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Plant and animal nucleotide-binding domain and leucine-rich repeat-containing (NLR) 
proteins often function in pairs to mediate innate immunity to pathogens. However, the 
degree to which NLR proteins form signaling networks beyond genetically linked pairs is 
poorly understood. In this study, we discovered that a large NLR immune signaling 
network with a complex genetic architecture confers immunity to oomycetes, bacteria, 
viruses, nematodes, and insects. The network emerged over 100 million years ago from a 
linked NLR pair that diversified into up to one half of the NLR of asterid plants. We 
propose that this NLR network increases robustness of immune signaling to counteract 
rapidly evolving plant pathogens. 
 

Plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NLR) 
proteins to activate immune responses to invading pathogens (1-3). NLR are among the most 
diverse and rapidly evolving protein families in plants (4, 5). They are modular proteins that 
broadly fall into two classes based on their N-terminal domain, which is either a Toll-interleukin 
1 receptor (TIR) or a coiled coil (CC) domain (6). Most plant disease resistance genes encode 
NLR receptors that detect effector proteins secreted by pathogens either by directly binding them 
or indirectly via effector-targeted host proteins (3, 7). An emerging model is that “sensor” NLR 
dedicated to detecting pathogen effectors require “helper” NLR to initiate immune signaling 
resulting in a hypersensitive cell death response that restricts pathogen invasion (8-12). Although 
paired NLR have been described across flowering plants, the degree to which plant NLR have 
evolved to form higher order networks is poorly known. 
 
The Solanaceae form one of the most species-rich plant families that includes major agricultural 
crops, such as potato, tomato and pepper (13). Solanaceae genomes harbor hundreds of NLR-
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type genes, over 20 of which have been demonstrated to confer resistance to infection by diverse 
and destructive pathogens and pests, including the Irish potato famine agent Phytophthora 
infestans (14, 15). As part of a study performed in Nicotiana benthamiana to identify genetic 
components required for resistance to P. infestans conferred by the potato NLR-type gene Rpi-
blb2 (16, 17), we discovered that another NLR protein, NRC4 (NLR required for cell death 4) (9, 
18), is required for Rpi-blb2 function (Fig. 1). Silencing of NRC4 compromised Rpi-blb2 
resistance to P. infestans (Fig. 1A) and hypersensitive cell death to the P. infestans AVRblb2 
effector (Fig. 1B) (17). This phenotype was rescued by a silencing-resilient synthetic NRC4 gene 
(Fig. 1C-D, Fig. S1A-B). NRC4-silencing did not affect Rpi-blb2 accumulation (Fig. S1C). 
Mutation in the ATP-binding p-loop motif of both Rpi-blb2 and NRC4 abolished their activities 
(Fig. S2). Thus a strict sensor/helper model where only one NLR requires ATP binding (19, 20) 
is too simple to explain the interaction between the Rpi-blb2/NRC4 pair. 
 
NRC4 defines a distinct clade within the NRC family (Fig. S3A)(18). Of the 9 NRC genes in N. 
benthamiana, four were expressed to significant levels in leaves but only NRC4 transcript levels 
were reduced in NRC4-silenced plants (Fig. S1D, Fig. S3B). Among the expressed genes, NRC2 
and NRC3 are required for bacterial resistance mediated by the NLR protein Prf in N. 
benthamiana (9, 21) but were not essential for Rpi-blb2 functions in our silencing experiments 
(Fig. 1A-B). In contrast, NRC4 was not essential for Prf-mediated cell death and resistance to the 
bacterial pathogen Pseudomonas syringae (Fig. 1B; Fig. S4).  
 
Phylogenetic analyses of the complete repertoire of NLR proteins from the solanaceous plants 
tomato, potato, pepper and N. benthamiana revealed that the NRC family groups with the Rpi-
blb2 and Prf clades in a well-supported superclade (Fig. S5). Interestingly, this superclade 
includes additional well-known NLR, such as Rx (22, 23), Bs2 (24), R8 (25), Sw5b (26), R1 (27) 
and Mi-1.2 (28), which confer resistance to diverse plant pathogens and pests (Fig. S5; Table 
S1). This prompted us to test the extent to which NRC proteins are involved in immune 
responses mediated by these phylogenetically related disease resistance proteins.  
 
Silencing of NRC2 and NRC3 only affected Prf and did not alter the hypersensitive cell death 
mediated by 13 other NLR proteins (Fig. 2). In contrast, silencing of NRC4 compromised the 
hypersensitive cell death mediated by Mi-1.2 (28), an Rpi-blb2 ortholog that provides resistance 
to nematodes and insects; CNL-11990D474V (18), an autoactive mutant of a CNL (NLR with a N-
terminal coiled-coil domain) of unknown function, and R1 (27), an NLR that confers resistance 
to P. infestans (Fig. 2, Fig. S6A). Further, NRC4 silencing abolished R1-mediated disease 
resistance to P. infestans and the phenotype was rescued by a silencing-resilient synthetic NRC4 
gene (Fig. S6B-D). 
 
Given that the three expressed NRC proteins share extensive sequence similarity (Fig. S7), we 
hypothesized that NRC2, NRC3 and NRC4 are functionally redundant for additional NLR in the 
“NRC” superclade (Fig. 2). To test our hypothesis, we simultaneously silenced the three NRC 
genes and discovered that silencing compromised hypersensitive cell death mediated by Sw5b, 
R8, Rx and Bs2 in addition to the 5 NLR mentioned above (Fig. 2, Fig. S8, Fig. S9). In contrast, 
the triple NRC silencing did not affect hypersensitive cell death mediated by the 5 tested NLR 
that map outside the NRC superclade (Fig. 2) and did not abolish resistance to P. infestans 
conferred by two of these NLR proteins (Fig. S10). 
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We validated NRC2, NRC3 and NRC4 redundancy by complementation in the triple silencing 
background with silencing-resilient synthetic NRC (Fig. S11). This confirmed that the three NRC 
proteins display specificity to Rpi-blb2 and Prf but have redundant functions in Rx, Bs2, R8 and 
Sw5b mediated hypersensitive cell death (Fig. S11).  
 
To further validate that NRC2, NRC3 and NRC4 redundantly contribute to immunity, we 
examined the resistance mediated by Rx to Potato virus X (PVX) (22, 23) in plants silenced for 
single, double or triple combinations of NRC genes (Fig. S12). Rx-mediated resistance to PVX 
was only abolished in the triple silencing background resulting in systemic spread and 
accumulation of the virus (Fig. S12, Fig. S13). Remarkably, silencing-resilient synthetic NRC2, 
NRC3 and NRC4 individually complemented the loss of resistance to PVX in triple NRC-
silenced plants confirming their functional redundancy (Fig. S14). This and previous results 
indicate that the three NRC proteins display varying degrees of redundancy and specificity 
towards the 9 NLR revealing a complex immune signaling network (Fig. S15). 
  
Our observation that NRC proteins and their NLR mates are phylogenetically related (Fig. S5) 
prompted us to reconstruct the evolutionary history of the NRC superclade. Higher order 
phylogenetic analyses of complete NLR repertoires from representative plant taxa revealed that 
the NRC superclade is missing in rosids but present in all examined caryophyllales (sugar beet) 
and asterids (kiwifruit, coffee, monkey flower, ash tree and Solanaceae species) (Fig. S16, Fig. 
3A-B, Fig. S17-20). Interestingly, sugar beet and kiwifruit, the early branching species, have 
only a single protein that groups with the NRC family, along with 2 and 4 NLR that cluster with 
the NRC-dependent NLR (Fig. 3A-B, Fig. S20). The dramatic expansion of the NRC superclade 
started prior to the divergence of Gentianales (coffee) from other asterids about 110-100 million 
years ago (29, 30) to account for over one half of all NLR in some of the species (Fig. 3B). We 
conclude that the NRC superclade evolved from an ancestral pair of genetically linked NLR 
genes, as in sugar beet, to duplicate and expand throughout the genomes of asterid species into a 
complex genetic network that confers immunity to a diversity of plant pathogens (Fig. 3C-D, 
Fig. S21).   

Thus, NLR pairs can evolve into a signalling network with a complex architecture. However, 
NLR evolution must be constrained by their mode of action. The selective pressures shaping the 
evolution of NLR pairs that operate by negative regulation would limit their expansion due to the 
genetic load caused by autoimmunity (Fig. S22). The NRC family appears to function through a 
mechanism that accommodates evolutionary plasticity beyond genetically linked pairs of NLR.  
 
Genetic redundancy increases robustness of signaling networks (31-33). The NRC network may 
therefore augment the plant capacity to counteract rapidly evolving pathogens. Multiple NRC 
would further enhance evolvability of sensor NLR, i.e. their capacity to undergo rapid adaptive 
evolution. Harnessing the processes that underpin NLR network structure and function would 
open up new approaches for developing disease resistant crops. 
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Fig. 1. NRC4 is required for Rpi-blb2-mediated immunity 
(A) Silencing of NRC4 compromises Rpi-blb2-mediated resistance. Phytophthora infestans 
strain 88069 (Pi 88069) was inoculated on Rpi-blb2 transgenic Nicotiana benthamiana pre-
infected with Tobacco rattle virus (TRV) to silence NRC2/3 or NRC4. Wild type (WT) plant 
with TRV empty vector (TRV-EV) was used as a susceptible control. Experiments were repeated 
3 times with 24 inoculation sites each time. The numbers on the right bottom indicate the sum of 
spreading lesions/total inoculation sites from the three replicates. Images were taken under UV 
light at 4 days post inoculation (dpi). (B) Silencing of NRC4 compromises Rpi-blb2- but not Prf-
mediated hypersensitive cell death. Rpi-blb2/AVRblb2 or Pto/AvrPto (cell death mediated by Prf) 
were co-expressed in NRC2/3- or NRC4-silenced plants by agroinfiltration. Hypersensitive 
response (HR) was scored at 7 days after agroinfiltration. Bars represent mean + SD of 24 
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infiltration sites. Statistical differences among the samples were analyzed with ANOVA and 
Tukey’s HSD test (p-value < 0.001). (C) Expression of silencing-resilient synthetic NRC4 
(NRC4syn) rescues Rpi-blb2-mediated resistance in NRC4-silenced plants. Experiments were 
repeated 3 times with 24 inoculation sites each time. The numbers on the right bottom indicate 
the sum of spreading lesion/total inoculation sites from the three replicates. Images were taken 
under UV light at 5 days post inoculation (dpi). (D) Expression of silencing-resilient synthetic 
NRC4 (NRC4syn) rescues Rpi-blb2-mediated cell death in NRC4-silenced plants. Hypersensitive 
response (HR) was scored at 7 days after agroinfiltration. Bars represent mean + SD of 24 
infiltrations sites. Statistical differences among the samples were analyzed with ANOVA and 
Tukey’s HSD test (p-value < 0.001). 
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Fig. 2. NRC clade and its sister clades form a complex signaling network 
Left panel: phylogenetic tree of NLR proteins identified from genomes of solanaceous plants, 
simplified from Fig. S5. Middle panel: list of pathogens and avirulence effectors (AVR) sensed 
by the corresponding NLR immune receptors. TSWV, tomato spotted wilt virus; Ps., 
Pseudomonas; PVX, Potato virus X; X., Xanthomonas. Right panel: analysis of hypersensitive 
cell death mediated by different solanaceous NLR proteins in NRC-silenced plants. Different 
NLR and AVR effector combinations were expressed in control (EV), NRC2/3-, NRC4-, 
NRC2/3/4- and SGT1-silenced plants by agroinfiltration. “+” indicates cell death phenotype was 
observed. “-” indicates cell death phenotype was compromised. Hypersensitive response (HR) 
was scored at 7 days after agroinfiltration. Bars represent mean + SD of 24 infiltration sites. 
Statistical differences among the samples were analyzed with ANOVA and Tukey’s HSD test 
(P-value < 0.001). aPathogen proteins sensed by Mi-1.2 have not been identified yet. Hence, the 
autoactive mutant Mi-1.2T557S was used here. bCo-expression of Pto and AvrPto was used for 
testing Prf-mediated cell death. cCNL-11990, a CNL cloned from tomato, has no assigned 
function. The autoactive mutant CNL-11990D474V was used here. dBs4 senses both AvrBs3 and 
AvrBs4 from X. campestris. AvrBs3 was used here. 
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Fig. 3. NRC-superclade emerged from a NLR pair over 100 million years ago 
(A) Phylogeny of CNL (CC-NLR) identified from asterids (kiwifruit, coffee, monkey flower, ash 
tree and tomato) and caryophyllales (sugar beet). Sequences identified from different species are 
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marked with different color as indicated. The bootstrap supports of the major nodes are shown. 
The phylogenetic tree in the right panel, which includes only sequences from the indicated 
lineages in the left panel, shows that the NRC sequences form a well-supported superclade that 
occurs in asterids and caryophyllales. The scale bars indicate the evolutionary distance in amino 
acid substitution per site. Details of the full phylogenetic tree can be found in Fig. S19-20. (B) 
Summary of phylogeny and number of NLR identified in the different plant species. 
Phylogenetic tree of plant species was generated by using phyloT based on National center for 
Biotechnology Information (NCBI) taxon identification numbers. Numbers of NLR identified in 
each category were based on NLR-parser and the phylogenetic trees in (A) and Fig. S16-20. Mya, 
million years ago; CNL, CC-NLR; NRC, NRC-superclade; NRC-H, NRC family (helper NLR); 
NRC-S, NRC-dependent NLR (sensor NLR). (C) Schematic representation of the NRC gene 
cluster on sugar beet chromosome 5. The two NRC-S paralogs are marked in blue, and the NRC-
H gene is marked in red. (D) Physical map of NRC superclade genes on tomato chromosomes. 
The NRC-S paralogs are marked in blue, and the NRC-H paralogs are marked in red. The detail 
information of the physical map can be found in Fig. S21.  
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