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ABSTRACT 

Heritable variation in gene expression patterns plays a fundamental role in trait variation 

and evolution, making understanding the mechanisms by which genetic variation acts on gene 

expression patterns a major goal for biology. Both theoretical and empirical work have largely 

focused on variation in steady-state mRNA levels and mRNA synthesis rates, particularly of 

protein-coding genes. Yet in order for this variation to affect higher order traits it must lead to 

differences at the protein level. Variation in protein-specific processes including protein 

synthesis rates and protein decay rates could amplify, mask, or even reverse effects transmitted 

from the transcript level, but the extent to which this happens is unclear. Moreover, mechanisms 

that underlie protein expression variation under dynamic conditions have not been examined. 

To address this challenge, we analyzed how mRNA and protein expression dynamics covary 

between two strains of Saccharomyces cerevisiae during mating pheromone response. 

Although divergent steady-state mRNA expression levels explained divergent steady-state 

protein levels for four out of five genes in our study, the same was true for only one out of five 

genes for expression dynamics. By integrating decay rate and allele-specific protein expression 

analyses, we resolved that expression divergence for Fig1p was caused by genetic variation 

acting in trans on protein synthesis rate, expression divergence for Ina1p was caused by cis-by-

trans epistatic effects on transcript level and protein synthesis rate, and expression divergence 

for Fus3p and Tos6p were caused by divergence in protein synthesis rates. Our study 

demonstrates that steady-state analysis of gene expression is insufficient to understand the 

impact of genetic variation on gene expression variation. An integrated and dynamic approach 

to gene expression analysis - comparing mRNA levels, protein levels, protein decay rates, and 

allele-specific protein expression - allows for a detailed analysis of the genetic mechanisms 

underlying protein expression divergences.  
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INTRODUCTION 

 Heritable variation in gene expression patterns plays a fundamental role in trait variation 

and evolution. From human lactase persistence (1) and disease susceptibility (2,3) to adaptive 

skeletal variation in stickleback fish (4), genetic variation commonly acts on traits by altering 

when, where, and how much genes are expressed (5,6). Understanding the mechanisms by 

which genetic variation acts on gene expression patterns is therefore a major goal for the 

biological sciences. 

The expression level of a protein in a cell depends on the rates of four general 

processes: mRNA synthesis, mRNA decay, protein synthesis, and protein decay. Heritable 

genetic variation can in theory affect any of these complex molecular processes (Fig 1), 

resulting in differences in how cells control the expression of their genes and ultimately in how 

they respond to their environment. However, due in large part to the relative maturity of high-

throughput RNA measurement technologies, empirical and theoretical work has focused on 

mechanisms that act on steady-state mRNA levels or mRNA synthesis rates (6-10). Whether 

variation in protein synthesis rate and protein decay rate contribute to gene expression variation 

and, in particular, dynamic (non-steady-state) gene expression, remains enigmatic. 

The connection between heritable variation in mRNA levels and protein levels is an 

active area of investigation but has overwhelmingly focused on steady-state conditions. Initial 

proteomic surveys of natural variation in steady-state protein levels have found that mRNA 

variation is not well correlated with protein variation (11-18). A mass spectroscopy study of 

genetic variation in yeast underlying steady-state protein levels for highly expressed genes 

found that a minority of variants were linked to mRNA variation (12). Although differences in the 

statistical power of these methods makes direct comparisons challenging, other studies of the 

same yeast strains using fluorescent protein levels instead of mass spectroscopy found that 

only half of genetic variation affecting protein levels also affects mRNA levels (19,20), 

suggesting that this disconnect between mRNA and protein variation is not simply the result of 
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technical limitations of mass spectrometry compared to microarrays or other RNA measurement 

technologies. Recent analyses of translation rate variation using ribosome occupancy under 

steady-state conditions have revealed that genetic variation can act at the protein level to either 

buffer (21,22) or reinforce (23) variation at the mRNA level. 

Although these studies establish that steady-state mRNA variation is not sufficient to 

explain steady-state protein expression, it is not clear how mRNA expression variation, protein 

synthesis rate variation, and protein decay rate variation combine to produce protein expression 

variation. Furthermore, because these studies only focused on steady-state conditions, we do 

not know whether the relationship between mRNA and protein variation is different during 

dynamic processes such as development, disease progression, or response to environmental 

fluctuations. 

In this paper, we analyzed how mRNA and protein expression dynamics vary between 

two strains of Saccharomyces cerevisiae and characterized cases of genetic variation acting at 

the protein level. We focused on five genes with known transcriptional responses to alpha-factor 

mating pheromone in MATa haploids. FIG1(YBR040W)(24), FUS3(YBL016W)(25), and 

GPH1(YPR160W)(26) are transcriptionally activated by alpha-factor while INA1(YLR413W)(27) 

and TOS6(YNL300W)(28) are repressed at the transcript level by alpha-factor (29). We 

compared expression dynamics between the laboratory strain S288c and the clinical isolate 

YJM145 (also referred to as YJM789 (30)) for which differences in their MAP kinase pathway 

and mRNA expression responses to alpha-factor have been characterized (31,32). We found 

that differences in mRNA expression dynamics were unable to explain differences in protein 

expression dynamics for FIG1, FUS3, INA1, and TOS6. We then characterized the relative 

influence of protein synthesis (33) and protein decay (34) rate variation and whether these rates 

vary due to cis-acting (allele-specific) or trans-acting (non-allele-specific) genetic variants or a 

combination of both(35). 
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RESULTS 

Divergence in mRNA and protein expression dynamics. 

We initially sought to (a) evaluate how well divergence in mRNA expression dynamics 

can explain divergence in protein expression dynamics and (b) identify genes with evidence for 

divergence in protein synthesis rate or protein decay rate. We measured the expression level of 

mRNA and protein for the genes FIG1, FUS3, GPH1, INA1, and TOS6 during a time-course of 

alpha-factor mating pheromone response in MATa haploids of the yeast strains S288c and 

YJM145 (Fig 2A-J). Cells were collected from a mid-log culture of each strain throughout an 

eight hour exposure to alpha-factor (50nM final). We measured relative mRNA concentration 

using RT-qPCR (Fig 2A-E) and relative protein concentration using fluorescence microscopy 

(Fig 2F-J) followed by Western Blots for confirmation (S1 Figure). Each time-course experiment 

for each gene was performed in triplicate to evaluate the repeatability and significance of mRNA 

and protein expression divergences between strains. In addition to the ratio of mRNA and 

protein expression between strains (Fig 3A-J), we isolated the divergence in protein expression 

from the divergence in mRNA expression by calculating the divergence in protein units per 

mRNA unit between strains (Fig 3K-O). 

mRNA expression dynamics significantly differed between strains across multiple time-

points for the genes GPH1, INA1, and TOS6 (Fig 3C,D,E) while protein expression dynamics 

significantly differed across multiple time-points for all five genes (Fig 3F-J). For FIG1, mRNA 

expression was very similar between strains (Fig 2A and 3A) while protein expression was 

significantly higher in S288c than YJM145 after an hour of pheromone treatment (Fig 2F, 3F, 

and Fig A,D,E,J in S1 Figure). FIG1 protein per mRNA significantly diverged between the two 

strains over most of the time-course (Fig 3K), indicating that genetic variation is acting directly 

on protein synthesis and/or protein decay. For FUS3, mRNA expression trended toward lower 

expression in S288c (Fig 2B and 3B) while protein expression was significantly higher in S288c 

for most time-points by microscopy and trended higher by Western blot (Fig 2G, 3G, and Fig 
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B,F,G,J in S1 Figure). Furthermore, FUS3 protein per mRNA was significantly higher in S288c 

for most time-points (Fig 2G, 3G,L, and Fig B,F,G,J in S1 Figure), all together indicating another 

likely case of variation in protein synthesis and/or protein decay rates between strains. Although 

GPH1 had dramatically different expression dynamics in the two strains, protein expression 

divergence mirrored mRNA expression divergence (Fig 2C,H and 3C,H,M), indicating that 

genetic variation affecting GPH1 acts predominantly at the transcript level. For INA1, both 

mRNA and protein expression were significantly higher in S288c than YJM145 for most time-

points (Fig 2D,I, 3D,I, and Fig C,H,I,J in S1 Figure). However, at the time point prior to adding 

pheromone, protein per mRNA was significantly lower in YJM145 (Fig 3N), due to the modest 

quantity of mRNA produced by YJM145 resulting in protein levels at the threshold of detection, 

whether assayed by fluorescence microscopy or Western blot (Fig 2D,I and Fig C,H,I,J in S1 

Figure). Finally, both TOS6 mRNA and protein had lower expression in S288c relative to 

YJM145 (Fig 2E,J and 3E,J), but the magnitude of the mRNA expression divergence was 

greater than that of the protein expression divergence (Fig 3E,J,O), again suggesting that 

genetic variation is acting at the protein level. 

Our analysis of mRNA and protein expression dynamics for five genes suggests four 

clear examples of genetic variation that specifically acts on protein synthesis and/or protein 

decay rates. We next sought to further characterize the protein expression divergences in FIG1, 

FUS3, INA1, and TOS6. 

Divergence in protein synthesis versus protein decay rates. 

Our next goal was to evaluate the relative role of protein synthesis rate variation and 

protein decay rate variation for the proteins Fig1p, Fus3p, Ina1p, and Tos6p. We applied the 

protein synthesis inhibitor cycloheximide (20µg/ml final) to cultures of each strain to block 

protein synthesis and then measured relative protein concentration over two hours using 

fluorescence microscopy. We added cycloheximide in the absence of pheromone for Ina1p 
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decay assays and three hours into pheromone treatment for Fig1p, Fus3p, and Tos6p decay 

assays, time-points when protein per mRNA for each gene was highly diverged (Fig 3). 

None of the four proteins had significant differences in protein decay rates between 

strains (Fig 4). Fig1p, Ina1p, and Tos6p protein molecules appear very stable in both strains, 

with decay rates close to zero (Fig 4A,C,D,E). In contrast, Fus3p protein molecules decay 

rapidly, with similar rates in both strains (Fig 4B). 

 The lack of evidence for significant differences in protein decay rates for Fig1p, Fus3p, 

Ina1p, and Tos6p indicate that genetic variation acts on protein synthesis rates for these genes. 

Cis-acting versus trans-acting genetic variation. 

 Our final goal was to determine whether the genetic variation affecting protein 

expression patterns is cis-acting or trans-acting. We focused on FIG1 and INA1. We devised an 

allele-specific protein expression assay to detect cis-acting genetic variation. For each gene we 

added a second copy of the gene fused to a different fluorescent protein in a different genomic 

location. This gave us four derived strains for each gene - two with heterologous alleles in the 

two locations used to measure allelic effects on expression and two with identical alleles used to 

control for fluorophore intensity and genomic location. For FIG1 we compared protein 

expression of each allele during a time-course of pheromone response using fluorescence 

microscopy. We compared allelic expression in INA1 cultures without pheromone, the time-point 

when divergence in protein per mRNA was greatest. 

 FIG1 showed no evidence of allele-specific protein expression. The ratio of expression 

levels of the two strain alleles was close to one in both strain backgrounds (Fig 5A), consistent 

with trans-acting variation. INA1 had a small but significant difference in the protein expression 

of alleles in the S288c strain background (Fig 5B and S2 Figure) while alleles had low and 

indistinguishable expression in the YJM145 strain background (Fig 5B and S2 Figure). Thus 

INA1’s low protein expression in YJM145 appears to be due to a combination of genetic 

variation acting in cis and in trans. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2016. ; https://doi.org/10.1101/090480doi: bioRxiv preprint 

https://doi.org/10.1101/090480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

 

DISCUSSION 

The central question driving this work was: how well does natural variation in mRNA 

expression explain natural variation in protein expression under dynamic conditions. All five 

genes in our study had significant differences in protein expression responses to pheromone 

between strains (Fig 2 and 3), but GPH1 was the only gene for which the variation in mRNA 

expression largely explained the variation in protein expression. The other four genes exhibited 

distinct patterns of discordance in expression divergence between mRNA and protein. We 

observed one case of conserved mRNA and divergent protein (FIG1), two cases of opposing 

(compensating or buffering) variation at the mRNA and protein levels (FUS3 and TOS6), and 

one case of reinforcing variation where a quantitative divergence at the mRNA level turned into 

nearly a complete loss of expression in one strain at the protein level (INA1). From this small 

study of pheromone responsive genes, it is clear that the patterns of divergence at the mRNA 

and protein levels can be diverse. It is also clear that variation in mRNA expression dynamics is 

insufficient to explain protein expression dynamics for most genes (in our case 80%). 

Our goal in this small study was not to provide an estimate of the global fraction of genes 

with genetic variation specifically targeted to protein dynamics. Instead, we wanted to explore 

the types of concordance and discordance between variation in mRNA and protein trajectories. 

To our surprise we found a variety of patterns within a handful of genes. We selected these 

genes because they were known to have dynamic mRNA expression patterns (29), which was 

important given our focus on dynamics. Previous work had also shown that FIG1, FUS3, and 

GPH1 were differentially induced at the mRNA level between S288c and YJM145 30 minutes 

into a 5µM pheromone treatment and that INA1 and TOS6 were not (32). Nothing was known 

about any differences in protein levels. Moreover, except for GPH1, our measurements of 

mRNA divergence were inconsistent with the single time-point study of Zheng et al.(32), 

perhaps because of differences in strain background, pheromone dose, or other experimental 
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factors. With respect to our central question, we had no prior information for any of the genes. 

Consequently, we have no reason to believe these five genes are somehow unusual, and we 

suspect that a large fraction of regulated genes in the genome will exhibit divergence in protein 

expression dynamics that cannot be explained solely by transcript level divergence. 

 Our first result implied a role for genetic variation acting on protein expression through a 

mechanism that does not impact mRNA expression levels. Processes that add or subtract 

protein from the cell given a pool of mRNA are protein synthesis and protein decay. 

Mechanisms for the protein synthesis rate variation described here could act as early as 

translation initiation (33) and as late as translation termination as our Western blots and 

fluorescence assays require a mature fluorophore for detection. Though we noted some 

discrepancy in absolute variation values between our Western blotting and fluorescence 

microscopy data (S1 Figure) - which could be the result of variation in protein folding or simply 

methodological biases such as solubility of membrane-associated proteins (Fig1p and Ina1p) - 

the trends in variation remained the same. Protein decay is inclusive of passive decay as well 

as regulated decay (34). 

Our second goal was to categorize the mechanistic basis of variation in protein 

expression dynamics as occurring at the level of either protein decay or protein synthesis rate or 

a mixture of both. Our decay rate assay does not control for the effect cycloheximide has on the 

protein decay machinery itself and so is not an absolute measure of protein decay rate but a 

relative one between the strains (see Methods). For Fig1p, Ina1p, and Tos6p, decay rates were 

very low and not significantly different between strains, indicating divergence in protein 

synthesis rate is the more likely cause of divergence in expression of these proteins. However, 

for Fus3p, decay rates were high - and therefore could have contributed to protein expression 

divergence - but were not significantly different between strains. Thus our integrated approach 

enabled us to identify four cases of divergence in protein expression dynamics that are likely 

explained by protein synthesis rate variation. 
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Our final goal was to classify the genetic variation underlying divergence in protein 

expression dynamics as allele-specific cis-acting or non-allele-specific trans-acting (35). Recent 

analyses of ribosome occupancy and protein levels by mass spectrometry in diploid hybrids of 

yeast strains and species found similar proportions of cis- and trans-acting variation underlying 

mRNA divergence and protein synthesis rate divergence under steady-state conditions, with 

higher levels of trans-acting variation between strains and higher levels of cis-acting variation 

between species (15,21-23). We developed a microscopy-based allele-specific protein 

expression assay and applied it to protein expression divergences in Fig1p and Ina1p. 

Consistent with the genome-wide, steady-state observations of more prevalent trans-acting 

variation within populations, we observed trans-acting effects for both Fig1p and Ina1p 

expression. FIG1 had conserved mRNA and diverged protein expression dynamics and thus the 

lack of allele-specific expression in Fig1p enabled us to conclude that the divergence in Fig1p 

protein expression dynamics can be explained by genetic variation acting in trans on protein 

synthesis rates. The results for INA1 imply a more complicated mechanism for the divergence of 

Ina1p expression. Because INA1 had diverged mRNA and even more diverged protein 

expression, the divergence in protein expression is likely the result of multiple genetic variants 

acting at both the transcript and protein levels. Furthermore, the presence of allele-specific 

expression in the S288c strain background and the absence of allele-specific expression in the 

YJM145 strain background suggest an epistatic interaction between cis-acting and trans-acting 

genetic variants, such that the cis-acting effects of INA1 alleles are lost in the presence of the 

trans-acting YJM145 strain background. So called cis-trans epistasis has been observed before 

at the transcript level (36), however this is the first example to our knowledge of cis-trans 

epistasis acting at both the transcript and protein levels. Thus divergence in Ina1p expression 

appears to result from a complex epistatic interaction of genetic variants acting in cis and trans 

on transcript level and protein synthesis rate. 
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In this study we dissected how genetic variation affects divergence in protein expression 

under the dynamic conditions of the pheromone response. We identified contributions from 

mRNA variation and protein synthesis rate variation, and for two examples further characterized 

the contributions of cis-acting and trans-acting genetic variants. Future studies will focus on 

identifying the causal polymorphisms and how they impact cellular machinery. Given that 

protein per mRNA levels for all genes were either conserved or higher in S288c relative to 

YJM145, that Fig1p, Fus3p, Ina1p, and Tos6p all had evidence of divergence in protein 

synthesis rates, and that both Fig1p and Ina1p had evidence of trans-acting genetic variation, it 

is possible that some or all of these genes share a causal mechanism. Recently developed 

methods for mapping the genomic location of genetic variation underlying protein expression 

levels (19,20,37) could be applied to FIG1, FUS3, and INA1. The compensatory nature of the 

genetic variation acting on FUS3 and TOS6 protein synthesis rates may require controlling for 

the genetic variation acting at the transcript level in order to observe mappable segregation of 

protein expression levels. 

Our study focused on the causes of divergence in protein expression dynamics as 

opposed to steady-state expression levels. Had we only measured steady-state expression 

during log growth, we would have concluded that just one out of the five genes have mRNA 

variation that fails to explain protein expression variation. Although convenient for replicated 

laboratory studies, steady-state conditions are highly artificial. Gene expression is a dynamic 

process (38), and the effects of polymorphisms often act at specific times (39) or influence rates 

of protein synthesis or decay. Including dynamics gave us a much richer view of how phenotypic 

variation is generated and may benefit future studies of genetic variation. 
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MATERIALS AND METHODS 

Base strains 

We acquired a MATa lys5(YGL154C) gal2(YLR081W) strain of S288c called ZWY01 

and a MATa gal2 strain of YJM145 (30,40) called YJM789K5 from Michael Snyder at Stanford 

University. Using W303 alleles of LYS5 and GAL2, we created prototrophic strains with 

functional galactose metabolic pathways. In both strains, we deleted the genes 

URA3(YEL021W) for use as a selection marker, AMN1(YBR158W) to prevent clumping and 

facilitate single-cell imaging (41), and BAR1(YIL015W) to prevent active degradation of 

pheromone in our experiments (42,43). The resulting strains, YSR0095 (S288c MATa 

lys5::W303-LYS5, gal2::W303-GAL2, ura3::loxp, amn1::loxp, bar1::loxp) and YSR0096 

(YJM145 MATa gal2::W303-GAL2, ura3::loxp, amn1::loxp, bar1::loxp), were used to construct 

all other strains in this study.  

Citrine strains 

For each of the five genes in the study, we created c-terminal translational fusions with 

the yellow fluorescent protein gene yECitrine and a 3x HA tag in each of the two strain 

backgrounds (S288c and YJM145). We constructed the plasmid pDAP5 to contain the cassette 

linker-yECitrine-3xHA-ADH1t-TEFp-CaURA3. The cassette was PCR amplified with a forward 

primer containing a 40bp overlap with the last 40bp of each gene before the stop codon and a 

reverse primer containing a 40bp overlap with the first 40bp following the stop codon. We 

transformed the PCR product into YSR0095 and YSR0096 and selected on -URA media for 

transformants with the cassette having replaced the stop codon for the targeted gene. 

Integration was verified using PCR, sequencing, and fluorescence microscopy. Using this 

approach we constructed ten citrine strains: YSR0115 (S228 FIG1::yECitrine), YSR0104 

(YJM145 FIG1::yECitrine), YSR0097 (S228c FUS3::yECitrine), YSR0098 (YJM145 

FUS3::yECitrine), YSR0135 (S288c GPH1::yECitrine), YSR0136 (YJM145 GPH1::yECitrine), 
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YSR0143 (S288c INA1::yECitrine), YSR0144 (YJM145 INA1::yECitrine), YSR0122 (S288c 

TOS6::yECitrine), and YSR0123 (YJM145 TOS6::yECitrine). 

Pre-experiment strain handling 

Prior to each experiment described below, we streaked out strains from frozen glycerol 

stocks onto solid media, incubated at 30˚ for ~24 hours, picked colonies into small overnight 

liquid media cultures at 30˚, and diluted to appropriate cell density based on inferred cell count 

from OD600. 

Liquid media 

We performed all experiments using low fluorescence (-riboflavin -folic acid) synthetic 

complete 2% glucose media. CSM and YNB supplied by Sunrise Science. 

mRNA and protein expression time-courses 

We performed each time-course experiment in triplicate over three days. We cultured 

and handled both the S288c and YJM145 citrine strains for a given gene simultaneously in an 

identical manner. To measure and control for autofluorescence levels during protein 

quantification, we also cultured the strains YSR0095 (S288c) and YSR0096 (YJM145) that lack 

the yECitrine gene simultaneously in an identical manner. We started 200ml cultures at an 

OD600 of ~0.07 and grew them for three hours to an OD600 of ~0.28. We added alpha-factor 

pheromone (Zymo) to a final concentration of 50nM to the cultures and collected cells from the 

cultures for RNA and protein quantification just prior to adding pheromone (0hr) and then at four 

time-points over the following eight hours (1hr, 2hr, 4hr, and 8hr). 

RNA sample collection and total RNA preparation 

We collected 50ml of culture at the 0hr time-point, calculated the cell count from 

4,269,000 cells per ml per unit OD600 for S288c and 4,785,000 cells per ml per unit OD600 for 

YJM145, and then collected the same number of cells for the remaining four time-points (~107-

108). Cells were spun down, aspirated, snap frozen in liquid nitrogen, and stored at -80˚. Frozen 

cell pellets for an entire experiment were thawed, and ribosome depleted total RNA was isolated 
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according to the manufacturer’s instructions for the Ambion Yeast RiboPure RNA Purification Kit 

(AM1926). 

cDNA preparation and RT-qPCR quantification 

We produced cDNA from 2µg of our RNA samples according to the manufacturer’s 

instructions for the Applied Biosystems High Capacity cDNA Reverse Transcription Kit 

(4368814). For RT-qPCR quantification, we used primers targeting yECitrine (oDAP391: 

CCCATACGATGTTCCTGACTATG, oDAP392: AGCACTGAGCAGCGTAATC) and the control 

gene RPL7AB (oDAP369: GTCTACAAGAGAGGTTTCGGTAAG, oDAP370: 

CCCAAGTTGGCTTCGATGATA). To normalize for variation in total cDNA, we used the control 

gene RPL7AB. We tested several genes with the lowest mRNA variation during pheromone 

response (29) and RPL7AB gave the most robust PCR product. We ran the samples for each 

time-course experiment in technical triplicate on the same 96-well plate together with serial 

dilutions of a pooled mix covering four orders of magnitude. We used 15µl reactions with 

Applied Biosystems Power SYBR Green Master Mix in a BioRad CFX Connect Real-Time PCR 

Detection System. Using the BioRad CFX Manager we calculated SQ (Starting Quantity) values 

for each non-serial dilution well. We calculated expression levels for each technical replicate of 

each sample by dividing the yECitrine primers SQ value by the average over technical 

replicates of the RPL7AB primers SQ values. 

Protein sample collection 

 We collected 1ml of culture and concentrated or diluted the sample to ~106 cells in 100µl 

of media based on OD600. We pre-treated wells in a 96-well glass bottom plate with 1.5mg/ml 

Concanavalin A. We plated samples into pre-treated wells, pelleting at 200g for 2 minutes, and 

then imaged immediately. 

Protein imaging and quantification 

We imaged three randomly selected positions in each sample well at 60x or 63x. For 

each position we acquired a single in focus fluorescence image and a stack of brightfield 
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images for automatic segmentation. In order to get the average fluorescence level within 

individual cells for many images, we automatically segmented the images using a version of an 

existing algorithm (43) modified in Matlab to handle expression patterns in our shmooing cells. 

For our modifications we considered many z-slices away from the focal plane in order to capture 

the shape of the neck and shmoo tip and we also swelled the outline of the cell three pixels in 

order to fully include the cell membrane where both FIG1 and INA1 localize. For each 

segmented cell in an image, we calculated mean fluorescence pixel intensity. We used 

fluorescence levels in our base strains YSR0095 and YSR0096 that lack the yECitrine gene, 

and therefore only autofluoresce, to calculate two statistics: minimum mean pixel intensity and 

expected autofluorescence. The minimum mean pixel intensity was used to identify segmented 

objects that are not cells. If the distribution of mean pixel intensities for YSR0095 or YSR0096 

was monomodal then we used the 0.01 quantile of the distribution for this threshold. If the 

distribution was bimodal, we fit a mixture of two gaussians and used the 0.01 quantile of the 

gaussian with the larger mean. Similarly, we set the autofluorescence at the median of the 

distribution when monomodal or the mean of the gaussian with the larger mean when bimodal. 

Using these two statistics, we filtered out non-cells and subtracted off the autofluorescence level 

from our fluorescence samples. We used the mean over cells of the mean pixel intensity for 

each of the three image positions for downstream analysis. 

RNA and Protein time-course alignment and statistical analysis 

 For accurate statistical comparison of RNA and protein expression values between 

biological replicates performed on different days with similar but not identical time-points, we 

estimated the expression level at the idealized time-points of 0hr, 1hr, 2hr, 4hr, and 8hr. To do 

this, we constructed 243 unique paths through the technical triplicates at the five time-points, 

estimated the expression level at the idealized time-points on each path using linear 

interpolation, and then used the mean estimated value over the 243 paths as the expression 

level. Because the S288c and YJM145 strains were paired together for each biological replicate, 
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we used a paired t-test in R(44), comparing the log ratio of expression between the strains 

across biological replicates to an expected value of zero. 

Western Blot analysis 

For FIG1 and FUS3 strains, we added alpha-factor (50nM final) to mid-log cultures,and 

harvested 108 cells after three hours. As INA1 is suppressed by pheromone, cells were 

collected from mid-log cultures that were not treated with alpha-factor. Cell pellets were snap-

frozen in liquid nitrogen and stored at -20 until needed. We extracted the proteins according to 

previously published methods (45), but scaled up to accommodate the higher cell density. 

Proteins were resolved by SDS-PAGE on transferred onto nitrocellulose (0.45um, Protran) for 

Ponceau staining and probing with mouse anti-HA antibodies (1:4000 dilution, Sigma Aldrich) 

followed by goat anti-mouse HRP-coupled IgG (1:30,000 diluation, Thermo Fisher Scientific). 

Ponceau S stain of transferred proteins was used for sample normalization and Westerns were 

visualized using a chemiluminescent HRP antibody detection reagent (Amersham). ImageJ was 

used for all quantification of bands. Replicate images were acquired and results were averaged 

across replicates. 

Protein decay 

 We performed five biological replicates comparing the protein decay rates between the 

FIG1::yECitrine strains YSR0115 (S288c) and YSR0104 (YJM145), the FUS3::yECitrine strains 

YSR0097 (S288c) and YSR0098 (YJM145), the INA1::yECitrine strains YSR0143 (S288c) and 

YSR0144 (YJM145), and the TOS6::yECitrine strains YSR0122 (S288c) and YSR0123 

(YJM145). We added alpha-factor (50nM final) to mid-log cultures of FIG1, FUS3, and TOS6 

strains, incubated cultures for three hours, and collected cells from the culture as described 

above in “Protein sample collection”. For INA1 strains we collected cells from mid-log cultures 

as described above in “Protein sample collection”. To halt protein synthesis and observe protein 

decay, we added cycloheximide (20µg/ml final) to sample wells(46). Twenty minutes after the 

addition of cycloheximide, we began imaging a new position in the well every ~10 minutes using 
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the approach described above in “Protein imaging and quantification”. We performed two 

controls using YSR0115, the S288c FIG1::yECitrine strain, to verify the alpha-factor and 

cycloheximide were functioning properly. To mid-log YSR0115 we added alpha-factor and 

cycloheximide simultaneously, imaged as the samples were imaged, and confirmed 

cycloheximide function by never observing induction of FIG1 expression. And to mid-log 

YSR0115 we added alpha-factor, and as the samples were imaged, and confirmed alpha-factor 

function by observing normal induction of FIG1 expression. We estimated the decay rate 

parameter (lambda) for each gene in each strain by linear regression of the log of the mean 

over cells of the mean mean pixel intensity across time-points in the cycloheximide treatment. 

We used a paired t-test, comparing the log ratio of the lambda values between the strains 

across biological replicates to an expected value of zero. Because FIG1, INA1, and TOS6 

lambda values were all close to zero and included both positive and negative values, we 

transformed the FIG1 lambda values by adding 1 to each. 

Cis-acting vs trans-acting 

We measured allele-specific protein expression using fluorescence microscopy with two 

different fluorophore colors in translational fusions with alleles in the same strain. For each of 

FIG1 and INA1, starting with the two Citrine strains, we replaced the already deleted ura3 open 

reading frame with a second copy of FIG1 or INA1. The added DNA included the upstream 

noncoding region of the gene, the coding sequence of the gene in a c-terminal translational 

fusion with the blue fluorescent protein gene yECerulean, a 12xMyc tag, and the KanMX G418 

resistance gene. We either constructed the cassettes in a plasmid containing 1kb sequences 

flanking the ura3 open reading frame that was then linearized and transformed in the Citrine 

strains or we constructed and transformed the cassettes simultaneously using 

recombineering(47). The latter proved more efficient and robust. We verified integration using 

PCR, sequencing, and fluorescence microscopy. Using these approaches we constructed eight 

citrine/cerulean strains: YSR0147 (S288c FIG1S288c::yECitrine FIG1S288c::yECerulean), YSR0148 
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(S288c FIG1S288c::yECitrine FIG1YJM145::yECerulean), YSR0149 (YJM145 FIG1YJM145::yECitrine 

FIG1S288c::yECerulean), YSR0150 (YJM145 FIG1YJM145::yECitrine FIG1YJM145::yECerulean), 

YDP0018 (S288c INA1S288c::yECitrine INA1S288c::yECerulean), YDP0019 (S288c 

INA1S288c::yECitrine INA1YJM145::yECerulean), YDP0020 (YJM145 INA1YJM145::yECitrine 

INA1S288c::yECerulean), and YDP0021 (YJM145 INA1YJM145::yECitrine INA1YJM145::yECerulean). 

For FIG1 we treated with alpha-factor and performed time-course imaging experiments as 

described above but now imaging both yECitrine and yECerulean. We performed five biological 

replicates for FIG1 (two data points were removed for one of the replicates due to imaging 

errors), and three biological replicates for INA1. For INA1 we did not treat with alpha-factor and 

imaged mid-log cultures. We used the strains with different alleles in fusions with yECitrine and 

yECerulean to measure allele-specific expression and we normalized for fluorophore intensity 

and genomic location using the strains with the same allele in fusions with yECitrine and 

yECerulean. For example, we calculated the following for FIG1: 

𝐴𝑙𝑙𝑒𝑙𝑒 𝑅𝑎𝑡𝑖𝑜!!""! !"

=  log!"
𝑌𝑆𝑅0148 𝐹𝐼𝐺1!!""! ∷ 𝑦𝐸𝐶𝑖𝑡𝑟𝑖𝑛𝑒

𝑌𝑆𝑅0148 𝐹𝐼𝐺1!"#!"# ∷ 𝑦𝐸𝐶𝑒𝑟𝑢𝑙𝑒𝑎𝑛

− log!"
𝑌𝑆𝑅0147 𝐹𝐼𝐺1!!""! ∷ 𝑦𝐸𝐶𝑖𝑡𝑟𝑖𝑛𝑒
𝑌𝑆𝑅0147 𝐹𝐼𝐺1!!""! ∷ 𝑦𝐸𝐶𝑒𝑟𝑢𝑙𝑒𝑎𝑛

 

𝐴𝑙𝑙𝑒𝑙𝑒 𝑅𝑎𝑡𝑖𝑜!"#!"# !"

=  log!"
𝑌𝑆𝑅0149 𝐹𝐼𝐺1!!""! ∷ 𝑦𝐸𝐶𝑖𝑡𝑟𝑖𝑛𝑒

𝑌𝑆𝑅0149 𝐹𝐼𝐺1!"#!"# ∷ 𝑦𝐸𝐶𝑒𝑟𝑢𝑙𝑒𝑎𝑛

− log!"
𝑌𝑆𝑅0150 𝐹𝐼𝐺1!"#!"# ∷ 𝑦𝐸𝐶𝑖𝑡𝑟𝑖𝑛𝑒
𝑌𝑆𝑅0150 𝐹𝐼𝐺1!"#!"# ∷ 𝑦𝐸𝐶𝑒𝑟𝑢𝑙𝑒𝑎𝑛

 

𝑆𝑡𝑟𝑎𝑖𝑛 𝐵𝐺 𝑅𝑎𝑡𝑖𝑜 =  log!"
𝑌𝑆𝑅0147 𝐹𝐼𝐺1!!""! ∷ 𝑦𝐸𝐶𝑖𝑡𝑟𝑖𝑛𝑒

𝑌𝑆𝑅0150 𝐹𝐼𝐺1!"#!"# ∷ 𝑦𝐸𝐶𝑒𝑟𝑢𝑙𝑒𝑎𝑛
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Fig 1. Mechanisms of gene expression variation. 

Genetic variants can act on gene expression by affecting the rates of mRNA synthesis, mRNA 

decay, protein synthesis, and protein decay. 
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Fig 2. Example mRNA and protein expression responses to pheromone in strains S288c 

and YJM145. 

(A-J) Example RNA and protein expression time-courses in S288c (red triangles, lines, and 

shadows) and YJM145 (blue triangles, lines, and shadows) following addition of pheromone at 

time 0hr. Triangles are mean expression over technical triplicates and shadows are 95% 

confidence intervals. All plots are rescaled to arbitrary units (a.u.) of a maximum value of one for 

visualization purposes. 
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Fig 3. Comparison of average expression responses to pheromone between strains 

S288c and YJM145. 

(A-J) Ratio of mRNA or protein expression in S288c over YJM145. (K-O) Ratio of protein per 

RNA in S288c over YJM145. Circles are mean ratio over biological triplicates and shadows are 

95% confidence intervals. Dashed horizontal line is ratio of 1. Y-axes are log10 scale. 
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Fig 4. Relative protein decay rate between strains S288c and YJM145. 

(A-D) Example protein decay time-courses in S288c (red circles) and YJM145 (blue triangles). 

Pheromone added at time -3hr for Fig1p (A), Fus3p (B), and Tos6p (D). Cycloheximide added at 

time 0hr. Circles and triangles are log10 of expression. Lines are linear regression on log10 of 

expression through time. (E) Decay rate parameter lambda estimated from the negative slope of 

the linear regression line fit to log10 of expression through time. Bar heights are mean lambda 

over biological triplicates and error bars are 95% confidence intervals. 
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Fig 5. Allele-specific protein expression. 

(A) Ratio of S288c to YJM145 Fig1p protein allele expression within and between strain 

backgrounds following addition of pheromone at time 0hr. Symbols are mean ratio over 

biological triplicates and shadows are 95% confidence intervals. Horizontal line is ratio of 1. Y-

axis is log10 scale. (B) Ratio of S288c to YJM145 Ina1p protein allele expression within and 

between strain backgrounds during steady-state growth. Bar heights are mean ratio over 

biological triplicates and error bars are 95% confidence intervals. Horizontal line is ratio of 1. Y-

axis is log10 scale. 
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S1 Figure. Confirmation of protein expression divergences by Western blot. 

(A-C) Example western blots for Fig1p (A), Fus3p (B), and Ina1p (C). Two centermost lanes 

represent an undiluted amount of protein for each strain. Each lane thereafter has been serially 

diluted by 20%. Lanes marked by an asterisk were used to make the comparisons with the 

microscopy. (D-I) Band intensity profiles for adjacent boxed blot bands. Pixel intensities were 

estimated by selecting the area under the peaks using ImageJ’s gel analyzer tool(48). (J) Mean 

ratio of protein expression between strains over biological replicates. Error bars are 95% 

confidence intervals. 
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S2 Figure. Example allele-specific INA1 protein expression. 

Example expression levels of alleles of the INA1 locus from strains S288c and YJM145 in each 

of the two strain backgrounds. Y-axis is log10 scale. 
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