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ABSTRACT In single-step analyses, missing genotypes are explicitly or implicitly imputed, and this requires centering the
observed genotypes, ideally using the mean of the unselected founders. If genotypes are only available on selected individuals,
centering on the unselected founder mean is impossible. Here, computer simulation is used to study an alternative analysis that
does not require centering genotypes but fits the mean µg of unselected individuals as a fixed effect. To improve numerical
properties of the analysis, centering the entire matrix of observed and imputed genotypes, using their sample means can be
done in addition to fitting µg. Starting with observed diplotypes from 721 cattle, a 5 generation population was simulated with
sire selection to produce 40,000 individuals with phenotypes of which the 1,000 sires had genotypes. The next generation of
8,000 genotyped individuals was used for validation. Evaluations were undertaken: with (J) or without (N) µg when marker
covariates were not centered; and with (JC) or without (C) µg when all marker covariates were centered. A pedigree based
evaluation was less accurate than genomic analyses. Centering did not influence accuracy of genomic prediction, but fitting µg

did. Accuracies were improved when the panel comprised only QTL, models JC and J had accuracies of 99.2%; and models C
and N had accuracies of 85.6%. When only markers were in the panel, the 4 models had accuracies of 63.9%. In panels that
included causal variants, fitting µg in the model improved accuracy, but had little impact when the panel contained only markers.
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In pedigree based analyses, the expected value of breeding
values is zero. In order to achieve similar properties in whole-

genome analyses, marker genotype covariates are often trans-
formed. When all individuals are genotyped, it has been shown
that inference on genotype effects does not depend on how the
covariates are transformed (Strandén and Christensen 2010).
However, when data includes genotyped and non-genotyped
individuals, inference on marker effects from single-step anal-
yses may depend on how the covariates are transformed. In
single-step analyses using marker effects models, the breeding
values of non-genotyped individuals are partitioned into compo-
nents representing the prediction of non-genotyped individuals
conditional on their genotyped relatives and an independent de-
viation (Fernando et al. 2014). The prediction of non-genotyped
individuals conditional on their genotyped relatives is done
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based on best linear prediction, which requires the first mo-
ments to be known without error. This is straightforward if the
mean of the genomic breeding value is zero in the absence of
selection. Centering the observed genotype covariates using
what their means would be in the absence of selection would
result in genomic breeding values with null means. However,
such genotype covariate means are typically unavailable. Fer-
nando et al. (Fernando et al. 2014) proposed a solution for the
marker effects model that involves fitting an additional fixed
covariate that estimates the mean µg of the linear component
of the genotypic value, which is denoted by ai in (1) below, in
a population where selection is absent. Using that approach,
even when there is selection, the selection process can be ig-
nored (Goffinet 1983; Gianola and Fernando 1986; Im et al. 1989;
Sorensen et al. 2001). In Markov chain Monte Carlo analyses, cen-
tering results in better mixing (Strandén and Christensen 2010),
reducing the number of iterations required to obtain converged
genomic predictions. In practice, centering the entire matrix
of genotype covariates, including the observed and imputed
genotypes, using their sample means can be done in addition
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to the Fernando et al. (Fernando et al. 2014) approach of fitting
µg. This type of centering of the entire genotype matrix does not
affect inference on marker effects.

The same issue with centering of the observed genotype co-
variates that we described above for the marker effects model
is also implicit for the single-step breeding value model (single
step GBLUP), and a similar solution was proposed by Vitezica et
al. (Vitezica et al. 2011). In their proposed solution, the observed
genotype covariates are centered using their means, and in addi-
tion the genomic covariance matrix is corrected for the change in
the mean breeding value of the genotyped individuals (Vitezica
et al. 2011). It was shown in that paper that this is equivalent to
fitting the change in breeding value due to selection as a random
effect.

Here we use simulated data to compare the accuracy and bias
in genomic prediction applied to populations under selection
with and without centering the entire matrix of genotype covari-
ates, and with and without fitting µg as a fixed effect. Further, we
will show that when the observed genotype covariates are cen-
tered using means calculated from selected individuals rather
than means from all individuals, the meaning of µg changes
from the mean of unselected individuals to become the mean
breeding value in selected individuals as claimed by Vitezica et
al. (Vitezica et al. 2011).

Materials and Methods

Theory
To simplify the presentation of the genetic model, without loss
of generality, we will assume that the unconditional expectation
of the phenotypic value for all individuals is the same. Let
m′i denote the row vector of genotypes for individual i. Then,
under additive gene action, the genotypic value, gi, which is the
expected phenotypic value of an individual with genotypes m′i
can be written as

gi = β + m′iα,

= β + ai (1)

where β is the value of gi when m′i = 0′ and α is the vector
of substitution effects. Recognize the scalar β and the vector α
are constants, but gi will be a random variable because of ran-
domness in ai = m′iα, due to the randomness in the genotypes
for a randomly sampled individual. Note that the expected
value of the linear component ai of the genotypic value in (1) is
E(ai) = E(m′i)α = k′α = µg, where k′ = E(m′i), which may not
be equal to zero. Thus, it is customary to write the model for the
genotypic value, as can be derived from (1), as follows:

gi = (β + µg) + ai − µg

= (β + µg) + ui

= (β + µg) + (m′i − k′)α, (2)

where (β + µg) is a constant, representing the E(gi), and ui =
(m′i − k′)α is a random variable that has null expectation, which
is the breeding value predicted in a pedigree-based BLUP eval-
uation. When genotypes are observed and used in a genomic
analysis, they may be transformed or coded by subtracting their
expectations, k′, from the observed values, m′i . In both (1) and
(2), αj is the same substitution effect for locus j. The intercepts
in these models, however, are different. In (1), the intercept is β,
and it is the value of gi when m′i = 0′. In (2), on the other hand,
the intercept is (β + µg), and it is the value of gi when m′i = k′.

More generally, k′ is not known, so genotypes are coded by
subtracting a different vector v′ from the observed genotypes
as m′i − v′. Still, αj is the substitution effect for locus j, but the
intercept will change to become (β + v′α), which is the value of
gi when m′i = v′. Thus, as more rigorously shown in (Strandén
and Christensen 2010), inference about α does not depend on
how the genotypes are coded. A simpler but rigorous proof is
given in the appendix of this paper.

In single-step analyses, where some individuals are not geno-
typed, the missing genotypes are imputed either implicitly
(Legarra et al. 2009) or explicitly (Fernando et al. 2014) using
best linear prediction. Let Mg denote the matrix of genotypes
for individuals that were genotyped. Then, the genotypes of the
individuals with missing genotypes are imputed as

Mn = AngA−1
gg (Mg − 1k′),

where Ang is the matrix of pedigree based additive relationships
between the non-genotyped and genotyped individual and Agg
is the matrix of additive relationships among genotyped individ-
uals. Now, the model for the genotypic values, when genotypes
are coded as in (2), becomes

gn = 1(β + µg) + AngA−1
gg (Mg − 1k′)α + ε

gg = 1(β + µg) + (Mg − 1k′)α.

where ε is that part of gn that cannot be imputed from knowl-
edge of the breeding values of genotyped relatives. In practice,
the true value of k′ is not known, and data for its estimation
may not be available. Rearranging these equations in terms of
the uncentered Mg rather than the centered matrix of geotype
covariates (Mg − 1k′), results in

gn = 1(β + µg)−AngA−1
gg 1k′α + AngA−1

gg Mgα + ε

gg = 1(β + µg)− 1k′α + Mgα

and substituting µg = k′α, as previously defined, results in

gn = 1(β + µg)−AngA−1
gg 1µg + AngA−1

gg Mgα + ε

gg = 1(β + µg)− 1µg + Mgα
(3)

which suggests that µg = k′α could be treated as an unknown
constant and estimated as a fixed effect from the data (Fernando
et al. 2014). The covariate vector for µg is denoted by Jn =

−AngA−1
gg 1 for non-genotyped individuals and by Jg = −1 for

genotyped individuals. So, (3 ) becomes

gn = 1(β + µg) + Jnµg + Mnα

gg = 1(β + µg) + Jgµg + Mgα,

which can be combined as

g = 1(β + µg) + Jµg + Mα (4)

where Mn = AngA−1
gg Mg, g =

 gn

gg

 , J =

 Jn

Jg

 , M = Mn

Mg

.
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When the vector α represents the substitution effects of a
large number of loci containing positive and negative effects,
µg = k′α will tend to have a value close to zero. Accordingly,
we have simulated some scenarios with positive µα = E(αi)
so that the entire α vector is positive to exacerbate the impact
of µg = k′α . Nevertheless, when marker rather than causal
alleles are fitted in the model, the sign of the substitution effects
depends on the phase relationship between marker and causal
allele, which may be equally likely to be positive or negative.

Even if µα = E(αi) = 0, in a population undergoing selection,
it is expected that E(ai) = E(m′i)α 6= 0 in non-founders. Suppose
v′ is the mean of the observed genotype covariates in such a
population undergoing selection and these means are used to
center the matrix Mg of observed genotypes. Then, the model
for the genotypic values can be written in terms of the matrix
M∗g = Mg − 1v′ of centered covariates as

gn = 1(β∗ + µ∗g)−AngA−1
gg 1µ∗g + AngA−1

gg M∗gα + ε

gg = 1(β∗ + µ∗g)− 1µ∗g + M∗gα,
(5)

and using J for the covariate corresponding to µg, (5) can be
written as

gn = 1(β∗ + µ∗g) + Jnµ∗g + AngA−1
gg (Mg − 1v′)α

= 1(β∗ + µ∗g) + Jnµ∗g + AngA−1
gg Mgα−AngA−1

gg 1v′α

= 1(β∗ + µ∗g) + Jnµ∗g + Mnα + Jnv′α

gg = 1(β∗ + µ∗g) + Jgµ∗g + (Mg − 1v′)α

= 1(β∗ + µ∗g) + Jgµ∗g + Mgα + Jgv′α

which can be combined as

g = 1(β∗ + µ∗g) + J(µ∗g + v′α) + Mα. (6)

Note that the regression coefficients for J, µg in (4) and
µ∗g + v′α in (6) must be equal. This implies that µ∗g = µg − v′α.
Similarly, the intercepts of these two models must be equal too,
and this implies β∗ = β + v′α.

Simulations
Phenotypic and genotypic data were simulated based on haplo-
types from ten regions of 721 US Hereford beef cattle that were
genotyped with the Illumina 770K BovineHD BeadChip and
reported in terms of the number of copies of the A allele at each
locus. The selected regions came from choosing the 5,001st to
5,100th single nucleotide polymorphisms (SNPs) from chromo-
somes 1 to 10 (BTA1-BTA10), after eliminating SNP with MAF
< 0.01. These remaining 1,000 SNP represent ten 0.1M chromo-
somes. Average LD between adjacent SNPs was 0.511. Half of
these SNP were randomly chosen to represent QTL. The QTL
effects were sampled from a Normal distribution with mean µα

= 0.2 and multiplied by the number of copies of the A allele to
produce the true breeding value (TBV). The TBV were added
to a Normally distributed residual term scaled by the sample
variance of the TBV to simulate a trait with a heritability of 0.5.
The first 10 SNP (i.e. the 5,001st to 5,010th) from each of the ten
chromosomes were also used to simulate a smaller panel, with
5 QTL and 5 markers per chromosome. Average LD between
adjacent SNPs was 0.459. TBV were simulated in the same way
as for the 1,000 SNP scenario, then scaled to simulate traits with

heritabilities (h2) of 0.1, 0.3 or 0.5. An additional scenario with
µα = 0 was used to simulate TBV for a trait with heritability 0.5.

Half the observed diplotypes from US Hereford cattle were
assigned to represent males and the remainder to represent fe-
males. Those 360 males and 361 females were sampled in pairs,
with replacement, to produce 4,000 male and 4,000 female off-
spring representing generation G-4. There were no mutations.
Four more non-overlapping generations of random mating were
carried out with one male and one female offspring per dam
mated to randomly chosen sires to produce the founder popula-
tion (G0).

The G1 generation was produced by mass phenotypic selec-
tion of the top 200 G0 males, and this was repeated for 5 more
generations. Each female was randomly mated twice to selected
males to produce 1 offspring of each sex each generation. Across
non-overlapping generation G0 to G5, a total of 48,000 individ-
uals with phenotypes, genotypes and TBV were simulated for
each scenario.

The training data included phenotypes from all individuals in
G0 to G4 (n = 40,000), and genotypes from all 1,000 sires and all
8,000 G5 animals. Fixed loci, if any, were filtered from the panel
before genomic prediction analyses. The genetic and residual
variances used in genomic prediction were the sample variance
of the TBV in G0 and the corresponding residual variance used
to define the desired heritability in the founder population.

Models

Five statistical models were compared for differences in accuracy
and bias of prediction. These include models with or without µg
and with or without centering of marker covariates, and a model
that used pedigree relationships but not marker covariates.

1. Mixed Linear Model:
Accuracy of pedigree-based best linear unbiased prediction

(PBLUP) was quantified using the correlation of TBV and esti-
mated breeding values (EBV), where TBV was as simulated and
EBV were obtained by fitting the mixed linear model (Hender-
son 1973, 1984):

y = 1µ + Zu + e,

where y is a vector of phenotypic observations, 1 is a vector
of 1s, µ = β + µg is a general mean, u is a vector of random
direct additive genetic effects, e is a vector of random residual
effects, and Z is a known incidence matrix relating observations
to u. In this model, E(u) = 0, E(e)= 0, so that E(y) = 1µ. Further,
Var(u) = Aσ2

g , for A being the numerator relationship matrix,
and Var(e) = Iσ2

e , so that Var(y) = ZAZ′σ2
g + Iσ2

e .

2. Single-Step Bayesian Regression Model:
Genomic EBVs (GEBV) were obtained by Single-Step

Bayesian regression (Fernando et al. 2014) with BayesC pri-
ors for marker effects with π = 0. The model was imple-
mented in Julia (http://julialang.org) based on the SSBR pack-
age (http://QTL.rocks) to construct an MCMC chain of 50,000
samples. Individuals were separated into 2 groups designated
with subscripts g or n according to whether or not simulated
genotypes were assumed to be observed or missing. The single-
step bayesian regression model including a covariate J for µg
(Model J) was:
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Table 1 Four combinations of the single-step bayesian regres-
sion analyses

Models Marker Covariates

Centereda Not Centeredb

with J and µg JC J

without J C N
aCentered: eg. genotype values represented as -1, 0, 1 when the
uncentered genotype covariate has mean 1.
bNot Centered: eg. genotype values represented as the number
of copies of the A allele.

 yn

yg

 = 1µ +

 ZnJn

ZgJg

µg +

 ZnM̂n

ZgMg

 α

+

 Zn

0

 ε +

 en

eg

,

where yn and yg are vectors of phenotypes for non-
genotyped and genotyped individuals, 1 is a vector of 1s, µ
is a general mean, µg is the expected value of the linear com-
ponent ai of the genotypic value if selection was absent, α is
a vector of random substitution effects of markers, ε a vector
of imputation residuals, Zn and Zg are incidence matrices re-
lating the breeding values of non-genotyped and genotyped
individuals to their phenotypes, Jg, which is defined for geno-
typed individuals, is a vector of -1s, Jn, which is defined for
non-genotyped individuals, is a vector computed as AngA−1

gg Jg,
M̂n is the matrix of imputed marker covariates, Mg is the matrix
of observed marker covariates, en and eg are vectors of random
residual effects for non-genotyped and genotyped individuals.
This model can be represented as

y = 1µ+ZJµg+ZMα+Uε+e,

where y =

 yn

yg

, Z =

 Zn 0

0 Zg

, J =

 Jn

Jg

,

M =

 M̂n

Mg

, U =

 Zn

0

, the 0 matrix in U is required

because ε does not appear in the model for genotyped
individuals, and e is a vector of random residual effects.

There were four variants of the single-step Bayesian analysis
depending on whether or not the covariate J corresponding to
the mean µg was in the model, and whether or not the columns
in the marker covariate matrix M were centered using their
observed means. The analyses with J or without J are are de-
noted as J or N when covariates were not centered, and as JC or
C, when the entire matrix of imputed and observed genotype
covariates were centered, respectively (Table 1).

Accuracy of genomic prediction was quantified using the
correlation of TBV and GEBV (rg,ĝ), where GEBV were obtained
from each of the 4 analyses described above. Bias of genomic
prediction was quantified using the deviation from unity of the
coefficient of regression of TBV on GEBV (bg,ĝ). In models JC
and J, GEBV are obtained using equation (24) in (Fernando et al.
2014):

ĝ = Jµ̂g + Mα̂ + Uε̂,

where ĝ is the GEBV, µ̂g is the best linear unbiased estimate
of the mean of breeding values, α̂ is the best linear unbiased
predictor (BLUP) of the vector of random substitution effects of
all markers, and ε̂ is the BLUP of the imputation residual.

In model J the matrix Mg contains the uncentered number of
copies of the A allele at each locus, and the uncentered version
is used to impute M̂n. In model JC the entire matrix of imputed,
M̂n, and observed , Mg, genotype covariates is centered. In
model C and N the GEBV are computed in a corresponding
manner except that the covariate J and its coefficient µg are not
included in the model.

The four analyses JC, J, C and N were all applied to 3 differ-
ent genotype panels, comprising the causal QTL plus markers,
just the causal QTL, or just the markers. All 12 combinations
of 4 analyses and 3 genotype panels were applied to data sim-
ulated with 100 loci comprising 50 QTL whose effects were
sampled from a Normal distribution with µα = 0.2 to construct
phenotypes with h2 = 0.5. The four analyses JC, J, C and N
were repeated using only genotype panels comprising QTL plus
markers for four other scenarios: 100 loci, h2 = 0.1, µα = 0.2; 100
loci, h2 = 0.3, µα = 0.2; 100 loci, h2 = 0.5, µα = 0; and 1,000 loci,
h2 = 0.5, µα = 0.2. Every scenario was repeated for 10 replicates
with each replicate having been constructed starting from the
sampling of G-5 which represented simulated offspring from
the haplotypes of real animals. Every phenotypic dataset was
also fitted using the PBLUP model. All reported correlations
and regression coefficients are the means of 10 replicates. These
are presented along with the standard errors of those means.

In single-step GBLUP (Legarra et al. 2009; Aguilar et al. 2010;
Christensen and Lund 2010), the missing genotypes are not
explicitly imputed and only the observed genotype covariates
are centered using their means. So, in addition to the above,
analyses with and without J (models JC* and C*), were applied
to a marker panel with 100 loci, h2 = 0.5, and µα = 0, when
the matrix M∗g = Mg − 1v′ of observed genotype covariates
were centered using their means, v′ = 1′Mg . Recall that when
the matrix M∗g of observed genotype covariates is centered, the
model for the genotypic values can be written in terms of the
matrix Mg of uncentered covariates as shown by model (6). We
will compare the estimates of µ∗g in this model with those of µg
from (4) where the means of observed genotype covariates are
not used for centering.

The genotypes representing G0 from each replicate and sce-
nario are available at:
https://figshare.com/s/d7798b811a9a6a4172fc.
These genotypes and the methodology described previously are
sufficient to reproduce the simulations used in this study.

Results and Discussion

Effect of fitting a genotyped mean and centering marker co-
variates

1. Accuracy:
The accuracies of genomic prediction as assessed by valida-

tion in G5 after training using G0-G4 for a trait with 50 QTL
whose effects were sampled from a Normal distribution with
µα = 0.2 and h2 = 0.5 are in Table 2. The accuracy of PBLUP in
predicting breeding values for individuals without phenotypes,
was 41.5%, accounting for less than 20% of genetic variance.
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All analyses using genotypes resulted in more accurate predic-
tions than using pedigree alone. Centering had no affect on the
accuracy of the genomic analyses regardless of the nature of
the marker panel. In this study, selection resulted in successive
advance in mean TBV from G0 to G5 being 10.35, 10.77, 11.31,
11.82, 12.30 and 12.80. The mean genotypic value was not zero
in G0 because QTL genotypes were not centered and the mean
QTL effect was µα = 0.2. Since the QTL effects do not change by
selection the advance in TBV reflects changes in the frequencies
of the favorable alleles of the 50 QTL. So centering using the
allele frequency means of the genotyped sires in G1-G4 and all
individuals in G5 does not closely approximate the centering
that would have occurred if the allele frequency means had been
obtained from the unselected population. In contrast fitting µg
in the model estimates the relevant mean from the data.

In panels that included causal variants (QTL), fitting µg in
the model substantially improved the accuracy to being near
perfect. This is not surprising given there were only 50 QTL, the
heritability was 0.5 and there were 40,000 phenotyped ancestors,
including 200 genotyped sires per generation in the training.
However, in the panel that contained only markers with no
causal variants, fitting µg in the model had little impact.

Using one replicate as an example, for the panel including
both QTL and markers, the estimate of µ was about 10.51 for
both analyses J and N. The estimate of µg was 7.66 for the analy-
sis using J. For the genotyped individuals, the covariate values
in Jg are all -1, so 1µ̂ + Jgµ̂g is a vector of values equal to 10.51 -
7.66 = 2.85. For non-genotyped individuals, the covariate values
in Jn can vary widely but many are close to -1 while others are
close to 0. This means that 1µ̂ + Jnµ̂g will contain values that
range from 10.51 to 2.85, accounting for variation in accuracy of
imputation. When µg is not included in the model, these effects
are ignored which can reduce the accuracy of predicting non-
genotyped individuals. Failing to account for these effects will
propagate errors in ε̂ and α̂, the latter impacting the accuracy
of predicting genotyped individuals. Collectively, these errors
reduced accuracy from 98% to 92% for the panel including QTL
and markers and from 99% to 85% for the panel including only
QTL. However, when the panel comprised only markers, the es-
timates α̂ will include both positive and negative values because
the phase of markers and QTL are equally likely to take either
sign, in which case µ̂g will be close to zero as confirmed in the
above mentioned replicate where the estimate was 0.41.

Here, the QTL model was used with an intercept of β = 0.0
to simulate the data. When only QTL are on the panel, the true
value of β is zero. Thus, in analysis J because µ = (β + µg),
both µ̂ and µ̂g are estimates of µg, and could be pooled which
for the replicate above would be (10.51 + 9.04)/2 = 9.78. In
that replicate, the actual mean of ai in G0 was 10.8, which was
estimated in the analysis to be 9.78. On the other hand, the mean
of the breeding value ui in the 9,000 genotyped individuals was
2.2, which is clearly not near the pooled estimate of 9.78. These
genotyped individuals included 1,000 selected sires of which
200 were genotyped in each generation from G0 to G4, and
8,000 offspring from G5. The mean values of ui for the selected
sires were 0.97, 1.41, 1.80, 2.24, and 2.74, respectively, for G0
through G4, and 2.27 for the offspring in G5. It is apparent
that the µg parameter corresponding to the covariate J is the
mean of the founder population and not the mean breeding
value of selected individuals. In analysis JC with the covariates
centered, the intercept β is the value of gi when (m′i − v′i)α = 0,
which is the case when m′i = v′i . The estimate µ̂ was 17.33 in

this analysis, but µ̂g remained about the same value, namely
9.05. This shows that µ̂g has the same interpretation whether the
entire matrix of observed and imputed genotypes is centered or
not. In neither case does it represent the mean breeding value of
selected individuals.

2. Bias:
Table 3 shows the regression coefficients of TBV on (G)EBV

for h2 = 0.5 and µα = 0.2, the same scenarios represented in
Table 2. The regression coefficients of TBV on GEBV for each
scenario were close to 1 with very low SE, which indicates the
genomic predictions exhibited almost no bias. The differences in
regression coefficients between analyses were very small, but the
marker panel comprising only markers were biased upwards
whereas the marker panels that included causal mutations were
biased slightly downwards.

Sensitivities to trait heritability
Accuracy of PBLUP increased with heritability, as expected (Ta-
ble 4). Genomic predictions using panels that include causal
mutations were near perfect when µg was included in the model.
These high accuracies are a reflection of these phenotypes be-
ing influenced by only 50 QTL and there being a large training
dataset. Accuracy was reduced when µg was not fitted in the
model. There was no advantage in terms of accuracy to center-
ing the covariates but MCMC mixing may have been improved
although this was not investigated.

Effect of mean QTL effect (µα = 0 vs µα = 0.2)
We had hypothesized that the impact of omitting µg from the
model will be greatest when µg departs significantly from 0
which is more likely to occur when µα departs from 0. For that
reason our base simulation used µα = 0.2. Results are shown in
Table 5 for the panel including QTL and markers with h2 = 0.5
for µα = 0.2 compared to µα = 0. These results confirmed the
benefit of fitting µg was greatest when µα = 0.2 but there was still
an advantage to fitting µg when µα = 0. That advantage is likely
to erode as the number of QTL increases. Changing the mean
QTL effect had no impact on bias, except for a slight influence
on PBLUP.

Effect of more QTL and markers (100 SNP vs 1,000 SNP)
We had hypothesized that the improvement of accuracy from
adding an extra covariate for µg will reduce as the number of
QTL increases because µg is likely to be closer to zero for a trait
that is more polygenic. Table 6 shows that PBLUP was largely
unaffected by changes to genetic architecture but the accuracy
of genomic prediction declined slightly as the number of QTL
increases. This reflects the fact that precision of estimating QTL
effects is greater when the effects are large and polygenic traits
with more QTL must have on average smaller effects when
compared at the same genetic variance. The benefit of fitting
µg in the model was virtually eliminated when the number of
substitution effects to estimate increases from 100 to 1,000. In
contrast to the results of accuracy, there was no impact of QTL
number on bias. Centering had no impact on accuracy or bias.

Centering using the entire matrix of genotype covariates or
only the observed genotype covariates
Table 7 shows the accuracies and regression coefficients of TBV
on G(EBV) for the genotype panel with 50 markers, h2 = 0.5
and µα = 0. The analyses were performed after centering:
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Table 2 Correlations (%, ±SEs) between TBV and (G)EBVa for alternative analysesb

Genotype Datac Analyses

JC J C N PBLUP

50 QTL + 50 Markers 98.35 ± .00 98.41 ± .00 92.20 ± .00 92.18 ± .00 -

50 QTL Only 99.19 ± .00 99.21 ± .00 85.61 ± .01 85.64 ± .01 -

50 Markers Only 63.97 ± .02 63.96 ± .02 63.88 ± .02 63.88 ± .02 -

No Genotypes - - - - 41.53 ± .00
aAverage correlation between true breeding value (TBV) and (genomic) estimated breeding values from 10 replications validated in
Generation 5, comprising 8,000 individuals with genotypes but no phenotypes. The true QTL effects were sampled from a Normal
distribution with mean µα= 0.2 and scaled to simulate a trait with a heritability 0.5.
bJ: includes a covariate for µg in the model, C: entire matrix of imputed and observed genotype covariates centered, JC: both J and C,
N: neither J or C, and PBLUP: pedigree-based BLUP.
cThe analyses were based on fitting covariates for only 50 QTL, only 50 markers, or both 50 QTL and 50 markers.

Table 3 Regression coefficients (±SEs) of TBV on (G)EBVa

Genotype Datab Analysesc

JC J C N PBLUP

50 QTL + 50 Markers 1.06 ± .01 1.05 ± .01 1.03 ± .01 1.03 ± .01 -

50 QTL Only 1.05 ± .01 1.05 ± .01 1.04 ± .01 1.04 ± .01 -

50 Markers Only 0.82 ± .02 0.82 ± .02 0.82 ± .02 0.82 ± .02 -

No Genotypes - - - - 0.92 ± .02
aAverage Regression coefficients of true breeding value (TBV) on (genomic) estimated breeding values from 10 replications validated
in Generation 5, comprising 8,000 individuals with genotypes but no phenotypes. The true QTL effects were sampled from a Normal
distribution with mean µα= 0.2 and scaled to simulate a trait with a trait with a heritability 0.5.
bThe analyses were based on fitting covariates for only 50 QTL, only 50 markers, or both 50 QTL and 50 markers.
cJ: includes a covariate for µg in the model, C: entire matrix of imputed and observed genotype covariates centered, JC: both J and C,
N: neither J or C, and PBLUP: pedigree-based BLUP.

Table 4 Correlations (%, ±SEs) between TBV and (G)EBVa for alternative analysesb for different heritabilities

Heritabilities Analyses

JC J C N PBLUP

h2 = 0.1 94.91 ± .00 94.89 ± .00 89.44 ± .01 89.46 ± .01 30.29 ± .01

h2 = 0.3 97.93 ± .00 97.97 ± .00 92.55 ± .01 92.53 ± .01 37.61 ± .01

h2 = 0.5 98.35 ± .00 98.41 ± .00 92.20 ± .00 92.18 ± .00 41.53 ± .00
aAverage correlation between true breeding value (TBV) and (genomic) estimated breeding values from 10 replications validated in
Generation 5, comprising 8,000 individuals with genotypes but no phenotypes. The true QTL effects were sampled from a Normal
distribution with mean µα= 0.2 and scaled to simulate a trait with a trait with heritabilities 0.1, 0.3 or 0.5.
bJ: includes a covariate for µg in the model, C: entire matrix of imputed and observed genotype covariates centered, JC: both J and C,
N: neither J or C, and PBLUP: pedigree-based BLUP. Covariates were fitted for both 50 QTL and 50 Markers.
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Table 5 Accuracya and biasb of genomic prediction (±SEs) for alternative QTL distributionsc and analysesd

Substitution Analyses

Effects JC J C N PBLUP

Correlations (%)

µα = 0 98.63 ± .00 98.66 ± .00 97.31 ± .00 97.31 ± .00 41.87 ± .01

µα = 0.2 98.35 ± .00 98.41 ± .00 92.20 ± .00 92.18 ± .00 41.53 ± .00

Regression Coefficient

µα = 0 1.07 ± .03 1.07 ± .03 1.06 ± .02 1.06 ± .02 0.95 ± .03

µα = 0.2 1.06 ± .01 1.05 ± .01 1.03 ± .01 1.03 ± .01 0.92 ± .02
aAccuracy was quantified using the average correlation between true breeding value and (genomic) estimated breeding values from
10 replications validated in Generation 5, comprising 8,000 individuals with genotypes but no phenotypes.
bBias was quantified using the average regression coefficients of true breeding value on (genomic) estimated breeding values from 10
replications.
cThe true QTL effects were sampled from Normal distributions with mean µα = 0 or µα = 0.2 and scaled to simulate a trait with a
heritability 0.5.
dJ: includes a covariate for µg in the model, C: entire matrix of imputed and observed genotype covariates centered, JC: both J and C,
N: neither J or C, and PBLUP: pedigree-based BLUP. Covariates were fitted for both 50 QTL and 50 markers.

Table 6 Accuracya and biasb of genomic prediction (±SEs) for different numbers of QTLc and alternative analysesd

Numbers of QTL Analyses

JC J C N PBLUP

Correlations (%)

50 QTL + 50 Markers 98.35 ± .00 98.41 ± .00 92.20 ± .00 92.18 ± .00 41.53 ± .00

500 QTL + 500 Markers 95.49 ± .00 95.48 ± .00 94.87 ± .00 94.86 ± .00 41.48 ± .00

Regression Coefficient

50 QTL + 50 Markers 1.06 ± .01 1.05 ± .01 1.03 ± .01 1.03 ± .01 0.92 ± .02

500 QTL + 500 Markers 1.04 ± .01 1.04 ± .01 1.04 ± .01 1.04 ± .01 0.92 ± .01
aAccuracy was quantified using the average correlation between true breeding value and (genomic) estimated breeding values from
10 replications validated in Generation 5, comprising 8,000 individuals with genotypes but no phenotypes.
bBias was quantified using the average regression coefficients of true breeding value on (genomic) estimated breeding values from 10
replications.
cThe true effects for 50 or 500 QTL were sampled from a Normal distribution with mean µα = 0.2 and scaled to simulate a trait with a
heritability 0.5.
dJ: includes a covariate for µg in the model, C: entire matrix of imputed and observed genotype covariates centered, JC: both J and C,
N: neither J or C, and PBLUP: pedigree-based BLUP. Covariates were fitted for either 50 QTL and 50 markers or 500 QTL and 500
markers.
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the entire matrix of imputed and observed genotype covari-
ates (M∗ = M − 11

′
M); only observed genotype covariates

(M∗g = Mg − 11
′
Mg), which is the type of centering done in

single-step genomic best linear unbiased prediction (GBLUP);
or not centering the covariates (M∗ = M). The accuracy of any
genomic analyses were about 8% higher than that one based on
covariates centered as M∗g but without J (model C*). However,
when J was included in the model with covariates centered as
M∗g, the accuracy of prediction was markedly improved.

As explained previously, µg = k′α, where k′ is the expected
value of the covariates in the founders, will tend to zero for
the marker panel that does not include QTL even with µα 6= 0.
However, even if µα = 0, in a population undergoing selection
when selected individuals are genotyped, µ∗g = µg − v′α 6= 0,
where v′ is the expected value of the observed genotype covari-
ates. In this study, selection was used to increase the mean of
the trait. Thus, µ∗g is expected to be negative because most of the
genotyped individuals were from G5, whereas µg is expected
to be zero. The negative estimate of µ̂∗g from 10 replicates of
the JC* analysis , -2.84, confirms that µ∗g < 0. On the other
hand, the mean of µ̂g from 10 replicates of the JC analysis was
-0.23. This explains why fitting J in the model improved the
accuracy of genomic prediction when covariates were centered
as in single-step GBLUP.

Fernando et al. (Fernando et al. 2014) found that centering
using M∗g improves the accuracy without J in the model when
the population was not under selection and the genotyped indi-
viduals were unselected. In that study, mating was random with
no selection, so the allele frequency means of the genotyped indi-
viduals were a reasonable approximation of the allele frequency
means in the founder population. In contrast, our simulation
here shows that centering using M∗g can reduce the accuracy
when the population is under selection, unless J is fitted in the
model.

In single-step GBLUP, the observed genotypes are commonly
centered by subtracting their mean and used to construct a ge-
nomic relationship matrix, such as using the first method pro-
posed by VanRaden (VanRaden 2008). Using that genomic rela-
tionship matrix in the single-step GBLUP formula in Aguilar et
al. (Aguilar et al. 2010) does not account for J. This was recog-
nised in Vitezica et al (Vitezica et al. 2011) who proposed a mod-
ification for populations under selection that involved adding
a constant to all elements of the genomic relationship matrix
that they derived by equating the sum of the elements of the
genomic relationship matrix to the the sum of the elements of
the numerator relationship matrix. In the appendix of that paper
they showed this modification is equivalent to fitting a covari-
ate Q = - J and treating -µ∗g as a random effect. In addition to
this modification, Christensen et al. (Christensen et al. 2012) pro-
posed a multiplicative scaling to the genomic relationship matrix
such that its diagonals have the same mean as the diagonals of
the numerator relationship matrix. Vitezica et al. (Vitezica et al.
2011) claimed that -µ∗g represents the mean breeding value of
selected individuals, and we have confirmed here that this is
true provided the observed genotype covariates are centered by
their mean.

Most populations are under natural or artificial selection. In
many cases, genotypes are only available on selected individ-
uals. In single-step genomic analysis that combine genotyped
and non-genotyped individuals in a joint analysis, the mean of
observed genotypes are available for centering. If the observed
genotypes include QTL, the accuracy of genomic prediction can

Table 7 Accuracya and biasb of genomic prediction (±SEs)
when centering for all genotypes or observed genotypesc

Analyses Correlations (%) Regression Coefficient

JC 73.36 ± 0.03 0.89 ± 0.02

J 73.37 ± 0.03 0.89 ± 0.02

C 73.07 ± 0.03 0.89 ± 0.02

N 73.07 ± 0.03 0.89 ± 0.02

JC* 73.38 ± 0.03 0.89 ± 0.02

C* 65.30 ± 0.03 1.32 ± 0.06

PBLUP 41.87 ± 0.01 0.95 ± 0.03
aAccuracy was quantified using the average correlation between
true breeding value and (genomic) estimated breeding values
from 10 replications validated in Generation 5, comprising 8,000
individuals with genotypes but no phenotypes. The true QTL
effects were sampled from Normal distributions with mean µα =
0 and scaled to simulate a trait with a heritability 0.5.
bBias was quantified using the average regression coefficients
of true breeding value on (genomic) estimated breeding values
from 10 replications.
cJ: includes a covariate for µg in the model, C: entire matrix of
imputed and observed genotype covariates centered, JC: both J
and C, N: neither J or C, C*: only observed genotype covariates
centered, JC*: both J and C*, and PBLUP: pedigree-based BLUP.
Covariates were fitted for 50 markers.

be severely compromised, unless the J covariate is fitted in the
model. If the observed genotypes are only markers, the accu-
racy of genomic prediction may not necessarily be improved by
fitting J in the model, but it doesn’t do any harm. However, if
centering is applied only to the observed genotypes, which is
the type of centering used in single-step GBLUP, accuracy could
be severely compromised, unless the J covariate is fitted in the
model or an equivalent approach is adopted.
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Appendix

Here we show that inference about α does not depend on how
the genotypes are coded. The marker effects model can be de-
scribed by the following general model:

y = 1µ + Mα + e (7)

where y is a vector of observed phenotypes, 1 is a vector of 1s,
µ is a general mean, M is a matrix of marker covariates, coded
0, 1, 2, which represents the number of copies of the A allele, α
is a vector of random substitution effects of markers, and e is a
vector of residuals. Henderson’s mixed model equations (MME)
that correspond to equation (7) are: 1′1 1′M

M′1 M′M + I σ2
e

σ2
α

 µ̂

α̂

 =

 1′y

M′y


where µ̂ is the best linear unbiased estimate of the mean, and
α̂ is the best linear unbiased predictor of the vector of random
substitution effects of all markers. Now we can eliminate µ̂
from the equations for α̂, by subtracting from those equations
the equation for µ̂ pre-multiplied by M′1

n . Then, the MME are
transformed to:

 1′1 1′M

0 M′M− M′11′M
n + I σ2

e
σ2

α

 µ̂

α̂

 =

 1′y

M′y− M′1
n 1′y


and substituting 1′1 = n and 1′M = nm̄′ and its transpose, the
transformed MME become:

 n nm̄

0 M′M− m̄m̄′n + I σ2
e

σ2
α

 µ̂

α̂

 =

 1′y

(M− 1m̄′)′y

 .

(8)
where m̄′ is the row vector of column means of M as in m̄′ =
1′M

n .
Now, consider the coding obtained by centering the marker

genotypes as M− 1m̄′. Then the model can be written as:

y = 1µ∗ + (M− 1m̄′)α + e (9)

where µ∗ = µ + m̄′α. The MME that correspond to equation (9)
are:

 n 1′(M− 1m̄′)

(M− 1m̄′)′1 (M− 1m̄′)′(M− 1m̄′) + I σ2
e

σ2
α

 µ̂∗

α̂


=

 1′y

(M− 1m̄′)′y

 ,

but 1′(M− 1m̄′) = nm̄′− nm̄′ = 0′, and, similarly, its transpose
is (M− 1m̄′)′1 = 0. Then the MME become:

 n 0′

0 (M− 1m̄′)′(M− 1m̄′) + I σ2
e

σ2
α

 µ̂∗

α̂


=

 1′y

(M− 1m̄′)′y

 .

Expanding (M − 1m̄′)′(M − 1m̄′) gives M′M − m̄1′M −
M′1m̄′ + m̄1′1m̄′, but because 1′M = nm̄′, M′1 = nm̄, and
1′1 = n, as previously shown, the second term, m̄1′M = m̄nm̄′,
which is equal to the last term in the expansion. Thus, the MME
become:

 n 0′

0 M′M− m̄m̄′n + I σ2
e

σ2
α

 µ̂∗

α̂

 =

 1′y

(M− 1m̄′)′y

 .

(10)
The equations for α̂ in (8) and (10) are identical, and this proves
that centering with m′ doesn’t affect inference about α.

Now suppose an arbitrary vector v′ is used to transform the
genotypes as (M− 1v′). The the model becomes:

y = 1(µ + v′α) + (M− 1v′)α + e.

Adding and subtracting 1m̄′α, the above equation can be written
as:

y = 1[µ + v′α + (m̄′ − v′)α] + (M− 1m̄′)α + e

= 1(µ + m̄′α) + (M− 1m̄′)α + e,

= 1µ∗ + (M− 1m̄′)α + e,

which is identical to equation (9), proving inference about α does
not depend on how the genotypes are coded.
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