2015), ZOOMA (Misha
et al., 2012), and the BioPortal Annotator (Whetzel et al., 2011). Fur-
thermore, there have been efforts to utilize such tools to automatically
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normalize large biomedical metadata sets. For example, work by Shah
et al. (2009) automatically annotated samples and studies in the Gene
Expression Omnibus (GEO) (Barrett et al., 2013) and other sources of
biomedical metadata. Similarly, work by Galeota and Pelizzola (2016)
annotated samples in GEO using ConceptMapper.

We assert that entity recognition alone is insufficient for automating
the normalization of the SRA’s sample-specific metadata. Rather, since
many of the sample’s descriptions mention ontology terms that describe
extraneous entities (such as the study and experiment), a suitable solution
should seek to extract only those terms that are being used to describe the
biology of the sample. Biomedical entity recognition tools are best suited
for data submitters who wish to facilitate annotation of their metadata
before submission. Such tools do not adequately filter terms that do
not describe the biology of the sample because they do not attempt to
understand the fine-grained semantics of the text.

We further assert that important biological properties are often numer-
ical and are not captured by ontology terms alone. Such terms include
age, time point, and passage number for cell cultures. To the best of our
knowledge, the problem of extracting real-value properties from metadata
has yet to be addressed.

Lastly, we assert that ontology terms alone do not always provide
enough context to understand the type of sample being described. For
example, a cell culture that consists of stem cells differentiated into fi-
broblast cells may be annotated as both “stem cells” and as “fibroblast.”
Such annotation leaves ambiguity as to whether the sample was differen-
tiated from stem cells, or rather, was reprogrammed into a pluripotent
state from primary fibroblasts. We assert that each sample should be
categorized into a specific sample-type that captures the process that was
used to obtain the sample.

To address these challenges, we present MetaSRA: a normalized encod-
ing of biological samples in the SRA. MetaSRA encodes the samples with
a data schema inspired by that used in the ENCODE project (Malladi
et al., 2015). This schema can be decomposed into three parts:

1. Like ENCODE, each biological sample is labeled using terms from
the following biomedical ontologies: Disease Ontology (Kibbe et al.,
2015), Cell Ontology (Bard et al., 2005), Uberon (Mungall et al.,
2012), Experimental Factor Ontology (Malone et al., 2010), and the
Cellosaurus (http://web.expasy.org/cellosaurus). Our approach
extracts mentions of ontology terms in the metadata and maintains
the provenance of each extraction in order to reason about whether
that mention does or does not describe the biology of the sample.

2. Like ENCODE, we classify samples by sample-type category using
categories similar to those used by ENCODE.

3. Lastly, we extract numerical properties from the metadata. This
aspect is not included in the ENCODE schema.

Currently, MetaSRA encodes all human samples utilized in RNA-seq ex-
periments on the Illumina platform; however, future work will expand
MetaSRA to other species and assays.
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2 Data

We standardized all human samples assayed by RNA-seq experiments on
the Illumina platform. Metadata was retrieved from the SRAdb (Yuelin
et al., 2013) downloaded on 09/05/2016. The BioSample’s sample-specific
key-value pairs are stored in the “attribute” field of the “sample” table in
the SRAdb. Our data set consists of 75038 samples, of which, 73407 are
associated with a non-empty set of descriptive key-value pairs.

The samples processed belong to 2681 distinct studies and the number
of samples contained in each study varies by several orders of magnitude
(Figure 1C). We found 88 studies each containing at least 100 samples. We
found 2593 studies each with fewer than 100 samples constituting 32597
samples. Due to the fact that samples belonging to a common study
are described similarly, we argue that it is tractable to annotate samples
belonging to the small number of large studies using hand-tuned study-
specific methods. In contrast, the large number of smaller studies and the
diversity of their associated descriptions makes the process of designing
study-specific methods for these smaller studies intractable. We therefore
separated samples according to whether they belonged to a study that
contained fewer than or greater than 100 samples. Because future work
will involve hand-tuning the normalization of samples belonging to the
larger studies we focus our evaluation on only those samples that belong
to studies with fewer than 100 samples each.

3 Task definition

3.1 Mapping samples to ontologies

Like the ENCODE project, we label each biological sample using biomed-
ical ontologies. An ontology is a structured knowledge-base that defines a
set of concepts/terms within a specific domain of discourse. Besides pro-
viding the definition for each term, an ontology also encodes a directed
graph in which each term is represented by a node and each edge repre-
sents a relationship between two terms. Edges are usually labelled with a
relationship-type. For example, the most common edge is the is a edge.
Given terms a and b, a is a b asserts that all instances of a are also in-
stances of b. Similarly, the part of edge represents the knowledge that
one entity is a component of another entity. Labelling metadata using
ontology terms allows for queries of the data that utilize the structured
knowledge of the ontology. For example, a query for “brain” samples may
return samples labelled with “cerebral cortex” because the cerebral cortex
is a component of the brain.

We define the task of mapping samples to ontologies as follows: given
a set of samples S, a set of ontology terms O, and set of relationship-types
R, we seek a function f : S → P(O), where P(O) is the powerset of O,
such that given a sample s, for each o ∈ f(s), there exists a relationship-
type r ∈ R that relates the sample s to the ontology term o. We restrict
R to the following types of relationships:

• has phenotype: Maps samples to phenotypic or disease terms.
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Figure 1: Overview of the dataset. (A) Sample-specific key-value pairs describ-
ing sample SRS1217219. Note that the values encode natural language text.
(B) Sample-specific key-value pairs describing sample SRS872370. Note the
reference to an external cell line BJ. We also note that “forskin fibroblast” is
an incorrect spelling. Lastly, the value “no” negates the key “lentiviral trans-
genes.” (C) Histogram of the number of samples per study for human RNA-seq
experiments using the Illumina platform. We assert that the 88 studies each
with at least 100 samples can be semi-manually normalized using study-specific
methods.
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• derives from: Maps samples to cell lines or, when the sample con-
sists of differentiated cells, to stem cell terms.

• part of : Maps samples to the anatomical entity from which it was
extracted.

• consists of cells of type: Maps samples to their constituent cell
types.

• underwent: Maps samples to ontology terms that describe a med-
ical or experimental protocol.

We restrict our use of ontology terms to only “biologically significant”
terms. An ontology term o is deemed biologically significant if given
two samples s1, s2 ∈ S where f(s1) ⊂ f(s2) and f(s1) \ f(s2) = {o}
there likely exists a difference in gene expression or other measurable
difference in biochemistry between the two samples. In simpler terms,
an ontology term o is deemed biologically significant if given two samples
with equivalent descriptions barring that one sample can be described by
o and the other cannot, a significant difference in the biochemistry of the
cell may exist between the two samples. For example, the ontology term
for “cancer” is biologically significant, whereas the term “organism” is
not because all samples are trivially derived from an organism. We map
samples to only biologically significant terms in the ontologies.

3.1.1 Discriminating between term mentions and term map-
pings

Our goal in mapping samples to ontology terms goes beyond named entity
recognition. Rather than finding all occurrences or “mentions” of ontol-
ogy terms in the metadata, we attempt to infer which labels adequately
describe the biological sample being described. A term may be mentioned,
but not mapped as well as mapped, but not mentioned.

For example, consider a sample’s description that includes the follow-
ing text: Metastatic castration resistant

prostate cancer. If we consider the Uberon and Disease Ontology, we
see that the string “prostate cancer” mentions three terms in these ontolo-
gies: “prostate gland”, “cancer”, and “prostate cancer.” Of these terms,
only “cancer” and “prostate cancer” are mapped because they are re-
lated to the sample through the “has phenotype” relationship. The string
“prostate” is not not mapped because it localizes the disease rather than
the sample. There is no relationship-type in R that associates the sample
with “prostate.” By prohibiting the mapping to “prostate”, we remove
ambiguity as to whether the sample was derived from an organism with
a prostate-related disease, or from prostate tissue itself. More generally,
whenever a sample maps to an anatomical entity, we are asserting that
the sample originated from that site.

To provide an example in which an ontology term should be mapped,
but is not mentioned, consider a sample described by with the key-value
pair passage: 4. The Cell Ontology term for “cultured cell” is not
mentioned in this description; however, by the fact that it was explicitly
stated that the cell was passaged, we can infer that the sample consists
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of cultured cells. Thus we map the sample to “cultured cell” via the
“consists of cells of type” relationship.

3.1.2 Discriminating between explicit mappings and con-
sequent mappings

We distinguish between two types of mappings: those that are explicit in
the metadata and those that can be inferred from the explicit mappings.
We refer to the latter as “consequent mappings.” For example, the ontol-
ogy term for “female” is explicitly mapped from the key-value pair, sex:
female, because the author is explicitly communicating the fact that this
sample maps to “female” through the “has phenotype” relationship.

A sample “consequently” maps to an ontology term if, using external
knowledge, one can logically conclude that the sample maps to the term.
The premier example of such a case arises when a sample maps to a cell
line. In such a case, the sample would consequently map to terms that
describe this cell line. For example, given the key-value pair cell line:

MCF-7, the sample would consequently map to “adenocarcinoma” because
the MCF-7 cell line was established from a breast adenocarcinoma tumor.
MetaSRA includes both explicit and consequent mappings.

3.2 Extracting real-value properties

In addition to mapping samples to ontology terms, we also annotate sam-
ples with real-value properties that are described in the metadata. We
structure each real-value property as a triple (property, value, unit) where
property is a property ontology term in the EFO, value ∈ R, and unit is
an ontology term in the Unit Ontology (Gkoutos et al., 2012). For exam-
ple, the raw key-value pair age: 20 years old would map to the tuple
(“age”, 20, “year”).

3.3 Predicting sample-type category

Like the ENCODE project, we categorize samples into their respective
sample-type using categories similar to those used by ENCODE. These
categories consist of cell line, tissue, primary cell, stem cells, and
in vitro differentiated stem cells, and induced pluripotent stem

cell line. Whereas ENCODE uses an immortalized cell line cate-
gory, we instead use the category cell line to generalize to any cells
that have been passaged multiple times, which include those from finite
cell lines. Figure 5A illustrates how we define each sample-type category
based on the methods by which the sample was obtained.

4 Methods

4.1 Mapping samples to ontologies

At the core of our method is a graph data structure for maintaining the
provenance of each derived ontology term. This graph, which we call a

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2016. ; https://doi.org/10.1101/090506doi: bioRxiv preprint 

https://doi.org/10.1101/090506


Figure 2: An example of the metadata normalization process for sample
ERS183215. We extract explicit mappings, consequent mappings, real-value
properties, and the sample-type category for each set of sample-specific key-
value pairs in the SRA.

Text Reasoning Graph (TRG), provides a framework for maintaining the
provenance of extracted ontology terms, and for writing rules and opera-
tions that can reason about which terms should be mapped versus which
are merely mentioned. Nodes in the TRG represent artifacts derived from
the original metadata text. Such artifacts may be n-grams, inflectional
variants, or synonyms. Other nodes in the graph represent mapping tar-
gets such as ontology terms or real-value property tuples. Edges between
artifacts represent derivations from one artifact to another. An edge be-
tween an artifact and an ontology term represents a lexical match between
the artifact and the ontology term. We implemented a computational
pipeline that is composed of a series of stages that constructs the TRG.
To start, the pipeline accepts the raw key-value pairs and constructs an
initial TRG. Then, each stage operates on the TRG by modifying its
nodes and edges. Figure 3 depicts the subgraph of a final TRG that maps
a key-value pair to a set of ontology terms. By maintaining the prove-
nance of each derived ontology term we can implement custom reasoning
operations that more accurately determine which terms describe the sam-
ple. Such reasoning operations utilize the graph structure to filter out
ontology terms for which there is no relationship-type in R that describes
the relationship between the sample and the ontology term.

In the following sections we describe the most notable stages of the
pipeline. Full details are provided in the supplementary materials.

4.1.1 Filtering key-value pairs

Before initializing the TRG, we filter key-value pairs from the metadata
where either the key or value appears in a set of blacklisted keys and
values. This blacklist of keys contains those that describe a property
that does not pertain to the biology of the sample, such as “study name”
and “biomaterial provider.” The blacklist of values include those that
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Figure 3: A subgraph of the TRG constructed from sample SRS1212219 illus-
trating the graph data structure that our pipeline maintains as it reasons about
the sample. This framework allows us to maintain the context of each artifact.
For example, we map to the MRC5 cell line only because there is a mapping
to the “cell line” ontology term in the graph emanating from the key. We also
note the terms for “lung”, “male organism”, and “Caucasian” were mapped
to the MRC5 cell line from the ATCC cell bank data and are thus consequent
mappings.

negate the key, such as “none” or “no.” For example, the key-value pair
is tumor: no is removed because the value no negates the property is

tumor.

4.1.2 Artifact generation

We define an artifact to be any string that is derived from a substring
of the original metadata text. Such artifacts include include n-grams,
lower-cased words, and inflectional and spelling variants of words in the
metadata. An artifact node in the TRG represents a single artifact. Sev-
eral stages of the pipeline generate new artifact nodes from existing ar-
tifact nodes and draw edges from original to derived artifacts. One such
stage derives inflectional and spelling variants from existing artifacts using
the National Library of Medicine’s SPECIALIST lexicon (Browne et al.,
2000). For example, given an artifact node representing the pluralized
noun “fibroblasts”, this stage will create a node for the singular noun
“fibroblast” and draw a directed edge from “fibroblasts” to “fibroblast.”

4.1.3 Matching artifacts to ontologies

We perform fuzzy string matching between all artifacts and the ontology
terms. Let a and b be two strings and let d(a, b) be their Levenshtein
edit distance. Let l(x) be the length of a string x. An artifact a matches
with an ontology term name or synonym b if the following conditions hold:
l(a) > 2, d(a, b) ≤ 2, and d(a, b) ≤ max{l(a), l(b)}/10. We do not match
artifacts that are less than 3 characters long in order to avoid false positive
mappings. If the artifact is greater than 2 characters long, a match is
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called if the edit distance is less than or equal to 2 and less than or equal
to 0.1 times the length of the longer string. For example, the misspelled
artifact “forskin fibroblast” would match with the ontology term name
“foreskin fibroblast.” In contrast, the string “year” would not match with
the ontology term “ear” because the edit distance of 1 is greater than 0.1
of the length of the longer string. When an artifact matches an ontology
term, we create a node representing the ontology term and draw an edge
from the artifact to the new ontology term node.

In general, fuzzy matching is a computationally expensive task. To
speed up this process, we pre-compute a metric tree index for all ontology
term names and synonyms as described by Bartolini et al. (2002). The
index allows us to filter for ontology term strings that are nearby the
query string in edit space. We then explicitly compute the edit distances
to these nearby strings.

4.1.4 Graph reasoning

Certain stages of the pipeline utilize the structure of the TRG. We refer
to such steps as “reasoning” steps. For example, we remove extraneous
mappings to cell line terms by searching the graph emanating from the
key for a lexical match to ontology terms such as “cell line” and “cell
type.” If such a match is not found, we search the graph emanating from
the value for artifacts that have a lexical match to a cell line ontology
term and remove all such ontology term nodes. This process is important
for removing false positives due to the fact that names of cell lines are
often similar to gene names and acronyms. For example, “Myelodysplastic
Syndromes” is often shortened to “MDS.” MDS also happens to be a cell
line in the Cellosaurus.

To provide another example, we create a list of “context-specific syn-
onyms” and derive synonyms for artifacts only when the provenance of the
artifact meets a certain criterion. For example, a common key-value pair
is sex: F. Here, the string “F” is an abbreviation for “female”; however,
this is only known because the key describes the sex of the organism. “F”
in another context may not be an abbreviation for “female.” One stage
of our pipeline derives synonyms for artifacts only when the given artifact
was extracted from a key-value pair describing a specific property.

4.1.5 Mapping cell line terms using ATCC cell bank data

Our pipeline draws edges between a cell line ontology term node and
the ontology terms that describe the cell line. For example, if the TRG
contains the node for the cell line “HeLa”, we draw an edge to the on-
tology terms for “adenocarcinoma” and “female” because this cell line
was derived from a woman with cervical adenocarcinoma. We consider
such mappings to be consequent mappings because they are retrieved
using an external knowledge base. In this case, the external knowl-
edge base was created from data we scraped from the ATCC website
(https://www.atcc.org). To construct mappings between cell lines and
ontology terms, we ran a variant of our pipeline on the scraped cell line
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data. We scraped cell line metadata for all cell lines that are present in
the Cellosaurus.

4.1.6 Maximal phrase-length mapping

It is a common occurrence for disease ontology terms to include anatomical
entities in their name. For example, “breast cancer” includes “breast” as
a substring. As previously discussed, under our framework, it would be
incorrect to map “breast” to a sample solely based on a mention of “breast
cancer” in its metadata because “breast” localizes the cancer, but does
not localize the origin of the sample. Whereas it is entirely possible that
such a sample was indeed derived from breast tissue, without additional
information we cannot eliminate the possibility that the sample originated
from some other tissue, such as from a malignant site. In this example,
we maintain a conservative approach and avoid mapping to “breast.” We
implement this process by having each artifact node keep track of the
original character indices in the metadata from which it was derived. After
mapping all artifacts to the ontologies, we remove all ontology terms that
were lexically matched with an artifact node that is subsumed by another
artifact node that matches with an ontology term.

4.1.7 Linking ontologies

The domain covered by the EFO overlaps with many of the other ontolo-
gies because it includes cell types, anatomical entities, diseases, and cell
lines. In many cases, the EFO is inconsistent with other ontologies in how
it draws edges between terms. For example, the term “lung adenocarci-
noma” and “adenocarcinoma” are present in both the Disease Ontology
and the EFO; however “adenocarcinoma” is a parent of “lung adenocarci-
noma” in the Disease Ontology but not in the EFO. These inconsistencies
pose a problem when we apply our maximal phrase-length mapping pro-
cess. For example, when a sample maps to “lung adenocarcinoma” and
“adenocarcinoma”, we remove “adenocarcinoma” because it is a substring
of “lung adenocarcinoma.” This is valid for the Disease Ontology because
the term for “adenocarcinoma” is implied by “lung adenocarcinoma” by
its position in the ontology. However, this results in a false negative for
the EFO version of this term.

To counteract this problem, we link EFO terms to terms in the other
ontologies. Two terms are linked when they share the same term-name
or exact-synonym. Then, when an artifact maps to a term, we traverse
the term’s ancestors and map to any terms that are linked to those an-
cestors. In the case of “lung adenocarcinoma”, we would traverse the
ancestors of this term in the Disease Ontology and map to the EFO’s
“adenocarcinoma” because it is linked to the Disease Ontology version of
this term.

4.2 Extracting real-value properties

We maintain a list of ontology terms that define real-value properties.
Currently, we use 7 terms including “age”, “passage number”, and “time-
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point.” Future work will entail expanding this list. To extract a real-value
property from a key-value pair, we search the graph emanating from the
key for a match to a property ontology term. If such a property is found,
we search the graph emanating from the value for an artifact that repre-
sents a numerical string as well as a unit ontology term node (for example
“46” and “year”). From this process, we extract the triple (property,
value, unit). For example, given the key-value pair age: 46 years old,
we extract (“age”, 46, “year”).

4.3 Predicting sample-type category

We classify samples by sample-type category using a supervised machine
learning approach. We trained a one-vs.-rest ensemble of logistic regres-
sion, binary classifiers where each classifier was trained using L1 regular-
ization.

4.3.1 Training set

We manually annotated 705 samples based on their metadata. We de-
termined each sample’s sample type by consulting the sample’s study,
publication, and other external resources that describe the experimental
procedure used to obtain the sample. Since samples that belong to the
same study are likely described similarly, one potential pitfall in the learn-
ing process is that if training samples are drawn uniformly and at random
from all samples, the learner will be biased towards features that correlate
with how larger studies describe their samples rather than features that
correlate with sample-type. To avoid this issue, we ensured that no two
samples in the training set came from the same study.

4.3.2 Feature selection

We consider two types of features for representing each sample: n-gram
features and ontology term features. For n-gram features, we consider all
uni-grams and bi-grams appearing in the training samples’ raw metadata.
For ontology term features, we consider the set of all ontology terms that
were mapped to the training samples by our automated pipeline. Let S be
this aforementioned set of all n-gram features and ontology term features.
We perform preliminary feature selection by removing from S all features
that appear in less than 2 samples. We also remove all n-gram features
that are stop words.

From the remaining features in S, we filter features using the mutual
information between the feature and the class labels. Let y1, y2, . . . , yn
be the sample-types of the training samples. Furthermore, let Y be the
set of possible sample-types. Our feature selection process starts with
an empty set of features F := ∅ and iteratively adds features from S
to F according to the following strategy: for each sample-type j ∈ Y ,
we convert the training labels into binary labels yj

1, y
j
2, . . . , y

j
n such that

yj
i := 1 if yi = j and yj

i := 0 otherwise. We then computed the mutual
information between each feature f ∈ S and the binarized labels. We
then add to F the 75 top scoring features in S. When this process is
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complete, each feature f ∈ F should be indicative of at least one of the
target sample-types.

4.3.3 Prediction

When making a prediction on an unseen sample x, each binary classifier
cj in the ensemble computes its estimate of the conditional probability
cj(x) := p(y = j|x), which can be interpreted as the confidence that classi-
fier cj believes that x is of type j. Using these probabilities, we designed a
decision procedure that utilizes our domain knowledge for determining the
sample type. We found that injecting domain knowledge into the process
boosted performance in cross-validation experiments. This decision proce-
dure limits the possible sample-types based on the ontology terms mapped
to the sample. For example, if “stem cell” was mapped to the sample,
we limit the possible predictions to stem cells, induced pluripotent

stem cell line, and in vitro differentiated cells. Although the-
oretically, the learning algorithm should learn these facts itself, there is
likely not enough training examples for the algorithm to learn such pat-
terns.

5 Results

5.1 Evaluation of ontology mappings

In order to create a test set for evaluation of our pipeline, we manually
normalized metadata for 206 samples from the SRA where each sample
belongs to a unique study. These samples were recently added to the
archive and had not been considered during the development of our com-
putational pipeline. Thus, performance on this subset of data provides an
unbiased estimate of its ability to generalize to unseen samples.

5.1.1 Evaluating explicitly mapped ontology terms

We first evaluated our pipeline’s ability to map samples to explicitly
mapped ontology terms using the following metrics: recall, error rate,
specific terms recall, and specific terms error rate. Given a sample, let T
be the set of all ontology terms to which the sample maps including terms
ancestral to those explicitly mentioned. Let T ′ be the most specific terms
in T . That is T ′ := {t ∈ T : no child of t is in T}. Let P be the set of
predicted terms to which the sample maps. Let P ′ be the most specific
terms in P . That is P ′ := {p ∈ P : no child of p is in P}. We define our
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Figure 4: (A) A schematic of an ontology graph structure demonstrating our
calculation of recall, specific terms recall, error rate, and specific terms error
rate. In this example, T is the set of blue and purple nodes, T ′ is the set of
nodes with a thick blue outline, P is the set of red and purple nodes, and P ′ is
the set of nodes with a thick red outline. (B) Recall, error rate, specific terms
recall, and specific terms error rate for versions of our pipeline in which certain
stages are disabled. The data points labelled “none” refer to the complete
pipeline in which no stage is disabled. (C) The error rate, specific terms error
rate, average retrieved terms per sample, and average specific retrieved terms
per sample across all ontologies when considering only consequently mapped
terms. (D) Performance of our pipeline in mapping explicit ontology terms
versus BioPortal’s Annotator, ZOOMA, and SORTA. We measured recall, error
rate, specific terms recall, and specific terms error rate for all programs across
all ontologies. We note that ZOOMA only maps samples to the EFO. Only our
pipeline and SORTA map samples to the Cellosaurus.
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Figure 5: (A) A graph illustrating how sample-type categories are defined. Each
node in the graph represents a biological sample. Arrows between nodes rep-
resent procedures carried out on the sample. Nodes are colored according to
their sample-type category. (B) Confusion matrix for sample-type category pre-
diction accuracy on the test data set. Above the confusion matrix we display
the number of samples in each category. (C) Calibration of the model. The
estimated probability of the model (average of confidence values in each bin) is
plotted against the empirical probability that the model is correct (accuracy of
predictions in each bin). The straight blue-line plots a well-calibrated model.
Error bars are drawn according to a bootstrap sampling approach described
in Bröcker and Smith (2007). No points are drawn for bins that contain no
predictions.
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metrics as follows:

recall :=
|T ∩ P |
|T |

specific terms recall :=
|T ′ ∩ P |
|T ′|

error rate :=
|P \ T |
|P |

specific terms error rate :=
|P ′ \ T |
|P ′|

We use these four metrics instead of traditional precision and recall be-
cause precision and recall are affected by the structure of the ontology.
This is due to the fact that the act of retrieving an ontology term implic-
itly retrieves all of its ancestral terms in the ontology’s directed acyclic
graph. Thus, retrieving a term with a high number of ancestral terms
will lead to exaggerated metrics. The specific terms error rate corrects for
this by describing the fraction of the most specific predicted terms that
incorrectly describe the sample. We note that the error rate is simply
1− precision. The metrics are demonstrated in Figure 4A.

We compared our pipeline to the BioPortal Annotator, SORTA, and
ZOOMA. We ran SORTA using the three confidence thresholds of 1.0,
0.5, and 0.0. We also ran ZOOMA using the three confidence thresholds
of high, medium, and low. The metrics across all programs and ontologies
are shown in Figure 4B.

Our pipeline outperformed other programs in error rate, specific terms
error, and specific terms recall across all ontologies. The pipeline’s recall
was similar to that achieved by the BioPortal Annotator. However, since
the BioPortal Annotator simply detects ontology mentions, many of these
mentions are false positives because they do not describe the sample.

SORTA’s performance was poor in our tests, most likely because of the
fact that SORTA was not designed for entity recognition per se. Rather,
SORTA was designed for re-coding data values from one data schema to
another. The task of mapping key-value pairs to ontologies lies some-
where between the entity recognition task and the schema re-coding task.
Those key-value pairs that encode an atomic property and property value
(e.g. sex: male) are suitable for SORTA. However, those key-value pairs
that encode complex concepts (e.g., a sentence in natural language) are
unsuitable for SORTA.

5.1.2 Evaluating the impact of individual pipeline stages

In order to evaluate the performance impact of each of our pipeline’s
stages, we ran our pipeline on our test set with certain individual stages
disabled. Figure 4C shows the performance impact when removing stages
for filtering key-value pairs, linking ontologies, filtering sub-phrase matches,
and generating spelling and inflectional variants. As expected, the results
of these tests indicate a general trade off between recall and error rate.
Certain stages may decrease recall, but pose the benefit of decreasing the
error rate. Furthermore, a given stage may be more effective for mapping
terms in some ontologies rather than others.
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5.1.3 Evaluating consequently mapped ontology terms

Recall is an inappropriate metric for evaluating our ability to map conse-
quent terms due to the fact that the set of consequent terms is undefined.
By our definition, a consequent term is any term that the sample can be
mapped to based on expert or external knowledge. Thus, depending on
the expert or external knowledge base, the set of consequent terms may
change. Furthermore, an expert may use an exceedingly large number
of ontology terms to describe the sample depending on what she knows
about the sample and experiment. For these reasons, we look at the total
average number of consequent terms that we map to each sample. This
metric describes the amount of extra information that is provided when
considering external knowledge. We further looked at the average num-
ber of most specific mapped consequent terms. Figure 4D displays these
metrics across all ontologies. We note that no terms from the Cellosaurus
were consequently mapped and are thus not displayed in the figure.

5.2 Evaluating extraction of real-value properties

Of the 206 samples in our test set, 63 described real-value properties. We
use precision and recall to evaluate our performance in retrieving real-
value property tuples. We call a predicted real-value property a true
positive if the property type, value, and unit all match the ground truth.
On these 62 samples, we report precision of 1.0 and recall of 0.487.

5.3 Evaluating sample-type predictions

To evaluate our ability to predict each sample’s sample-type, we evaluated
the algorithm’s performance on a held-out test set. This test set consists
of the same samples that were utilized for evaluating our ontology term
mapping procedure. We annotated all samples for which the origin of the
sample was explained in an external resource such as a scientific publi-
cation. In total, this came to 178 samples where no two samples belong
to the same study. The distribution of sample-types in our test set is
illustrated in the bar graph above the matrix in Figure 5B.

Our trained classifier achieved an accuracy of 0.848 over these samples.
The confusion between between categories is plotted in the confusion ma-
trix in Figure 5B. In general, the classifier does well in determining the cell
line samples and tissue samples. Close inspection of the classifier’s errors
revealed that most were due to samples with poor quality descriptions.
Such samples are difficult to categorize, even as a human, without consult-
ing the scientific publication in which the sample is described. Correctly
classifying these samples will require utilizing external descriptions of the
samples.

MetaSRA includes the classifier’s confidence of each prediction (i.e.
the classifier’s estimate of the probability that the sample is of the pre-
dicted sample-type). To evaluate the quality of these confidence scores,
we assessed the calibration of the classifier. A classifier is well calibrated if
for any instance x with true label y, it holds that p̂ = p(ŷ = y) where ŷ is
the classifier’s predicted class label of x and p̂ is its confidence. To assess
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calibration, we grouped the predictions into bins according to their confi-
dence scores using confidence score bins of [0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0].
For each bin, we computed the accuracy of predictions in that bin. In
Figure 5C, we plot the average confidence of predictions in each bin (i.e.
estimated probability) against the empirical accuracy (i.e. empirical prob-
ability) of predictions in that bin. A well calibrated model should produce
points near the line with slope 1 and y-intercept 0. However, since the
number of predictions in each bin varies, there will be a higher expected
variance for bins with a smaller number of predictions. We therefore cre-
ated 0.9 confidence intervals using a bootstrapping method described by
Bröcker and Smith (2007). As Figure 5 shows, most points lie within these
confidence intervals, indicating that the classifier’s confidence scores can
be reasonably treated as probabilities.

6 Availability

MetaSRA is available at http://deweylab.biostat.wisc.edu/metasra

in both an SQLite database as well as in a JSON text file. Each update
to MetaSRA will be accompanied with a unique version number that
can be used to identify each discrete version of the normalized metadata.
The code used for creating MetaSRA has been open-sourced at https:

//github.com/deweylab/metasra-pipeline.

7 Discussion and future work

Although previous work has addressed the task of annotating biomedical
text, there had yet to be a thorough effort at generating an accurate
annotation of sample-specific metadata for the SRA. MetaSRA addresses
this gap, providing normalized metadata encoded into a schema inspired
by that used by the ENCODE project. Currently, the MetaSRA includes
normalized sample-specific metadata for human samples assayed by RNA-
seq experiments on the Illumina platform. We expect that this resource
will enable higher utilization of the SRA and investigations across diverse
phenotypes, diseases, cell types, and conditions.

Future work will involve expanding MetaSRA to incorporate more
biological samples as well as to expand the set of ontologies used for an-
notation. First, we plan to expand MetaSRA to all human samples (not
only those used in RNA-seq experiments) as well as to samples from other
species. We will also expand the set of ontologies to those that include
experimental variables. For example, we hope to include the ChEBI on-
tology for annotating samples with chemical treatments (Hastings et al.,
2013). Our initial experiments with ChEBI revealed that mapping sam-
ples to this ontology poses unique challenges because of its relatively large
size and inclusion of synonymous terms that share names with those rep-
resenting unrelated concepts (e.g., the ChEBI term “maleate(2-)” has the
synonym “male”). We also plan to incorporate more sources of external
knowledge in the MetaSRA construction pipeline in order to map sam-
ples to a larger number of consequent terms. For example, additional
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sources of cell line data, such as the Coriell Institue for Medical Research
(https://www.coriell.org), could be used to annotate cell lines that are
not present at the ATCC. Lastly, we plan to leverage other sources that
provide information on sets of samples, such as a publication describing
the study in which a set of samples was assayed. Although such sources
provide valuable details, because they are not sample-specific, a key chal-
lenge will be to automatically determine which details may be confidently
assigned to individual samples.
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