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Motivation: Single-cell gene expression profiling technologies can map the cell states in a tissue or organism. As
these technologies become more common, there is a need for computational tools to explore the data they produce. In
particular, existing data visualization approaches are imperfect for studying continuous gene expression topologies.
Results: Force-directed layouts of k-nearest-neighbor graphs can visualize continuous gene expression topologies
in a manner that preserves high-dimensional relationships and allows manually exploration of different stable two-
dimensional representations of the same data. We implemented an interactive web-tool to visualize single-cell data
using force-directed graph layouts, called SPRING. SPRING reveals more detailed biological relationships than
existing approaches when applied to branching gene expression trajectories from hematopoietic progenitor cells.
Visualizations from SPRING are also more reproducible than those of stochastic visualization methods such as
tSNE, a state-of-the-art tool.
Availability: https://kleintools.hms.harvard.edu/tools/spring.html, https://github.com/AllonKleinLab/SPRING/
Contact: calebsw@gmail.com, allon klein@hms.harvard.edu

1 Introduction

A recurring challenge in biology is to understand the diversity of molecular states in tissues and organisms. Recent
advances in single-cell RNA sequencing (scSeq) (Klein et al., 2015; Trapnell, 2015) have partly addressed this problem,
by making it possible to catalogue the expression of every gene in every cell from a given sample with reasonable
accuracy. With such data it is now possible to identify the structure of gene expression states, without preconceptions,
from population snapshots of single-cells. However, there remains a need for computational tools to explore and
visualize the large amount of high-dimensional data generated in scSeq experiments.

When analyzing the distribution of cell states from single-cell gene expression data, two features are of principal
interest. First, classifying cells into discrete clusters can give a coarse-grained representation of different phenotypic
states (e.g. cell types in a tissue). Second, understanding how cells link together to form continuous topologies can
reveal dynamic behaviors during development, differentiation and perturbation response. Currently, the dominant
methods for exploring scSeq data are adept at finding clusters in a heterogeneous population, but they tend not
to preserve information about how the clusters relate to each other or how they link into continuous topologies in
gene expression space. For example, the widely adopted t-distributed Stochastic Neighbor Embedding (tSNE) (Amir
et al., 2013; Hinton and Bengio, 2008) is powerful at revealing discrete structure in data, but is not robust with
respect to global topology.

To obtain information on continuum processes, graph representations of scSeq data have been used as an alter-
native to clustering. In a k-nearest neighbor (knn) graph, each cell is a node that extends edges to the k other nodes
with most similar gene expression. Several existing approaches for analysis of high-dimensional single-cell data rely
internally on a knn graph data structure (Samusik et al., 2016; Xu and Su, 2015; Setty et al., 2016; Bendall et al.,
2014; Levine et al., 2015), and one study proposed the use of knn graphs for visualization and data clustering (Islam
et al., 2011).
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We have found that interactively exploring graph topology, overlaid with gene expression or other annotations,
provides a powerful gestalt approach to uncover biological processes emerging from data. Unlike methods that utilize
knn graphs for computation, data-enhanced interactive graphs allow intuitive data exploration and can be easily used
by biologists without computational training. In addition, interactive graphs can quickly reveal whether observed
data structures are robust to graph rearrangements, or whether they reflect an arbitrary distortion of data projected
into two dimensions. However, at present there are no publicly available tools for interactive visualization of scSeq
data in a graph format.

Here we present a user-friendly web tool called SPRING. To use the tool, users must supply a table of gene
expression measurements for single-cells and can optionally upload additional annotations. SPRING builds a knn
graph from this data and displays the graph using a force-directed layout algorithm that renders as a real-time
simulation in an interactive viewing window.

We include a set of features for open-ended data exploration, including interactive discovery of marker genes;
gene expression comparisons between different subpopulations; and selection tools for isolating subpopulations of
interest. SPRING is compatible with all major web browsers and does not require technical knowledge to operate.

2 Methods

To generate the knn graph, SPRING performs the following transformations to the inputted gene expression matrix.
All parameters labeled “X” in this section can be adjusted using an interactive web form.

1. Filter all cells by total read count

2. Normalize so that every cell has the same total reads

3. Filter genes by mean expression and Fano factor

4. Z-score normalize expression values for each gene

5. Perform principal components analysis (PCA), keep the top principal components

6. Compute a distance matrix and output a knn-graph

SPRING is demonstrated in two examples in Figure 1. The underlying data sets are being published in separate
research papers, and are available at https://kleintools.hms.harvard.edu/tools/spring.html.

3 Advantages over existing methods

3.1 Continuous expression topologies

In contrast to methods such as tSNE and bi-clustering, SPRING captures the long-distance relationships between cells
and can therefore visualize continuous expression topologies. For example, SPRING accurately maps the branching
topology of hematopoietic progenitor cells as they first choose between and then differentiate along seven lineages
(Figure 1A). In contrast, tSNE (Figure 1B) and bi-clustering (Figure 1C) do not capture the correct expression
topology for these cells.

3.2 Graph invariance

One drawback of tSNE - the state-of-the-art algorithm for visualizing high dimensional scSeq data - is that it is
stochastic and therefore not perfectly reproducible. We have observed highly variable results when running tSNE
on different biological replicates of the same tissue or even multiple runs on the same dataset. By contrast, graph
construction in SPRING is non-stochastic and therefore yields consistent topologies between runs and replicates. In
addition, manual interaction with the kinetic SPRING interface allows users to bring plots from separate replicates
into register with one other (Figure 1D).
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Figure 1: (A) SPRING depicts the dynamic trajectories of hematopoietic progenitor cells as they differentiate from
stem cells (HSCs; black circle) into each of seven lineages (colored arms). By contrast, tSNE (B) and bi-clustering
(C) visualizations of the same data show disconnected clusters of cells, obscuring the underlying continuum process.
(D) SPRING and tSNE plots of upper airway epithelium cells from three human donors highlight the reproducibility
of SPING visualizations. Cells in (A-D) are colored by sum-Z-score of marker genes for each respective cell type.
Cell type markers for figs 1A-C are provided as a supplementary file in SPRING format.

4 Conclusion

Single-cell gene expression profiling is becoming a common tool to dissect cellular heterogeneity and characterize
dynamic processes such as differentiation. Interactive visualization tools can help researchers exploit this data more
fully. Our easy-to-use web tool, SPRING, provides a simple interface for open-ended investigation of gene expression
topology. In contrast to existing methods such as tSNE, SPRING accurately portrays continuum processes and
generates visualizations that are highly reproducible.
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